Skip to main content

Advertisement

Log in

Stem Cells and Natural Agents in the Management of Neurodegenerative Diseases: A New Approach

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

A Correction to this article was published on 06 January 2024

This article has been updated

Abstract

Neurodegenerative diseases refer to a group of neurological disorders as a consequence of various destructive illnesses, that predominantly impact neurons in the central nervous system, resulting in impairments in certain brain functions. Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, and other neurodegenerative disorders represent a major risk to human health. In order to optimize structural and functional recovery, reconstructive methods integrate many approaches now, to address the complex and multivariate pathophysiology of neurodegenerative disorders. Stem cells, with their unique property of regeneration, offer new possibilities in regenerative and reconstructive medicine. Concurrently, there is an important role for natural products in controlling many health sufferings and they can delay or even prevent the onset of various diseases. In addition, due to their therapeutic properties, they have been used as neuroprotective agents to treat neurodegenerative disorders. After decades of intensive research, scientists made advances in treating these disorders so far, but current therapies are still not capable of preventing the illnesses from progressing. Therefore, in this review, we focused on a new perspective combining stem cells and natural products as an innovative therapy option in the management of neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

Change history

Abbreviations

3-NP:

3-Nitropropionic acid

AD:

Alzheimer’s disease

Aβ:

Amyloid-β

APP:

Amyloid precursor protein

BACE:

APP cleaving enzyme

BDNF:

Brain-derived neurotrophic factor

CNS:

Central nervous system

EAE:

Experimental allergic encephalomyelitis

ESC:

Embryonic stem cell

HD:

Huntington’s disease

hESC:

Human embryonic stem cell

HPA:

Hypothalamic–pituitary–adrenal

HSF:

Heat shock factor

HSP:

Heat shock protein

IFN:

Interferone

IL:

Interleukine

iPSC:

Induced pluripotent stem cell

JNK:

C-Ju N-terminal kinase

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridin

MS:

Multiple sclerosis

MSC:

Mesenchymal stem cell

NSC:

Neural stem cell

PD:

Parkinson’s disease

SGZ:

Subgranular zone

SOCS:

Suppressor of cytokine signaling

SVZ:

Subventricular zone

References

  1. Mohd Sairazi NS, Sirajudeen KNS (2020) Natural products and their bioactive compounds: neuroprotective potentials against neurodegenerative diseases. Evid Complement Altern Med 2020:6565396

    Google Scholar 

  2. Yildiz-Unal A, Korulu S, Karabay A (2015) Neuroprotective strategies against calpain-mediated neurodegeneration. Neuropsychiatr Dis Treat 11:297–310

    Article  PubMed  PubMed Central  Google Scholar 

  3. Singh A, Kukreti R, Saso L, Kukreti S (2019) Oxidative stress: a key modulator in neurodegenerative diseases. Molecules (Basel, Switzerland) 24(8).

  4. Cenini G, Lloret A, Cascella R (2019) Oxidative stress in neurodegenerative diseases: from a mitochondrial point of view. Oxid Med Cell Longev 2019:2105607

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gao HM, Hong JS (2008) Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol 29(8):357–365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Jellinger KA (2003) General aspects of neurodegeneration. J Neural Transm Suppl 65:101–144

    Article  Google Scholar 

  7. Chang YH, Wu KC, Harn HJ, Lin SZ, Ding DC (2018) Exosomes and stem cells in degenerative disease diagnosis and therapy. Cell Transplant 27(3):349–363

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fachbeitrag Gesundheitsindustrie BW PDKB (2022) Neurodegenerative Krankheiten: Gesundheitsindustrie BW. https://www.gesundheitsindustrie-bw.de/fachbeitrag/dossier/neurodegenerative-krankheiten. Accessed 23 Aug 2022

  9. Yao P, Zhou L, Zhu L, Zhou B, Yu Q (2020) Mesenchymal stem cells: a potential therapeutic strategy for neurodegenerative diseases. Eur Neurol 83(3):235–241

    Article  PubMed  CAS  Google Scholar 

  10. Alesci A, Pergolizzi S, Lo Cascio P, Fumia A, Lauriano ER (2022) Neuronal regeneration: vertebrates comparative overview and new perspectives for neurodegenerative diseases. Acta Zoologica 103(2):129–140

