Skip to main content

Investigating the Effect of Corn Cob Ash on the Characteristics of Cement Paste and Concrete: A Review

  • Conference paper
  • First Online:
Environmental Concerns and Remediation

Abstract

The increase in the demand for construction materials has led to influence the researchers from the various fields to find an alternative way to utilize the waste. Agricultural fields produce a considerable number of wastes in terms of husk, straw and ash. Various studies have concluded that agricultural by-products possess high silicious content indicating their pozzolanic behavior and successful application in cement and cement-based composites. Apart from the safe stabilization of such wastes in construction works, the overall cost of production has also been reduced, considerably. Corn cob is one of those waste products that remained in the agricultural fields for a longer period after the harvesting, which adversely affects the environment. This chapter reviews the various studies conducted on the incorporation of corn cob in various forms in civil engineering practices to reduce the environmental problems associated with it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Alabi, J. Fapohunda, Effects of increase in the cost of building materials on the delivery of affordable housing in South Africa. Sustainability 13, 1–12 (2021). https://doi.org/10.3390/su13041772

    Article  Google Scholar 

  2. K. Singh, J. Singh, S. Kumar, A sustainable environmental study on corn cob ash subjected to elevated temperature. Curr. World Environ. 13, 144–150 (2018). https://doi.org/10.12944/cwe.13.1.13

    Article  Google Scholar 

  3. G. Datis, Worldwide Cement Production From 2015 to 2019 (2020)

    Google Scholar 

  4. WBCSD, World Business Council for Sustainable Development (WBCSD), The Getting the Numbers Right (GNR) 2016 data, (2019). https://www.wbcsdcement.org/GNR-2016. Accessed 31 Dec 2020

  5. M.A. Etim, K. Babaremu, J. Lazarus, D. Omole, Health risk and environmental assessment of cement production in Nigeria. Atmosphere (Basel) 12, 1–16 (2021). https://doi.org/10.3390/atmos12091111

    Article  CAS  Google Scholar 

  6. FAOSTAT, Food and Agriculture Organization of the United Nations (FAO), Strategic Work of FAO for Sustainable Food and Agriculture (2017). http://www.fao.org/3/ai6488e.pdf. Accessed 31 Dec 2020

  7. FAOSTAT, Food and Agriculture Organization of the United Nations (FAO), The State of Food and Agriculture 2017. Leveraging Food Systems for Inclusive Rural Transformation., (2017). http://www.fao.org/3/a-i7658e.pdf

  8. A.K. Sodhi, N. Bhanot, R. Singh, M. Alkahtani, Effect of integrating industrial and agricultural wastes on concrete performance with and without microbial activity. Environ. Sci. Pollut. Res. 1–17 (2021)

    Google Scholar 

  9. J. He, S. Kawasaki, V. Achal, The utilization of agricultural waste as agro-cement in concrete: A review. Sustainability 12 (2020). https://doi.org/10.1088/1757-899X/980/1/012065

  10. E. Hsu, Cost-benefit analysis for recycling of agricultural wastes in Taiwan. Waste Manag. 120, 424–432 (2021). https://doi.org/10.1016/j.wasman.2020.09.051

    Article  Google Scholar 

  11. M. Gharieb, A.M. Rashad, An initial study of using sugar-beet waste as a cementitious material. Constr. Build. Mater. 250, 118843 (2020). https://doi.org/10.1016/j.conbuildmat.2020.118843

    Article  CAS  Google Scholar 

  12. Pjtsau, Maize Outlook, (2020)

    Google Scholar 

  13. F. and D. Administration, CFR – Code of Federal Regulations Title 21, Electronic Code of Federal Regulations (eCFR) 2019

    Google Scholar 

  14. N. Bheel, A. Adesina, Influence of binary blend of corn cob ash and glass powder as partial replacement of cement in concrete. Silicon 13, 1647–1654 (2020). https://doi.org/10.1007/s12633-020-00557-4

    Article  CAS  Google Scholar 

  15. N.O. Abdullah, R.D.W. Fakhruddin, N.K.R. Bachtiar, A sustainable environmental study on clamshell powder, slag, bagasse ash, fly ash, and corn cob ash as alternative cementitious binder. IOP Conf. Ser. Earth Environ. Sci. 841 (2021). https://doi.org/10.1088/1755-1315/841/1/012003

  16. D. Sundaravadivel, Recent studies of sugarcane bagasse ash in concrete and mortar – A review. J. Mater. Cycles Waste Manag 7, 306–312 (2018)

    Google Scholar 

  17. K.S. Sohal, R. Singh, Sustainable use of sugarcane bagasse ash in concrete production, in Sustainable Development Through Engineering Innovations, ed. by H. Singh, P. P. S. Cheema, P. Garg, (2020), pp. 397–409

