Skip to main content

Advertisement

Log in

Neuro-regenerative potential of dental stem cells: a concise review

  • Review Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

This review will summarize the research information regarding the regenerative potential of dental stem cells for the treatment of neurodegenerative disorders. As compared to existing treatment modalities, the stem cell therapy seems promising, and accumulating evidences about the differentiation of stem cells into various lineages are proving it. The incidence of neurodegenerative diseases such as Alzheimer’s, Parkinson’s, stroke, and peripheral neuropathy is increasing due to the rise in life expectancies of people which have put a huge burden on economies. Finding a promising treatment could benefit not only the patients but also the communities. Dental stem cells hold a great potential to differentiate into neuronal cells. Many studies have reported the differentiation potential of the dental stem cells with the presence of neuronal lineage markers. In this review, we conferred how the use of dental stem cells can benefit the above-mentioned bedridden diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The sources for the information discussed in this review can be obtained from the papers cited in the references.

References

  • Abdallah B, Kassem M (2008) Human mesenchymal stem cells: from basic biology to clinical applications. Gene Ther 15:109

    PubMed  CAS  Google Scholar 

  • Apel C, Forlenza O, De Paula V, Talib L, Denecke B, Eduardo C, Gattaz W (2009) The neuroprotective effect of dental pulp cells in models of Alzheimer’s and Parkinson’s disease. J Neural Transm 116:71

    PubMed  CAS  Google Scholar 

  • Arthur A, Rychkov G, Shi S, Koblar SA, Gronthos S (2008) Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells 26:1787–1795

    PubMed  CAS  Google Scholar 

  • Askari N, Yaghoobi MM, Shamsara M, Esmaeili-Mahani S (2014) Human dental pulp stem cells differentiate into oligodendrocyte progenitors using the expression of Olig2 transcription factor. Cells Tissues Organs 200:93–103

    PubMed  CAS  Google Scholar 

  • Askari N, Yaghoobi M, Shamsara M, Esmaeili-Mahani S (2015) Tetracycline-regulated expression of OLIG2 gene in human dental pulp stem cells lead to mouse sciatic nerve regeneration upon transplantation. Neuroscience 305:197–208

    PubMed  CAS  Google Scholar 

  • Bakopoulou A (2016) Stem cells of dental origin: current research trends and key milestones towards clinical application. Stem cells international 2016:

  • Bakopoulou A, Leyhausen G, Volk J, Koidis P, Geurtsen W (2013) Comparative characterization of STRO-1neg/CD146pos and STRO-1pos/CD146pos apical papilla stem cells enriched with flow cytometry. Arch Oral Biol 58:1556–1568

    PubMed  CAS  Google Scholar 

  • Balseanu AT, Buga A-M, Catalin B, Wagner D-C, Boltze J, Zagrean A-M, Reymann K, Schaebitz W, Popa-Wagner A (2014) Multimodal approaches for regenerative stroke therapies: combination of granulocyte colony-stimulating factor with bone marrow mesenchymal stem cells is not superior to G-CSF alone. Front Aging Neurosci 6:130

    PubMed  PubMed Central  Google Scholar 

  • Battiston B, Geuna S, Ferrero M, Tos P (2005) Nerve repair by means of tubulization: literature review and personal clinical experience comparing biological and synthetic conduits for sensory nerve repair. Microsurgery 25:258–267

    PubMed  Google Scholar 

  • Beigi MH, Ghasemi-Mobarakeh L, Prabhakaran MP, Karbalaie K, Azadeh H, Ramakrishna S, Baharvand H, Nasr-Esfahani MH (2014) In vivo integration of poly (ε-caprolactone)/gelatin nanofibrous nerve guide seeded with teeth derived stem cells for peripheral nerve regeneration. J Biomed Mater Res A 102:4554–4567

    PubMed  Google Scholar 

  • Bianco J, De Berdt P, Deumens R, Des Rieux A (2016) Taking a bite out of spinal cord injury: do dental stem cells have the teeth for it? Cell Mol Life Sci 73:1413–1437

    PubMed  CAS  Google Scholar 

  • Boakye M, Leigh BC, Skelly AC (2012) Quality of life in persons with spinal cord injury: comparisons with other populations. J Neurosurg Spine 17:29–37

    PubMed  Google Scholar 

  • Chang C-C, Chang K-C, Tsai S-J, Chang H-H, Lin C-P (2014) Neurogenic differentiation of dental pulp stem cells to neuron-like cells in dopaminergic and motor neuronal inductive media. J Formos Med Assoc 113:956–965

    PubMed  CAS  Google Scholar 

  • Chun SY, Soker S, Jang Y-J, Kwon TG, Yoo ES (2016) Differentiation of human dental pulp stem cells into dopaminergic neuron-like cells in vitro. J Korean Med Sci 31:171–177

    PubMed  PubMed Central  CAS  Google Scholar 

  • Dai L-G, Huang G-S, S-h H (2013) Sciatic nerve regeneration by cocultured Schwann cells and stem cells on microporous nerve conduits. Cell Transplant 22:2029–2039

    PubMed  Google Scholar 

  • d'Aquino R, Graziano A, Sampaolesi M, Laino G, Pirozzi G, De Rosa A, Papaccio G (2007) Human postnatal dental pulp cells co-differentiate into osteoblasts and endotheliocytes: a pivotal synergy leading to adult bone tissue formation. Cell Death Differ 14:1162–1171

    PubMed  CAS  Google Scholar 

  • Dauer W, Przedborski S (2003) Parkinson's disease: mechanisms and models. Neuron 39:889–909

    PubMed  CAS  Google Scholar 

  • De Almeida JFA, Chen P, Henry MA, Diogenes A (2014) Stem cells of the apical papilla regulate trigeminal neurite outgrowth and targeting through a BDNF-dependent mechanism. Tissue Eng A 20:3089–3100

    Google Scholar 

  • Deng J, Petersen BE, Steindler DA, Jorgensen ML, Laywell ED (2006) Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation. Stem Cells 24:1054–1064

    PubMed  CAS  Google Scholar 

  • do Couto Nicola F, Marques MR, Odorcyk F, Arcego DM, Petenuzzo L, Aristimunha D, Vizuete A, Sanches EF, Pereira DP, Maurmann N (2017) Neuroprotector effect of stem cells from human exfoliated deciduous teeth transplanted after traumatic spinal cord injury involves inhibition of early neuronal apoptosis. Brain Res 1663:95–105

    Google Scholar 

  • El Ayachi I, Zhang J, Zou XY, Li D, Yu Z, Wei W, O'Connell KM, Huang GTJ (2018) Human dental stem cell derived transgene-free iPSCs generate functional neurons via embryoid body-mediated and direct induction methods. J Tissue Eng Regen Med 12:e1836–e1851

    PubMed  PubMed Central  Google Scholar 

  • Faroni A, Mobasseri SA, Kingham PJ, Reid AJ (2015) Peripheral nerve regeneration: experimental strategies and future perspectives. Adv Drug Deliv Rev 82:160–167

    PubMed  Google Scholar 

  • Feng X, Xing J, Feng G, Sang A, Shen B, Xu Y, Jiang J, Liu S, Tan W, Gu Z (2013) Age-dependent impaired neurogenic differentiation capacity of dental stem cell is associated with Wnt/β-catenin signaling. Cell Mol Neurobiol 33:1023–1031

    PubMed  CAS  Google Scholar 

  • Foudah D, Monfrini M, Donzelli E, Niada S, Brini AT, Orciani M, Tredici G, Miloso M (2014) Expression of neural markers by undifferentiated mesenchymal-like stem cells from different sources. J Immunol Res:2014

  • Frausin S, Viventi S, Falzacappa LV, Quattromani MJ, Leanza G, Tommasini A, Valencic E (2015) Wharton's jelly derived mesenchymal stromal cells: biological properties, induction of neuronal phenotype and current applications in neurodegeneration research. Acta Histochem 117:329–338

    PubMed  CAS  Google Scholar 

  • Fujii H, Matsubara K, Sakai K, Ito M, Ohno K, Ueda M, Yamamoto A (2015) Dopaminergic differentiation of stem cells from human deciduous teeth and their therapeutic benefits for Parkinsonian rats. Brain Res 1613:59–72

    PubMed  CAS  Google Scholar 

  • Gay IC, Chen S, MacDougall M (2007) Isolation and characterization of multipotent human periodontal ligament stem cells. Orthod Craniofacial Res 10:149–160

    CAS  Google Scholar 

  • Gervois P, Struys T, Hilkens P, Bronckaers A, Ratajczak J, Politis C, Brône B, Lambrichts I, Martens W (2014) Neurogenic maturation of human dental pulp stem cells following neurosphere generation induces morphological and electrophysiological characteristics of functional neurons. Stem Cells Dev 24:296–311

    PubMed  PubMed Central  Google Scholar 

  • Gnanasegaran N, Govindasamy V, Mani V, Abu Kasim NH (2017a) Neuroimmunomodulatory properties of DPSCs in an in vitro model of Parkinson's disease. IUBMB Life 69:689–699

    PubMed  CAS  Google Scholar 

  • Gnanasegaran N, Govindasamy V, Simon C, Gan QF, Vincent-Chong VK, Mani V, Krishnan Selvarajan K, Subramaniam V, Musa S, Abu Kasim NH (2017b) Effect of dental pulp stem cells in MPTP-induced old-aged mice model. Eur J Clin Investig 47:403–414

    CAS  Google Scholar 

  • Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97:13625–13630

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hata M, Omi M, Kobayashi Y, Nakamura N, Tosaki T, Miyabe M, Kojima N, Kubo K, Ozawa S, Maeda H (2015) Transplantation of cultured dental pulp stem cells into the skeletal muscles ameliorated diabetic polyneuropathy: therapeutic plausibility of freshly isolated and cryopreserved dental pulp stem cells. Stem Cell Res Ther 6:162

    PubMed  PubMed Central  Google Scholar 

  • Heng BC, Lim LW, Wu W, Zhang C (2016) An overview of protocols for the neural induction of dental and oral stem cells in vitro. Tissue Eng B Rev 22:220–250

    Google Scholar 

  • Hilkens P, Gervois P, Fanton Y, Vanormelingen J, Martens W, Struys T, Politis C, Lambrichts I, Bronckaers A (2013) Effect of isolation methodology on stem cell properties and multilineage differentiation potential of human dental pulp stem cells. Cell Tissue Res 353:65–78

    PubMed  CAS  Google Scholar 

  • Hossmann K-A (2006) Pathophysiology and therapy of experimental stroke. Cell Mol Neurobiol 26:1055–1081

    Google Scholar 

  • Huang T, He D, Kleiner G, Kuluz JT (2007) Neuron-like differentiation of adipose-derived stem cells from infant piglets in vitro. The journal of spinal cord medicine 30:S35–S40

    PubMed  PubMed Central  Google Scholar 

  • Huang GT, Yamaza T, Shea LD, Djouad F, Kuhn NZ, Tuan RS, Shi S (2010) Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Eng A 16:605–615

    CAS  Google Scholar 

  • Inoue T, Sugiyama M, Hattori H, Wakita H, Wakabayashi T, Ueda M (2012) Stem cells from human exfoliated deciduous tooth-derived conditioned medium enhance recovery of focal cerebral ischemia in rats. Tissue Eng A 19:24–29

    Google Scholar 

  • Jiang Y, Gong F-L, Zhao G-B, Li J (2014) Chrysin suppressed inflammatory responses and the inducible nitric oxide synthase pathway after spinal cord injury in rats. Int J Mol Sci 15:12270–12279

    PubMed  PubMed Central  Google Scholar 

  • Jin H, Bae Y, Kim M, Kwon S-J, Jeon H, Choi S, Kim S, Yang Y, Oh W, Chang J (2013) Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. Int J Mol Sci 14:17986–18001

    PubMed  PubMed Central  Google Scholar 

  • Kanafi M, Majumdar D, Bhonde R, Gupta P, Datta I (2014) Midbrain cues dictate differentiation of human dental pulp stem cells towards functional dopaminergic neurons. J Cell Physiol 229:1369–1377

    PubMed  CAS  Google Scholar 

  • Karbanová J, Soukup T, Suchánek J, Pytlík R, Corbeil D, Mokrý J (2011) Characterization of dental pulp stem cells from impacted third molars cultured in low serum-containing medium. Cells Tissues Organs 193:344–365

    PubMed  Google Scholar 

  • Kawashima N (2012) Characterisation of dental pulp stem cells: a new horizon for tissue regeneration? Arch Oral Biol 57:1439–1458

    PubMed  Google Scholar 

  • Kerkis I, Kerkis A, Dozortsev D, Stukart-Parsons GC, Massironi SMG, Pereira LV, Caplan AI, Cerruti HF (2006) Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs 184:105–116

    PubMed  CAS  Google Scholar 

  • Khazaeipour Z, Norouzi-Javidan A, Kaveh M, Khanzadeh Mehrabani F, Kazazi E, Emami-Razavi S-H (2014) Psychosocial outcomes following spinal cord injury in Iran. The journal of spinal cord medicine 37:338–345

    PubMed  PubMed Central  Google Scholar 

  • Kim B-C, Bae H, Kwon I-K, Lee E-J, Park J-H, Khademhosseini A, Hwang Y-S (2012) Osteoblastic/cementoblastic and neural differentiation of dental stem cells and their applications to tissue engineering and regenerative medicine. Tissue Eng B Rev 18:235–244

    CAS  Google Scholar 

  • Király M, Kádár K, Horváthy DB, Nardai P, Rácz GZ, Lacza Z, Varga G, Gerber G (2011) Integration of neuronally predifferentiated human dental pulp stem cells into rat brain in vivo. Neurochem Int 59:371–381

    PubMed  Google Scholar 

  • Kolar MK, Itte VN, Kingham PJ, Novikov LN, Wiberg M, Kelk P (2017) The neurotrophic effects of different human dental mesenchymal stem cells. Sci Rep 7:12605

    PubMed  PubMed Central  Google Scholar 

  • La Noce M, Mele L, Tirino V, Paino F, De Rosa A, Naddeo P, Papagerakis P, Papaccio G, Desiderio V (2014a) Neural crest stem cell population in craniomaxillofacial development and tissue repair. European cells & materials 28:348–357

    Google Scholar 

  • La Noce M, Mele L, Tirino V, Paino F, De Rosa A, Naddeo P, Papagerakis P, Papaccio G, Desiderio V (2014b) Neural crest stem cell population in craniomaxillofacial development and tissue repair. Eur Cell Mater 28:348–357

    PubMed  Google Scholar 

  • Lee SK, Wolfe SW (2000) Peripheral nerve injury and repair. JAAOS-Journal of the American Academy of Orthopaedic Surgeons 8:243–252

    CAS  Google Scholar 

  • Lemmens R, Steinberg GK (2013) Stem cell therapy for acute cerebral injury: what do we know and what will the future bring? Curr Opin Neurol 26:617

    PubMed  PubMed Central  CAS  Google Scholar 

  • Leong WK, Henshall TL, Arthur A, Kremer KL, Lewis MD, Helps SC, Field J, Hamilton-Bruce MA, Warming S, Manavis J (2012) Human adult dental pulp stem cells enhance poststroke functional recovery through non-neural replacement mechanisms. Stem Cells Transl Med 1:177–187

    PubMed  PubMed Central  CAS  Google Scholar 

  • Leong WK, Lewis MD, Koblar SA (2013) Concise review: preclinical studies on human cell-based therapy in rodent ischemic stroke models: where are we now after a decade? Stem Cells 31:1040–1043

    PubMed  CAS  Google Scholar 

  • Li Y-H, Li J-E, Liu W-W (2017a) Comparing the effect of neurotrophic factor induced MSCs (BMSC and DPSC) on the expression of myelin proteins Nogo-A and OMgp in a glaucoma rat model. Int J Clin Exp Med 10:4705–4713

    CAS  Google Scholar 

  • Li Y, Yang Y-Y, Ren J-L, Xu F, Chen F-M, Li A (2017b) Exosomes secreted by stem cells from human exfoliated deciduous teeth contribute to functional recovery after traumatic brain injury by shifting microglia M1/M2 polarization in rats. Stem Cell Res Ther 8:198

    PubMed  PubMed Central  Google Scholar 

  • Lim MH, Ong WK, Sugii S (2014) The current landscape of adipose-derived stem cells in clinical applications. Expert Rev Mol Med:16

  • Lu Y, Yuan X, Ou Y, Cai Y, Wang S, Sun Q, Zhang W (2012) Autophagy and apoptosis during adult adipose-derived stromal cells differentiation into neuron-like cells in vitro. Neural Regen Res 7:1205

    PubMed  PubMed Central  CAS  Google Scholar 

  • Luo L, He Y, Wang X, Key B, Lee BH, Li H, Ye Q (2018) Potential roles of dental pulp stem cells in neural regeneration and repair. Stem Cells Int 2018:

  • Martens W, Wolfs E, Struys T, Politis C, Bronckaers A, Lambrichts I (2012) Expression pattern of basal markers in human dental pulp stem cells and tissue. Cells Tissues Organs 196:490–500

    PubMed  CAS  Google Scholar 

  • Martens W, Sanen K, Georgiou M, Struys T, Bronckaers A, Ameloot M, Phillips J, Lambrichts I (2014) Human dental pulp stem cells can differentiate into Schwann cells and promote and guide neurite outgrowth in an aligned tissue-engineered collagen construct in vitro. FASEB J 28:1634–1643

    PubMed  PubMed Central  Google Scholar 

  • Matsubara K, Matsushita Y, Sakai K, Kano F, Kondo M, Noda M, Hashimoto N, Imagama S, Ishiguro N, Suzumura A (2015) Secreted ectodomain of sialic acid-binding Ig-like lectin-9 and monocyte chemoattractant protein-1 promote recovery after rat spinal cord injury by altering macrophage polarity. J Neurosci 35:2452–2464

    PubMed  PubMed Central  Google Scholar 

  • Mead B, Logan A, Berry M, Leadbeater W, Scheven BA (2013) Intravitreally transplanted dental pulp stem cells promote neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury. Invest Ophthalmol Vis Sci 54:7544–7556

    PubMed  CAS  Google Scholar 

  • Mead B, Logan A, Berry M, Leadbeater W, Scheven BA (2014) Paracrine-mediated neuroprotection and neuritogenesis of axotomised retinal ganglion cells by human dental pulp stem cells: comparison with human bone marrow and adipose-derived mesenchymal stem cells. PLoS One 9:e109305

    PubMed  PubMed Central  Google Scholar 

  • Mita T, Furukawa-Hibi Y, Takeuchi H, Hattori H, Yamada K, Hibi H, Ueda M, Yamamoto A (2015) Conditioned medium from the stem cells of human dental pulp improves cognitive function in a mouse model of Alzheimer’s disease. Behav Brain Res 293:189–197

    PubMed  CAS  Google Scholar 

  • Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 100:5807–5812

    PubMed  PubMed Central  CAS  Google Scholar 

  • Morsczeck C, Gotz W, Schierholz J, Zeilhofer F, Kuhn U, Mohl C, Sippel C, Hoffmann KH (2005) Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix biology : journal of the International Society for Matrix Biology 24:155–165

    CAS  Google Scholar 

  • Nicola FC, Rodrigues LP, Crestani T, Quintiliano K, Sanches EF, Willborn S, Aristimunha D, Boisserand L, Pranke P, Netto CA (2016) Human dental pulp stem cells transplantation combined with treadmill training in rats after traumatic spinal cord injury. Braz J Med Biol Res:49

  • Nosrat IV, Widenfalk J, Olson L, Nosrat CA (2001) Dental pulp cells produce neurotrophic factors, interact with trigeminal neurons in vitro, and rescue motoneurons after spinal cord injury. Dev Biol 238:120–132

    PubMed  CAS  Google Scholar 

  • Nourbakhsh N, Soleimani M, Taghipour Z, Karbalaie K, Mousavi S-B, Talebi A, Nadali F, Tanhaei S, Kiyani G-A, Nematollahi M (2011) Induced in vitro differentiation of neural-like cells from human exfoliated deciduous teeth-derived stem cells. Int J Dev Biol 55:189–195

    PubMed  CAS  Google Scholar 

  • Ohishi M, Schipani E (2010) Bone marrow mesenchymal stem cells. J Cell Biochem 109:277–282

    PubMed  CAS  Google Scholar 

  • Omi M, Hata M, Nakamura N, Miyabe M, Kobayashi Y, Kamiya H, Nakamura J, Ozawa S, Tanaka Y, Takebe J (2016) Transplantation of dental pulp stem cells suppressed inflammation in sciatic nerves by promoting macrophage polarization towards anti-inflammation phenotypes and ameliorated diabetic polyneuropathy. Journal of diabetes investigation 7:485–496

    PubMed  CAS  Google Scholar 

  • Osathanon T, Sawangmake C, Nowwarote N, Pavasant P (2014) Neurogenic differentiation of human dental pulp stem cells using different induction protocols. Oral Dis 20:352–358

    PubMed  CAS  Google Scholar 

  • Pertici V, Laurin J, Féron F, Marqueste T, Decherchi P (2014) Functional recovery after repair of peroneal nerve gap using different collagen conduits. Acta Neurochir 156:1029–1040

    PubMed  Google Scholar 

  • Pfister BJ, Gordon T, Loverde JR, Kochar AS, Mackinnon SE, Cullen DK (2011) Biomedical engineering strategies for peripheral nerve repair: surgical applications, state of the art, and future challenges. Critical Reviews™ in Biomedical Engineering 39:

  • Raza SS, Wagner AP, Hussain YS, Khan MA (2018) Mechanisms underlying dental-derived stem cell-mediated neurorestoration in neurodegenerative disorders. Stem Cell Res Ther 9:245

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ribeiro J, Gartner A, Pereira T, Gomes R, Lopes MA, Gonçalves C, Varejão A, Luís AL, Maurício AC (2013) Perspectives of employing mesenchymal stem cells from the Wharton’s jelly of the umbilical cord for peripheral nerve repair. Int Rev Neurobiol, 108. Elsevier, 79-120

  • Sakai K, Yamamoto A, Matsubara K, Nakamura S, Naruse M, Yamagata M, Sakamoto K, Tauchi R, Wakao N, Imagama S (2012) Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Invest 122:80–90

    PubMed  CAS  Google Scholar 

  • Sanen K, Martens W, Georgiou M, Ameloot M, Lambrichts I, Phillips J (2017) Engineered neural tissue with Schwann cell differentiated human dental pulp stem cells: potential for peripheral nerve repair? J Tissue Eng Regen Med 11:3362–3372

    PubMed  CAS  Google Scholar 

  • Sasaki R, Aoki S, Yamato M, Uchiyama H, Wada K, Ogiuchi H, Okano T, Ando T (2011) PLGA artificial nerve conduits with dental pulp cells promote facial nerve regeneration. J Tissue Eng Regen Med 5:823–830

    PubMed  CAS  Google Scholar 

  • Smith MM, Fraser GJ, Mitsiadis TA (2009) Dental lamina as source of odontogenic stem cells: evolutionary origins and developmental control of tooth generation in gnathostomes. Journal of experimental zoology Part B, Molecular and developmental evolution 312b:260–280

  • Song M, Jue SS, Cho YA, Kim EC (2015) Comparison of the effects of human dental pulp stem cells and human bone marrow-derived mesenchymal stem cells on ischemic human astrocytes in vitro. J Neurosci Res 93:973–983

    PubMed  CAS  Google Scholar 

  • Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, Liu H, Gronthos S, Wang CY, Wang S, Shi S (2006) Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One 1:e79

    PubMed  PubMed Central  Google Scholar 

  • Sughrue M, Mehra A, Connolly E, D’Ambrosio A (2004) Anti-adhesion molecule strategies as potential neuroprotective agents in cerebral ischemia: a critical review of the literature. Inflamm Res 53:497–508

    PubMed  CAS  Google Scholar 

  • Sugimura-Wakayama Y, Katagiri W, Osugi M, Kawai T, Ogata K, Sakaguchi K, Hibi H (2015) Peripheral nerve regeneration by secretomes of stem cells from human exfoliated deciduous teeth. Stem Cells Dev 24:2687–2699

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sugiyama M, Iohara K, Wakita H, Hattori H, Ueda M, Matsushita K, Nakashima M (2011) Dental pulp-derived CD31−/CD146− side population stem/progenitor cells enhance recovery of focal cerebral ischemia in rats. Tissue Eng A 17:1303–1311

    CAS  Google Scholar 

  • Taghipour Z, Karbalaie K, Kiani A, Niapour A, Bahramian H, Nasr-Esfahani MH, Baharvand H (2011) Transplantation of undifferentiated and induced human exfoliated deciduous teeth-derived stem cells promote functional recovery of rat spinal cord contusion injury model. Stem Cells Dev 21:1794–1802

    PubMed  Google Scholar 

  • Takeyasu M, Nozaki T, Daito M (2006) Differentiation of dental pulp stem cells into a neural lineage. Pediatr Dent J 16:154–162

    Google Scholar 

  • Tamaki T, Hirata M, Nakajima N, Saito K, Hashimoto H, Soeda S, Uchiyama Y, Watanabe M (2016) A long-gap peripheral nerve injury therapy using human skeletal muscle-derived stem cells (Sk-SCs): an achievement of significant morphological, numerical and functional recovery. PLoS One 11:e0166639

    PubMed  PubMed Central  Google Scholar 

  • Tucker A, Sharpe P (2004) The cutting-edge of mammalian development; how the embryo makes teeth. Nat Rev Genet 5:499

    PubMed  CAS  Google Scholar 

  • Urraca N, Memon R, El-Iyachi I, Goorha S, Valdez C, Tran QT, Scroggs R, Miranda-Carboni GA, Donaldson M, Bridges D (2015) Characterization of neurons from immortalized dental pulp stem cells for the study of neurogenetic disorders. Stem Cell Res 15:722–730

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ustiashvili M, Kordzaia D, Mamaladze M, Jangavadze M, Sanodze L (2014) Investigation of functional activity human dental pulp stem cells at acute and chronic pulpitis. Georgian Med News 234:19–24

    Google Scholar 

  • Vanacker J, Viswanath A, De Berdt P, Everard A, Cani PD, Bouzin C, Feron O, Diogenes A, Leprince JG, des Rieux A (2014) Hypoxia modulates the differentiation potential of stem cells of the apical papilla. J Endod 40:1410–1418

    PubMed  Google Scholar 

  • Wang Y, Chen S, Yang D, W-d L (2007) Stem cell transplantation: a promising therapy for Parkinson’s disease. J NeuroImmune Pharmacol 2:243–250

    PubMed  CAS  Google Scholar 

  • Wang J, Wang X, Sun Z, Wang X, Yang H, Shi S, Wang S (2010) Stem cells from human-exfoliated deciduous teeth can differentiate into dopaminergic neuron-like cells. Stem Cells Dev 19:1375–1383

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wang F, Jia Y, Liu J, Zhai J, Cao N, Yue W, He H, Pei X (2017) Dental pulp stem cells promote regeneration of damaged neuron cells on the cellular model of Alzheimer's disease. Cell Biol Int 41:639–650

    PubMed  CAS  Google Scholar 

  • Wang S-S, Jia J, Wang Z (2018) Mesenchymal stem cell-derived extracellular vesicles suppresses iNOS expression and ameliorates neural impairment in Alzheimer’s disease mice. J Alzheimers Dis 61:1005–1013

    PubMed  CAS  Google Scholar 

  • Wislet-Gendebien S, Hans G, Leprince P, Rigo JM, Moonen G, Rogister B (2005) Plasticity of cultured mesenchymal stem cells: switch from nestin-positive to excitable neuron-like phenotype. Stem Cells 23:392–402

    PubMed  CAS  Google Scholar 

  • Xiao L, Tsutsui T (2013) Characterization of human dental pulp cells-derived spheroids in serum-free medium: stem cells in the core. J Cell Biochem 114:2624–2636

    PubMed  CAS  Google Scholar 

  • Yamagata M, Yamamoto A, Kako E, Kaneko N, Matsubara K, Sakai K, Sawamoto K, Ueda M (2013) Human dental pulp-derived stem cells protect against hypoxic-ischemic brain injury in neonatal mice. Stroke 44:551–554

    PubMed  Google Scholar 

  • Yamamoto A, Sakai K, Matsubara K, Kano F, Ueda M (2014) Multifaceted neuro-regenerative activities of human dental pulp stem cells for functional recovery after spinal cord injury. Neurosci Res 78:16–20

    PubMed  Google Scholar 

  • Yamamoto T, Osako Y, Ito M, Murakami M, Hayashi Y, Horibe H, Iohara K, Takeuchi N, Okui N, Hirata H (2016) Trophic effects of dental pulp stem cells on Schwann cells in peripheral nerve regeneration. Cell Transplant 25:183–193

    PubMed  Google Scholar 

  • Yang K-L, Chen M-F, Liao C-H, Pang C-Y, Lin P-Y (2009) A simple and efficient method for generating Nurr1-positive neuronal stem cells from human wisdom teeth (tNSC) and the potential of tNSC for stroke therapy. Cytotherapy 11:606–617

    PubMed  CAS  Google Scholar 

  • Yang C, Sun L, Li X, Xie L, Yu M, Feng L, Jiang Z, Guo W, Tian W (2014) The potential of dental stem cells differentiating into neurogenic cell lineage after cultivation in different modes in vitro Cellular Reprogramming (Formerly" Cloning and Stem Cells") 16:379-391

  • Yang C, Li X, Sun L, Guo W, Tian W (2017) Potential of human dental stem cells in repairing the complete transection of rat spinal cord. J Neural Eng 14:026005

    PubMed  Google Scholar 

  • Yokoi T, Saito M, Kiyono T, Iseki S, Kosaka K, Nishida E, Tsubakimoto T, Harada H, Eto K, Noguchi T, Teranaka T (2007) Establishment of immortalized dental follicle cells for generating periodontal ligament in vivo. Cell Tissue Res 327:301–311

    PubMed  CAS  Google Scholar 

  • Zhang W, Walboomers XF, Shi S, Fan M, Jansen JA (2006) Multilineage differentiation potential of stem cells derived from human dental pulp after cryopreservation. Tissue Eng 12:2813–2823

    PubMed  CAS  Google Scholar 

  • Zhang J, Lu X, Feng G, Gu Z, Sun Y, Bao G, Xu G, Lu Y, Chen J, Xu L (2016) Chitosan scaffolds induce human dental pulp stem cells to neural differentiation: potential roles for spinal cord injury therapy. Cell Tissue Res 366:129–142

    PubMed  CAS  Google Scholar 

  • Zhang X, Zhou Y, Li H, Wang R, Yang D, Li B, Fu J (2018) Intravenous administration of DPSCs and BDNF improves neurological performance in rats with focal cerebral ischemia. Int J Mol Med 41:3185–3194

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Cell Therapy Center-The university of Jordan.

Funding

This study is supported by Cell Therapy Center-The University of Jordan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Duaa Abuarqoub or Abdalla Awidi.

Ethics declarations

Competing interest

The authors declare that they have no competing interest.

Informed consent

Not applicable.

Ethical approval

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abuarqoub, D., Aslam, N., Almajali, B. et al. Neuro-regenerative potential of dental stem cells: a concise review. Cell Tissue Res 382, 267–279 (2020). https://doi.org/10.1007/s00441-020-03255-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-020-03255-0

Keywords

Navigation