    Article  Google Scholar 

  11. Zhao X, Moore DL (2018) Neural stem cells: developmental mechanisms and disease modeling. Cell Tissue Res 371(1):1–6

    Article  PubMed  PubMed Central  Google Scholar 

  12. Huang W, Cheng P, Yu K, Han Y, Song M, Li Y (2017) Hyperforin attenuates aluminum-induced Aβ production and Tau phosphorylation via regulating Akt/GSK-3β signaling pathway in PC12 cells. Biomed Pharmacother 96:1–6

    Article  PubMed  CAS  Google Scholar 

  13. Bahmad H, Hadadeh O, Chamaa F, Cheaito K, Darwish B, Makkawi AK et al (2017) Modeling human neurological and neurodegenerative diseases: from induced pluripotent stem cells to neuronal differentiation and its applications in neurotrauma. Front Mol Neurosci 10:50

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sproul AA (2015) Being human: the role of pluripotent stem cells in regenerative medicine and humanizing Alzheimer’s disease models. Mol Aspects Med 43–44:54–65

    Article  PubMed  Google Scholar 

  15. Kim SU, Lee HJ, Kim YB (2013) Neural stem cell-based treatment for neurodegenerative diseases. Neuropathology 33(5):491–504

    Article  PubMed  Google Scholar 

  16. Puranik N, Arukha AP, Yadav SK, Yadav D, Jin JO (2022) Exploring the role of stem cell therapy in treating neurodegenerative diseases: challenges and current perspectives. Curr Stem Cell Res Ther 17(2):113–125

    Article  PubMed  CAS  Google Scholar 

  17. Sairazi NSM, Sirajudeen KNS (2020) Natural products and their bioactive compounds: neuroprotective potentials against neurodegenerative diseases. Evid Based Complement Alternat Med 2020:6565396

  18. Brockmueller A, Shayan P, Shakibaei M (2022) Evidence that β1-integrin is required for the anti-viability and anti-proliferative effect of resveratrol in CRC cells. Int J Mol Sci 23(9).

  19. Buhrmann C, Brockmueller A, Mueller AL, Shayan P, Shakibaei M (2021) Curcumin attenuates environment-derived osteoarthritis by Sox9/NF-kB signaling axis. Int J Mol Sci 22(14).

  20. Mueller AL, Brockmueller A, Kunnumakkara AB, Shakibaei M. Calebin A (2022) A compound of turmeric, down-regulates inflammation in tenocytes by NF-κB/scleraxis signaling. Int J Mol Sci 23(3).

  21. Costa SL, Silva VD, Dos Santos SC, Santos CC, Paris I, Muñoz P et al (2016) Impact of plant-derived flavonoids on neurodegenerative diseases. Neurotox Res 30(1):41–52

    Article  PubMed  CAS  Google Scholar 

  22. Rehman MU, Wali AF, Ahmad A, Shakeel S, Rasool S, Ali R et al (2019) Neuroprotective strategies for neurological disorders by natural products: an update. Curr Neuropharmacol 17(3):247–267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Bandiwadekar A, Jose J, Khayatkashani M, Habtemariam S, Khayat Kashani HR, Nabavi SM (2022) Emerging novel approaches for the enhanced delivery of natural products for the management of neurodegenerative diseases. J Mol Neurosci 72(3):653–676

    Article  PubMed  CAS  Google Scholar 

  24. Novak V, Rogelj B, Župunski V (2021) Therapeutic potential of polyphenols in amyotrophic lateral sclerosis and frontotemporal dementia. Antioxidants (Basel, Switzerland) 10(8).

  25. Miller JH, Das V (2020) Potential for treatment of neurodegenerative diseases with natural products or synthetic compounds that stabilize microtubules. Curr Pharm Des 26(35):4362–4372

    Article  PubMed  CAS  Google Scholar 

  26. Sarkar A, Gogia N, Glenn N, Singh A, Jones G, Powers N et al (2018) A soy protein Lunasin can ameliorate amyloid-beta 42 mediated neurodegeneration in Drosophila eye. Sci Rep 8(1):13545

    Article  PubMed  PubMed Central  Google Scholar 

  27. Constanze B, Popper B, Aggarwal BB, Shakibaei M (2020) Evidence that TNF-β suppresses osteoblast differentiation of mesenchymal stem cells and resveratrol reverses it through modulation of NF-κB, Sirt1 and Runx2. Cell Tissue Res 381(1):83–98

    Article  PubMed  CAS  Google Scholar 

  28. Buhrmann C, Mobasheri A, Matis U, Shakibaei M (2010) Curcumin mediated suppression of nuclear factor-κB promotes chondrogenic differentiation of mesenchymal stem cells in a high-density co-culture microenvironment. Arthritis Res Ther 12(4):R127

    Article  PubMed  PubMed Central  Google Scholar 

  29. Aisen PS, Cummings J, Jack CR Jr, Morris JC, Sperling R, Frölich L et al (2017) On the path to 2025: understanding the Alzheimer’s disease continuum. Alzheimer’s research & therapy 9(1):60

    Article  Google Scholar 

  30. As A (2019) 2019 Alzheimer’s disease facts and figures. Alzheimers Dement 15(3):321–387

    Article  Google Scholar 

  31. Selkoe DJ (2001) Alzheimer’s disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. J Alzheimer’s Dis 3(1):75–80

    Article  CAS  Google Scholar 

  32. van Olst L, Coenen L, Nieuwland JM, Rodriguez-Mogeda C, de Wit NM, Kamermans A et al (2022) Crossing borders in Alzheimer’s disease: a T cell’s perspective. Adv Drug Deliv Rev 188:114398

    Article  PubMed  Google Scholar 

  33. Markus MA, Morris BJ (2008) Resveratrol in prevention and treatment of common clinical conditions of aging. Clin Interv Aging 3(2):331–339

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Gomes RC, Sakata RP, Almeida WP, Coelho F (2019) Spirocyclohexadienones as an uncommon scaffold for acetylcholinesterase inhibitory activity. Med Chem (Shariqah (United Arab Emirates)) 15(4):373–82.

  35. Habtemariam S (2018) Iridoids and other monoterpenes in the Alzheimer’s brain: recent development and future prospects. Molecules (Basel, Switzerland) 23(1):117

    Article  PubMed  Google Scholar 

  36. Weintraub S, Wicklund AH, Salmon DP (2012) The neuropsychological profile of Alzheimer disease. Cold Spring Harb Perspect Med 2(4):a006171

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhongling F, Gang Z, Lei Y (2009) Neural stem cells and Alzheimer’s disease: challenges and hope. Am J Alzheimers Dis Other Demen 24(1):52–57

    Article  Google Scholar 

  38. Penney J, Ralvenius WT, Tsai L-H (2020) Modeling Alzheimer’s disease with iPSC-derived brain cells. Mol Psychiatry 25(1):148–167

    Article  PubMed  Google Scholar 

  39. Zeng X, Rao MS (2007) Human embryonic stem cells: long term stability, absence of senescence and a potential cell source for neural replacement. Neuroscience 145(4):1348–1358

    Article  PubMed  CAS  Google Scholar 

  40. Heese K, Low JW, Inoue N (2006) Nerve growth factor, neural stem cells and Alzheimer’s disease. Neurosignals 15(1):1–12

    Article  PubMed  CAS  Google Scholar 

  41. Jin K, Peel AL, Mao XO, Xie L, Cottrell BA, Henshall DC et al (2004) Increased hippocampal neurogenesis in Alzheimer’s disease. Proc Natl Acad Sci USA 101(1):343–347

    Article  PubMed  CAS  Google Scholar 

  42. Si Z, Wang X (2021) Stem cell therapies in Alzheimer’s disease: applications for disease modeling. J Pharmacol Exp Ther 377(2):207–217

    Article  PubMed  CAS  Google Scholar 

  43. Jiao H, Shi K, Zhang W, Yang L, Yang L, Guan F et al (2016) Therapeutic potential of human amniotic membrane-derived mesenchymal stem cells in APP transgenic mice. Oncol Lett 12(3):1877–1883

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Williams TL, Serpell LC (2011) Membrane and surface interactions of Alzheimer’s Aβ peptide–insights into the mechanism of cytotoxicity. FEBS J 278(20):3905–3917

    Article  PubMed  CAS  Google Scholar 

  45. Habtemariam S (2011) The therapeutic potential of Berberis darwinii stem-bark: quantification of berberine and in vitro evidence for Alzheimer’s disease therapy. Nat Prod Commun 6(8):1089–1090

    PubMed  CAS  Google Scholar 

  46. Roselli M, Cavalluzzi MM, Bruno C, Lovece A, Carocci A, Franchini C et al (2016) Synthesis and evaluation of berberine derivatives and analogs as potential antiacetylcholinesterase and antioxidant agents. Phytochem Lett 18:150–156

    Article  CAS  Google Scholar 

  47. Rahman SO, Panda BP, Parvez S, Kaundal M, Hussain S, Akhtar M et al (2019) Neuroprotective role of astaxanthin in hippocampal insulin resistance induced by Aβ peptides in animal model of Alzheimer’s disease. Biomed Pharmacother 110:47–58

    Article  PubMed  CAS  Google Scholar 

  48. Thomas J, Thomas CJ, Radcliffe J, Itsiopoulos C (2015) Omega-3 fatty acids in early prevention of inflammatory neurodegenerative disease: a focus on Alzheimer’s disease. Biomed Res Int 2015:172801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Ajith TA (2018) A recent update on the effects of omega-3 fatty acids in Alzheimer’s disease. Curr Clin Pharmacol 13(4):252–260

    Article  PubMed  CAS  Google Scholar 

  50. Manochkumar J, Doss CGP, El-Seedi HR, Efferth T, Ramamoorthy S (2021) The neuroprotective potential of carotenoids in vitro and in vivo. Phytomedicine 91:153676

    Article  PubMed  CAS  Google Scholar 

  51. Habtemariam S (2019) Natural products in Alzheimer’s disease therapy: would old therapeutic approaches fix the broken promise of modern medicines? Molecules (Basel, Switzerland) 24(8):1519

    Article  PubMed  CAS  Google Scholar 

  52. Servello A, Leccese V, Ettorre E (2020) Natural products for neurocognitive disorders. Exon Publ 205–220.

  53. Elifani F, Amico E, Pepe G, Capocci L, Castaldo S, Rosa P et al (2019) Curcumin dietary supplementation ameliorates disease phenotype in an animal model of Huntington’s disease. Hum Mol Genet 28(23):4012–4021

    PubMed  CAS  Google Scholar 

  54. Teter B, Morihara T, Lim G, Chu T, Jones M, Zuo X et al (2019) Curcumin restores innate immune Alzheimer’s disease risk gene expression to ameliorate Alzheimer pathogenesis. Neurobiol Dis 127:432–448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Shaito A, Posadino AM, Younes N, Hasan H, Halabi S, Alhababi D et al (2020) Potential adverse effects of resveratrol: a literature review. Int J Mol Sci 21(6):2084

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Saini RK, Shuaib S, Goyal D, Goyal B (2019) Insights into the inhibitory mechanism of a resveratrol and clioquinol hybrid against Aβ42 aggregation and protofibril destabilization: a molecular dynamics simulation study. J Biomol Struct Dyn 37(12):3183–3197

    Article  PubMed  CAS  Google Scholar 

  57. Beg T, Jyoti S, Naz F, Ali F, Ali SK, Reyad AM et al (2018) Protective effect of kaempferol on the transgenic Drosophila model of Alzheimer’s disease. CNS Neurol Disord Drug Targets 17(6):421–429

    Article  PubMed  CAS  Google Scholar 

  58. Velmurugan BK, Rathinasamy B, Lohanathan BP, Thiyagarajan V, Weng C-F (2018) Neuroprotective role of phytochemicals. Molecules (Basel, Switzerland) 23(10):2485

    Article  PubMed  Google Scholar 

  59. Simunkova M, Alwasel SH, Alhazza IM, Jomova K, Kollar V, Rusko M et al (2019) Management of oxidative stress and other pathologies in Alzheimer’s disease. Arch Toxicol 93(9):2491–2513

    Article  PubMed  CAS  Google Scholar 

  60. Yuan N-N, Cai C-Z, Wu M-Y, Su H-X, Li M, Lu J-H (2019) Neuroprotective effects of berberine in animal models of Alzheimer’s disease: a systematic review of pre-clinical studies. BMC Complement Altern Med 19(1):1–10

    Article  Google Scholar 

  61. Chen X, Feng W, Chen Q, Yang X, Yang D, Wang D et al (2009) Effects of acetylate hyperforin on the processing of amyloid precursor protein. Int J Physiol Pathophysiol Pharmacol 1(1):76

    PubMed  PubMed Central  CAS  Google Scholar 

  62. Ang CY, Hu L, Heinze TM, Cui Y, Freeman JP, Kozak K et al (2004) Instability of St. John’s wort (Hypericum perforatum L.) and degradation of hyperforin in aqueous solutions and functional beverage. J Agric Food Chem 52(20):6156–6164

    Article  PubMed  CAS  Google Scholar 

  63. Liu C-H, Bu X-L, Wang J, Zhang T, Xiang Y, Shen L-L et al (2016) The associations between a capsaicin-rich diet and blood amyloid-β levels and cognitive function. J Alzheimers Dis 52(3):1081–1088

    Article  PubMed  CAS  Google Scholar 

  64. Jin J, Wang H, Hua X, Chen D, Huang C, Chen Z (2019) An outline for the pharmacological effect of icariin in the nervous system. Eur J Pharmacol 842:20–32

    Article  PubMed  CAS  Google Scholar 

  65. Akinade TC, Babatunde OO, Adedara AO, Adeyemi OE, Otenaike TA, Ashaolu OP et al (2022) Protective capacity of carotenoid trans-astaxanthin in rotenone-induced toxicity in Drosophila melanogaster. Sci Rep 12(1):4594

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Xiao J, Tundis R (2013) Natural products for Alzheimer’s disease therapy: basic and application. J Pharm Pharmacol 65(12):1679–1680

    Article  PubMed  CAS  Google Scholar 

  67. Jhang KA, Park JS, Kim HS, Chong YH (2017) Resveratrol ameliorates tau hyperphosphorylation at Ser396 site and oxidative damage in rat hippocampal slices exposed to vanadate: implication of ERK1/2 and GSK-3β signaling cascades. J Agric Food Chem 65(44):9626–9634

    Article  PubMed  CAS  Google Scholar 

  68. Sun J, Zhang X, Wang C, Teng Z, Li Y (2017) Curcumin decreases hyperphosphorylation of tau by down-regulating caveolin-1/GSK-3β in N2a/APP695swe cells and APP/PS1 double transgenic Alzheimer’s disease mice. Am J Chin Med 45(8):1667–1682

    Article  PubMed  CAS  Google Scholar 

  69. Mirzazadeh E, Khezri S, Abtahi Froushani SM (2019) Effects of quercetin on improving the damage caused by free radicals in the rat models of multiple sclerosis. ISMJ 22(1):1–15

    Google Scholar 

  70. Zaplatic E, Bule M, Shah SZA, Uddin MS, Niaz K (2019) Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimer’s disease. Life Sci 224:109–119

    Article  PubMed  CAS  Google Scholar 

  71. Nouri Z, Fakhri S, El-Senduny FF, Sanadgol N, Abd-ElGhani GE, Farzaei MH et al (2019) On the neuroprotective effects of naringenin: pharmacological targets, signaling pathways, molecular mechanisms, and clinical perspective. Biomolecules 9(11):690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Li C, Zug C, Qu H, Schluesener H, Zhang Z (2015) Hesperidin ameliorates behavioral impairments and neuropathology of transgenic APP/PS1 mice. Behav Brain Res 281:32–42

    Article  PubMed  CAS  Google Scholar 

  73. Theoharides TC (2009) Luteolin as a therapeutic option for multiple sclerosis. J Neuroinflammation 6(1):1–3

    Article  Google Scholar 

  74. Nabavi SF, Braidy N, Gortzi O, Sobarzo-Sanchez E, Daglia M, Skalicka-Woźniak K et al (2015) Luteolin as an anti-inflammatory and neuroprotective agent: a brief review. Brain Res Bull 119:1–11

    Article  PubMed  CAS  Google Scholar 

  75. Wei Z, Wang M, Hong M, Diao S, Liu A, Huang Y et al (2016) Icariin exerts estrogen-like activity in ameliorating EAE via mediating estrogen receptor β, modulating HPA function and glucocorticoid receptor expression. Am J Transl Res 8(4):1910

    PubMed  PubMed Central  CAS  Google Scholar 

  76. Xie L, Gong W, Chen J, Xie H-W, Wang M, Yin X-P et al (2018) The flavonoid kurarinone inhibits clinical progression of EAE through inhibiting Th1 and Th17 cell differentiation and proliferation. Int Immunopharmacol 62:227–236

    Article  PubMed  CAS  Google Scholar 

  77. