Skip to main content

Advertisement

Log in

Flavonoids in Combination with Stem Cells for the Treatment of Neurological Disorders

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neurological disorders are the leading cause of disability and the world's second leading cause of death. Despite the availability of significant knowledge to reduce the burden of some neurological disorders, various studies are exploring more effective treatment options. While the human body can repair and regenerate damaged tissue through stem cell recruitment, nerve regeneration in case of injury is minimal due to the restriction on the location of nerve stem cells. Recently, different types of stem cells extracted from various tissues have been used in combination with natural stimuli to treat neurologic disorders in neuronal tissue engineering. Flavonoids are polyphenolic compounds that can induce the differentiation of stem cells into neurons and stimulate stem cell proliferation, migration, and survival. They can also increase the secretion of nutritional factors from stem cells. In addition to the effects that flavonoids can have on stem cells, they can also have beneficial therapeutic effects on the nervous system alone. Therefore, the simultaneous use of these compounds and stem cells can multiply the therapeutic effect. In this review, we first introduce flavonoid compounds and provide background information on stem cells. We then compile available reports on the effects of flavonoids on stem cells for the treatment of neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the paper.

Abbreviations

AMSC:

Adipose mesenchymal stem cell

Aß42:

ß-Amyloid 1–42

AHR:

Aryl hydrocarbon receptor

APP:

Amyloid precursor protein

BDNF:

Amyloid precursor protein

BMSC:

Bone marrow Mesenchymal stem cell

CNTF:

Ciliary neurotrophic factor

CREB:

CAMP-response element binding protein

DCX:

Doublecortin

3,2'-DHF:

3,2'-Dihydroxyflavone

7,8-DHF:

7,8-Dihydroxyflavone

EGCG:

Epigallocatechin gallate

EGR-1:

Early growth response protein 1

Erk 1/2:

Extracellular signal-regulated kinase1/2

GAP-43:

Growth-associated protein 43 kDa; also known as neuromodulin

GDNF:

Glial cell line-derived neurotrophic factor

GFAP:

Glial fibrillary acidic protein

hAMSC:

Human Adipose mesenchymal stem cell

ICA:

Icariin

ICAII:

IcarisideII

iPSC:

Induced pluripotent stem cells

MEK:

Mitogen-activated protein kinase kinase

MESC:

Mouse Embryonic stem cells

NeuN:

Neuronal nuclear protein

TH:

Tyrosine hydroxylase

TRX:

Troxerutin

NGF:

Nerve growth factor

NSC:

Neural stem cell

NPC:

Neural progenitor cell

PKB also known as Akt:

Protein kinase B

PI3K:

Phosphoinositide 3-kinase

PKCd:

Protein Kinase C Delta

PPAR-β:

Peroxisome proliferator-activated receptor β

PR:

Puerarin

Q3GA:

Quercetin-3-O-glucuronide

STAT3:

Signal transducer and activator of transcription 3

SGZ:

Subgranular region

SVZ:

Subventricular zone

TrkB:

Tropomyosin receptor kinase B

TUJ 1:

Neuron-specific class III beta-tubulin

References

  1. (2017) Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol 16(11):877–897

  2. Lindvall O, Kokaia Z (2010) Stem cells in human neurodegenerative disorders–time for clinical translation? J Clin Invest 120(1):29–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lunn JS et al (2011) Stem cell technology for neurodegenerative diseases. Ann Neurol 70(3):353–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. (2019) Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18(5):459–480

  5. Alessandrini M et al (2019) Stem cell therapy for neurological disorders. S Afr Med J 109(8b):70–77

    Article  CAS  PubMed  Google Scholar 

  6. Grochowski C, Radzikowska E, Maciejewski R (2018) Neural stem cell therapy—brief review. Clin Neurol Neurosurg 173:8–14

    Article  PubMed  Google Scholar 

  7. Martínez-Morales P et al (2013) Progress in stem cell therapy for major human neurological disorders. Stem Cell Rev Rep 9(5):685–699

    Article  PubMed  Google Scholar 

  8. Mathesius U (2018) Flavonoid functions in plants and their interactions with other organisms. MDPI

  9. Kumar, S. and A.K. Pandey, Chemistry and biological activities of flavonoids: an overview. The scientific world journal, 2013. 2013.

  10. Panche, A.N., A.D. Diwan, and S.R. Chandra, Flavonoids: an overview. Journal of nutritional science, 2016. 5.

  11. Yang X et al (2015) Prenylated flavonoids, promising nutraceuticals with impressive biological activities. Trends Food Sci Technol 44(1):93–104

    Article  Google Scholar 

  12. Ahmed IF, MagedSaad A-K (2017) Isoflavonoids. In: Goncalo CJ (ed) Flavonoids. IntechOpen, Rijeka

    Google Scholar 

  13. Kumar P, Ahamad T, Mishra DP, Khan MF (2020) Plant neoflavonoids: chemical structures and biological functions. In: Swamy M (ed) Plant-derived bioactives. Springer, Singapore, pp 35–57

    Chapter  Google Scholar 

  14. Rice-Evans CA, Packer L (2003) Flavonoids in health and disease. CRC Press, Boca Raton

    Book  Google Scholar 

  15. Havsteen B (1983) Flavonoids, a class of natural products of high pharmacological potency. Biochem Pharmacol 32(7):1141–1148

    Article  CAS  PubMed  Google Scholar 

  16. Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:162750–162750

    Article  Google Scholar 

  17. Baier A, Szyszka R (2020) Compounds from natural sources as protein kinase inhibitors. Biomolecules 10(11):1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Abotaleb M et al (2018) Flavonoids in cancer and apoptosis. Cancers 11:E28. https://doi.org/10.3390/cancers11010028

    Article  CAS  Google Scholar 

  19. Kurutas EB (2016) The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J 15(1):71

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cui J et al (2017) Bone marrow mesenchymal stem cell transplantation increases GAP-43 expression via ERK1/2 and PI3K/Akt pathways in intracerebral hemorrhage. Cell Physiol Biochem 42(1):137–144

    Article  CAS  PubMed  Google Scholar 

  21. Cazarolli LH et al (2008) Flavonoids: prospective drug candidates. Mini Rev Med Chem 8(13):1429–1440

    Article  CAS  PubMed  Google Scholar 

  22. Romano B et al (2013) Novel insights into the pharmacology of flavonoids. Phytother Res 27(11):1588–1596

    Article  CAS  PubMed  Google Scholar 

  23. Williams RJ, Spencer JP, Rice-Evans C (2004) Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med 36(7):838–849

    Article  CAS  PubMed  Google Scholar 

  24. Spencer JP (2008) Flavonoids: modulators of brain function? Br J Nutr 99:60–77

    Article  Google Scholar 

  25. Mandel S, Youdim MB (2004) Catechin polyphenols: neurodegeneration and neuroprotection in neurodegenerative diseases. Free Radic Biol Med 37(3):304–317

    Article  CAS  PubMed  Google Scholar 

  26. Vafeiadou K, Vauzour D, Spencer J (2007) Neuroinflammation and its modulation by flavonoids. Endocrine, Metabolic & Immune Disorders-Drug Targets (Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders) 7(3):211–224

  27. Basu P, Basu A (2020) In vitro and in vivo effects of flavonoids on peripheral neuropathic pain. Molecules 25(5):1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Innos J, Hickey MA (2021) Using rotenone to model Parkinson’s disease in mice: a review of the role of pharmacokinetics. Chem Res Toxicol 34(5):1223–1239

    Article  CAS  PubMed  Google Scholar 

  29. Ramalingam M et al (2022) Autophagy Signaling by Neural-Induced Human Adipose Tissue-Derived Stem Cell-Conditioned Medium during Rotenone-Induced Toxicity in SH-SY5Y Cells. Int J Mol Sci 23(8):4193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Inden M et al (2013) Therapeutic effects of human mesenchymal and hematopoietic stem cells on rotenone-treated parkinsonian mice. J Neurosci Res 91(1):62–72

    CAS  PubMed  Google Scholar 

  31. Ramalingam, M., S. Jang, and H.S. Jeong, Neural-Induced Human Adipose Tissue-Derived Stem Cells Conditioned Medium Ameliorates Rotenone-Induced Toxicity in SH-SY5Y Cells. Int J Mol Sci, 2021. 22(5).

  32. Abdel-Rahman M et al (2018) Therapeutic efficacy of olfactory stem cells in rotenone induced Parkinsonism in adult male albino rats. Biomed Pharmacother 103:1178–1186

    Article  CAS  PubMed  Google Scholar 

  33. Ramalingam M, Jang S, Jeong HS (2021) Therapeutic effects of conditioned medium of neural differentiated human bone marrow-derived stem cells on rotenone-induced alpha-synuclein aggregation and apoptosis. Stem Cells Int 2021:6658271

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ishido M, Suzuki J (2010) Inhibition by rotenone of mesencephalic neural stem-cell migration in a neurosphere assay in vitro. Toxicol In Vitro 24(2):552–557

    Article  CAS  PubMed  Google Scholar 

  35. Alessandrini, M., et al., Stem cell therapy for neurological disorders. South African Medical Journal, 2019. 109(8 Supplement 1): p. S71-S78.

  36. Bongso A, Richards M (2004) History and perspective of stem cell research. Best Pract Res Clin Obstet Gynaecol 18(6):827–842

    Article  PubMed  Google Scholar 

  37. Ilic D, Polak JM (2011) Stem cells in regenerative medicine: introduction. Br Med Bull 98(1):117–126

    Article  PubMed  Google Scholar 

  38. Smith A (2006) A glossary for stem-cell biology. Nature 441(7097):1060–1060

    Article  CAS  Google Scholar 

  39. Kolios G, Moodley Y (2013) Introduction to stem cells and regenerative medicine. Respiration 85(1):3–10

    Article  PubMed  Google Scholar 

  40. Rossant J (2008) Stem cells and early lineage development. Cell 132(4):527–531

    Article  CAS  PubMed  Google Scholar 

  41. Brown C et al (2019) Mesenchymal stem cells: cell therapy and regeneration potential. J Tissue Eng Regen Med 13(9):1738–1755

    Article  CAS  PubMed  Google Scholar 

  42. Kumar A et al (2017) Current perspective of stem cell therapy in neurodegenerative and metabolic diseases. Mol Neurobiol 54(9):7276–7296

    Article  CAS  PubMed  Google Scholar 

  43. Inden M et al (2016) Therapeutic effects of mesenchymal stem cells for Parkinson’s disease. Ann Neurodegener Dis 1(1):1002–1009

    Google Scholar 

  44. Gugliandolo A, Bramanti P, Mazzon E (2017) Mesenchymal stem cell therapy in Parkinson’s disease animal models. Curr Res Transl Med 65(2):51–60

    CAS  PubMed  Google Scholar 

  45. Lie DC et al (2002) The adult substantia nigra contains progenitor cells with neurogenic potential. J Neurosci 22(15):6639–6649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Amariglio N et al (2009) Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med 6(2):e1000029

    Article  PubMed  PubMed Central  Google Scholar 

  47. Shih C-C et al (2007) Human embryonic stem cells are prone to generate primitive, undifferentiated tumors in engrafted human fetal tissues in severe combined immunodeficient mice. Stem Cells Dev 16(6):893–902

    Article  CAS  PubMed  Google Scholar 

  48. Hong SG, Dunbar CE, Winkler T (2013) Assessing the risks of genotoxicity in the therapeutic development of induced pluripotent stem cells. Mol Ther 21(2):272–281

    Article  CAS  PubMed  Google Scholar 

  49. Lazennec G, Jorgensen C (2008) Concise review: adult multipotent stromal cells and cancer: risk or benefit? Stem Cells 26(6):1387–1394

    Article  CAS  PubMed  Google Scholar 

  50. Mohib K, Allan D, Wang L (2010) Human embryonic stem cell-extracts inhibit the differentiation and function of monocyte-derived dendritic cells. Stem Cell Rev Rep 6(4):611–621

    Article  PubMed  Google Scholar 

  51. Herberts CA, Kwa MS, Hermsen HP (2011) Risk factors in the development of stem cell therapy. J Transl Med 9(1):1–14

    Article  Google Scholar 

  52. Zou J et al (2019) Mechanisms shaping the role of ERK1/2 in cellular senescence (Review). Mol Med Rep 19(2):759–770

    CAS  PubMed  Google Scholar 

  53. Albert-Gascó H et al (2020) MAP/ERK signaling in developing cognitive and emotional function and its effect on pathological and neurodegenerative processes. Int J Mol Sci 21(12):4471

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kong T et al (2019) Role of the extracellular signal-regulated kinase 1/2 signaling pathway in ischemia-reperfusion injury. Front Physiol 10:1038

    Article  PubMed  PubMed Central  Google Scholar 

  55. Xu F et al (2020) RETRACTED ARTICLE: roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci 10(1):54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Holborn J, et al (2022) Interference of neuronal TrkB signaling by the cannabis-derived flavonoids cannflavins A and B. bioRxiv. p. 2022.02.03.478734

  57. Li W-Y et al (2020) Combinatory transplantation of mesenchymal stem cells with flavonoid small molecule in acellular nerve graft promotes sciatic nerve regeneration. J Tissue Eng 11:2041731420980136–2041731420980136

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ge P, Guo Y, Shen J (2019) IcarisideII facilitates the differentiation of ADSCs to SCs via let-7i/STAT3 axis to preserve erectile function. Biol Res 52(1):54

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zheng T et al (2018) Icariside II promotes the differentiation of adipose tissue-derived stem cells to Schwann cells to preserve erectile function after cavernous nerve injury. Mol Cells 41(6):553–561

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zheng T et al (2020) Icariside II facilitates the differentiation of ADSCs to schwann cells and restores erectile dysfunction through regulation of miR-33/GDNF axis. Biomed Pharmacother 125:109888

    Article  CAS  PubMed  Google Scholar 

  61. Liu D et al (2018) Icariin and mesenchymal stem cells synergistically promote angiogenesis and neurogenesis after cerebral ischemia via PI3K and ERK1/2 pathways. Biomed Pharmacother 108:663–669

    Article  CAS  PubMed  Google Scholar 

  62. Fu X et al (2018) Stimulatory effect of icariin on the proliferation of neural stem cells from rat hippocampus. BMC Complement Altern Med 18(1):34–34

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lu Q et al (2020) Icariin sustains the proliferation and differentiation of Aβ(25–35)-treated hippocampal neural stem cells via the BDNF-TrkB-ERK/Akt signaling pathway. Neurol Res 42(11):936–945

    Article  CAS  PubMed  Google Scholar 

  64. Kuang W et al (2021) Icariside II promotes the differentiation of human amniotic mesenchymal stem cells into dopaminergic neuron-like cells. In Vitro Cell Dev Biol 57(4):457–467

    Article  CAS  Google Scholar 

  65. Li R et al (2013) Puerarin attenuates neuronal degeneration in the substantia nigra of 6-OHDA-lesioned rats through regulating BDNF expression and activating the Nrf2/ARE signaling pathway. Brain Res 1523:1–9

    Article  CAS  PubMed  Google Scholar 

  66. Zhu G et al (2014) Neuroprotective Effects of Puerarin on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induced Parkinson’s Disease Model in Mice. Phytother Res 28(2):179–186

    Article  CAS  PubMed  Google Scholar 

  67. Cheng Y-F et al (2009) Involvement of ubiquitin proteasome system in protective mechanisms of Puerarin to MPP+-elicited apoptosis. Neurosci Res 63(1):52–58

    Article  CAS  PubMed  Google Scholar 

  68. Shiying L et al (2018) Puerarin promoted proliferation and differentiation of dopamine-producing cells in Parkinson’s animal models. Biomed Pharmacother 106:1236–1242

    Article  CAS  PubMed  Google Scholar 

  69. Itoh T et al (2012) (-)-Epigallocatechin-3-gallate increases the number of neural stem cells around the damaged area after rat traumatic brain injury. J Neural Transm (Vienna) 119(8):877–890

    Article  CAS  PubMed  Google Scholar 

  70. Zhang Y et al (2016) Effects of epigallocatechin-3-gallate on proliferation and differentiation of mouse cochlear neural stem cells: Involvement of PI3K/Akt signaling pathway. Eur J Pharm Sci 88:267–273

    Article  CAS  PubMed  Google Scholar 

  71. Hsieh DJ-Y et al (2020) Epigallocatechin-3-gallate preconditioned Adipose-derived Stem Cells confer Neuroprotection in aging rat brain. Int J Med Sci 17(13):1916–1926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Babri S et al (2012) Protective effects of troxerutin on β-amyloid (1–42)-induced impairments of spatial learning and memory in rats. Neurophysiology 44(5):387–393

    Article  CAS  Google Scholar 

  73. Masood MI et al (2020) Troxerutin flavonoid has neuroprotective properties and increases neurite outgrowth and migration of neural stem cells from the subventricular zone. PLoS ONE 15(8):e0237025–e0237025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Farajdokht F et al (2017) Troxerutin protects hippocampal neurons against amyloid beta-induced oxidative stress and apoptosis. EXCLI J 16:1081–1089

    PubMed  PubMed Central  Google Scholar 

  75. Baluchnejadmojarad T et al (2017) Troxerutin exerts neuroprotection in 6-hydroxydopamine lesion rat model of Parkinson’s disease: possible involvement of PI3K/ERβ signaling. Eur J Pharmacol 801:72–78

    Article  CAS  PubMed  Google Scholar 

  76. Lu J et al (2013) Troxerutin counteracts domoic acid-induced memory deficits in mice by inhibiting CCAAT/enhancer binding protein β-mediated inflammatory response and oxidative stress. J Immunol 190(7):3466–3479

    Article  CAS  PubMed  Google Scholar 

  77. Karimipour M et al (2019) Quercetin promotes learning and memory performance concomitantly with neural stem/progenitor cell proliferation and neurogenesis in the adult rat dentate gyrus. Int J Dev Neurosci 74:18–26

    Article  CAS  PubMed  Google Scholar 

  78. Zhang L et al (2011) Effect of quercetin on neural stem cell proliferation in the subventricular zone of rats after focal cerebral ischemia-reperfusion injury. J S Med Univ 31(7):1200–1203

    CAS  Google Scholar 

  79. Baral S et al (2017) Quercetin-3-O-glucuronide promotes the proliferation and migration of neural stem cells. Neurobiol Aging 52:39–52

    Article  CAS  PubMed  Google Scholar 

  80. Bianchi ME, Mezzapelle R (2020) The chemokine receptor CXCR4 in cell proliferation and tissue regeneration. Front Immunol 11:2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li M et al (2011) Neuronal differentiation of C17.2 neural stem cells induced by a natural flavonoid, baicalin. Chembiochem 12(3):449–56

    Article  CAS  PubMed  Google Scholar 

  82. He Z et al (2018) Neurite development and neurotoxicity. In: Slikker W, Paule MG, Wang C (eds) Handbook of developmental neurotoxicology (Second Edition). Academic Press, Washington, DC, pp 23–32

    Chapter  Google Scholar 

  83. Zuo W et al (2017) Baicalin promotes the viability of Schwann cells in vitro by regulating neurotrophic factors. Exp Ther Med 14(1):507–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhao J et al (2018) Baicalin and ginsenoside Rb1 promote the proliferation and differentiation of neural stem cells in Alzheimer’s disease model rats. Brain Res 1678:187–194

    Article  CAS  PubMed  Google Scholar 

  85. Maćkowiak M et al (2004) Neurogenesis in the adult brain. Pol J Pharmacol 56(6):673–687

    PubMed  Google Scholar 

  86. Zhou W-B et al (2019) Luteolin induces hippocampal neurogenesis in the Ts65Dn mouse model of Down syndrome. Neural Regen Res 14(4):613–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lim JS et al (2010) Wogonin induces differentiation and neurite outgrowth of neural precursor cells. Biochem Biophys Res Commun 402(1):42–47

    Article  CAS  PubMed  Google Scholar 

  88. Liu RT et al (2010) Promotion of rat brain-derived progenitor cell neurogenesis by liquiritigenin treatment: underlying mechanisms. Neurosci Lett 481(3):139–143

    Article  CAS  PubMed  Google Scholar 

  89. Cheng A, Hou Y, Mattson MP (2010) Mitochondria and neuroplasticity. ASN Neuro 2(5):AN20100019

  90. Ou L et al (2011) Design, synthesis and 3D-QSAR study of cytotoxic flavonoid derivatives. Mol Diversity 15(3):665–675

    Article  CAS  Google Scholar 

  91. Allegra A et al (2019) Relationship between mitofusin 2 and cancer. In: Donev R (ed) Advances in protein chemistry and structural biology. Academic Press, Washington, DC, pp 209–236

    Google Scholar 

  92. Mei Y-Q et al (2016) A flavonoid compound promotes neuronal differentiation of embryonic stem cells via PPAR-β modulating mitochondrial energy metabolism. PLoS ONE 11(6):0157747–0157747

    Article  Google Scholar 

  93. Wang D-Y et al (2011) Promoting effects of isobavachin on neurogenesis of mouse embryonic stem cells were associated with protein prenylation. Acta Pharmacol Sin 32(4):425–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang Z et al (2009) Enhanced co-expression of β-tubulin III and choline acetyltransferase in neurons from mouse embryonic stem cells promoted by icaritin in an estrogen receptor-independent manner. Chemico-Biol Interact 179(2):375–385

    Article  CAS  Google Scholar 

  95. Han D et al (2015) 3,2’-Dihydroxyflavone-treated pluripotent stem cells show enhanced proliferation, pluripotency marker expression, and neuroprotective properties. Cell Transplant 24(8):1511–1532

    Article  PubMed  Google Scholar 

  96. Reiners JJ Jr et al (1998) PD98059 is an equipotent antagonist of the aryl hydrocarbon receptor and inhibitor of mitogen-activated protein kinase kinase. Mol Pharmacol 53(3):438–445

    Article  CAS  PubMed  Google Scholar 

  97. Nguyen Thi PA et al (2016) PD98059 protects brain against cells death resulting from ROS/ERK activation in a cardiac arrest rat model. Oxid Med Cell Longev 3723762–3723762

  98. Shieh DB et al (2010) Effects of genistein on beta-catenin signaling and subcellular distribution of actin-binding proteins in human umbilical CD105-positive stromal cells. J Cell Physiol 2(2):423–434

    Google Scholar 

Download references

Funding

This work was supported by Mashhad University of Medical Sciences, Iran.

Author information

Authors and Affiliations

Authors

Contributions

MSL wrote the draft by collecting information and designing images. FK helped prepare the final version by checking the information and editing the initial version. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Fatemeh Kalalinia.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the present work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lotfi, M.S., Kalalinia, F. Flavonoids in Combination with Stem Cells for the Treatment of Neurological Disorders. Neurochem Res 48, 3270–3282 (2023). https://doi.org/10.1007/s11064-023-03986-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-03986-w

Keywords

Navigation