    Google Scholar 

  18. D.A. Adesanya, A.A. Raheem, A study of the permeability and acid attack of corn cob ash blended cements. Constr. Build. Mater. 24, 403–409 (2010). https://doi.org/10.1016/j.conbuildmat.2009.02.001

    Article  Google Scholar 

  19. O. Bagcal, M. Baccay, Influence of agricultural waste ash as pozzolana on the physical properties and compressive strength of cement mortar. J. Appl. Eng. Sci. 9, 29–36 (2019). https://doi.org/10.2478/jaes-2019-0004

    Article  Google Scholar 

  20. O.S. Olafusi, W.K. Kupolati, E.R. Sadiku, J. Snyman, J.M. Ndambuki, Characterization of corncob ash (CCA) as a pozzolanic material. Int. J. Civ. Eng. Technol. 9, 1016–1024 (2018)

    Google Scholar 

  21. K. Anjaneyulu, Partial replacement of cement concrete by waste materials. Int. J. Eng. Dev. Res., 1374–1383 (2017)

    Google Scholar 

  22. P. Suwanmaneechot, T. Nochaiya, P. Julphunthong, Improvement, characterization and use of waste corn cob ash in cement-based materials. IOP Conf. Ser. Mater. Sci. Eng. 103 (2015). https://doi.org/10.1088/1757-899X/103/1/012023

  23. S.A. Memon, M.K. Khan, Ash blended cement composites: Eco-friendly and sustainable option for utilization of corncob ash. J. Clean. Prod. 175, 442–455 (2018). https://doi.org/10.1016/j.jclepro.2017.12.050

    Article  CAS  Google Scholar 

  24. J. Kamau, A. Ahmed, P. Hirst, J. Kangwa, Suitability of corncob ash as a supplementary cementitious material. Int. J. Mater. Sci. Eng. 4, 215–228 (2016). https://doi.org/10.17706/ijmse.2016.4.4.215-228

    Article  Google Scholar 

  25. M. Shakouri, D. Trejo, A time-variant model of surface chloride build-up for improved service life predictions. Cem. Concr. Compos. 84, 99–110 (2017). https://doi.org/10.1016/j.cemconcomp.2017.08.008

    Article  CAS  Google Scholar 

  26. J. Kamau, A. Ahmed, A review of the use of corncob ash as a supplementary cementitious material. Eur. J. Eng. Res. Sci. 2, 1–6 (2017)

    Google Scholar 

  27. K.A. Mujedu, S.A. Adebara, I.O. Lamidi, The use of corn cob ash and saw dust ash as cement replacement in concrete works. Int. J. Eng. Sci. 4, 22–28 (2015)

    Google Scholar 

  28. M. Shakouri, D. Trejo, P. Gardoni, A probabilistic framework to justify allowable admixed chloride limits in concrete. Constr. Build. Mater. 139, 490–500 (2017). https://doi.org/10.1016/j.conbuildmat.2017.02.053

    Article  CAS  Google Scholar 

  29. J. Kamau, A. Ahmed, P. Hirst, J. Kangwa, Viability of using corncob ash as a pozzolan in concrete. Int. J. Sci. Environ. Technol. 5, 4532–4544 (2016)

    Google Scholar 

  30. B.O. Adigun, F.I. Jegede, O. Tunmilayo Sanya, Advanced materials development from corncob ash for economic sustainability. Int. J. Ceram. Eng. Sci. 2, 17–21 (2020). https://doi.org/10.1002/ces2.10032

    Article  Google Scholar 

  31. D.A. Adesanya, A.A. Raheem, Development of corn cob ash blended cement. Constr. Build. Mater. 23, 347–352 (2009). https://doi.org/10.1016/j.conbuildmat.2007.11.013

    Article  Google Scholar 

  32. H. Binici, F. Yucegok, O. Aksogan, H. Kaplan, Effect of corncob, wheat straw, and plane leaf ashes as mineral admixtures on concrete durability. J. Mater. Civ. Eng. 20, 478–483 (2008). https://doi.org/10.1061/(asce)0899-1561(2008)20:7(478)

    Article  CAS  Google Scholar 

  33. F.I.J. Bidemi Omowunmi Adigun, O.T. Sanya, Advanced materials development from corn cob ash for economic sustainability, (n.d.) 1–15. https://doi.org/10.1002/ces2.10032.

  34. T.Y. Tsado, M. Yewa, S. Yaman, F. Yewa, Comparative analysis of properties of some artificial pozzolana in concrete production. Int. J. Eng. Technol. 4, 1–5 (2014)

    Article  Google Scholar 

  35. K. Oluborode, I. Olofintuyi, Self-compacting concrete: strength evaluation of corn cob ash in a blended portland cement. Am. Sci. Res. J. Eng. Technol. Sci., 123–131 (n.d.)

    Google Scholar 

  36. T.A. Owolabi, I.O. Oladipo, O.O. Popoola, Effect of corncob ash as partial substitute for cement in concrete. New York Sci. J 8, 1–4 (2015)

    Google Scholar 

  37. F.F. Udoeyo, S.A. Abubakar, Maize-cob ash as filler in concrete. J. Mater. Civ. Eng. 15, 205–208 (2003)

    Article  CAS  Google Scholar 

  38. E.S. Aprianti, A huge number of artificial waste material can be supplementary cementitious material ( SCM ) for concrete production e a review part II. J. Clean. Prod. 142, 4178–4194 (2017). https://doi.org/10.1016/j.jclepro.2015.12.115

    Article  Google Scholar 

  39. Z. Ge, K. Wang, P.J. Sandberg, J.M. Ruiz, Characterization and performance prediction of cement-based materials using a simple isothermal calorimeter. J. Adv. Concr. Technol. 7, 355–366 (2009). https://doi.org/10.3151/jact.7.355

    Article  CAS  Google Scholar 

  40. J. Yu, G. Li, C.K.Y. Leung, Hydration and physical characteristics of ultrahigh-volume fly ash-cement systems with low water/binder ratio. Constr. Build. Mater. 161, 509–518 (2018). https://doi.org/10.1016/j.conbuildmat.2017.11.104

    Article  CAS  Google Scholar 

  41. M. Shakouri, C.L. Exstrom, S. Ramanathan, P. Suraneni, Hydration, strength, and durability of cementitious materials incorporating untreated corn cob ash. Constr. Build. Mater. 243, 118171 (2020). https://doi.org/10.1016/j.conbuildmat.2020.118171

    Article  CAS  Google Scholar 

  42. M.N. Haque, O. Kayali, Properties of high-strength concrete using a fine fly ash. Cem. Concr. Res. 28, 1445–1452 (1998)

    Article  CAS  Google Scholar 

  43. B. Waswa-Sabuni, P.M. Syagga, S.O. Dulo, G.N. Kamau, Rice husk ash cement – An alternative pozzolana cement for kenyan building industry. J. Civ. Eng. 8, 13–26 (2002)

    Google Scholar 

  44. D.A. Adesanya, A.A. Raheem, A study of the workability and compressive strength characteristics of corn cob ash blended cement concrete. Constr. Build. Mater. 23, 311–317 (2009). https://doi.org/10.1016/j.conbuildmat.2007.12.004

    Article  Google Scholar 

  45. O.S. Olafusi, F.A. Olutoge, Strength properties of corn cob ash concrete. J. Emerg. Trends Eng. Appl. Sci. 3, 297–301 (2012)

    Google Scholar 

  46. D.A. Adesanya, Evaluation of blended cement mortar , concrete and stabilized earth made from ordinary Portland cement and corn cob ash. Constr. Build. Mater. 10, 451–456 (1996)

    Article  Google Scholar 

  47. Price, Investigating effects of introduction of corncob ash into portland cements concrete: mechanical and thermal properties, Am. J. Eng. Appl. Sci. 7 (2014) 137–148. https://doi.org/10.3844/ajeassp.2014.137.148.

  48. A.A. Raheem, Saw dust ash as partial replacement for cement in concrete. Organ. Technol. Manag. Constr. Int. J. 4, 474–480 (2012). https://doi.org/10.5592/otmcj.2012.2.3

    Article  Google Scholar 

  49. ASTM C90–16a, Standard Specification for Loadbearing Concrete Masonry Units, ASTM International, West Conshohocken, PA, 2016

    Google Scholar 

  50. J.D. Bapat, Mineral Admixtures in Cement and Concrete (CRC Press, 2012)

    Google Scholar 

  51. J. Kamau, A. Ahmed, P. Hirst, J. Kangwa, Permeability of corncob ash, anthill soil and rice. Int. J. Sci. Environ. Technol. 6, 1299–1308 (2017)

    Google Scholar 

  52. A.M. Neville, Properties of concrete (Longman, London, 2000)

    Google Scholar 

  53. A.E. Long, G.D. Henderson, F.R. Montgomery, Why assess the properties of near-surface concrete? Constr. Build. Mater. 15, 65–79 (2001). https://doi.org/10.1016/S0950-0618(00)00056-8

    Article  Google Scholar 

  54. M.S. Shetty, Concrete Technology Theory and Practice (S. Chand and Company Ltd., New Delhi, 2001)

    Google Scholar 

  55. S.T. Lee, H.Y. Moon, R.N. Swamy, Sulfate attack and role of silica fume in resisting strength loss. Cem. Concr. Compos. 27, 65–76 (2005). https://doi.org/10.1016/j.cemconcomp.2003.11.003

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, R., Patel, M. (2022). Investigating the Effect of Corn Cob Ash on the Characteristics of Cement Paste and Concrete: A Review. In: Ashish, D.K., de Brito, J. (eds) Environmental Concerns and Remediation. Springer, Cham. https://doi.org/10.1007/978-3-031-05984-1_8

Download citation

Publish with us

Policies and ethics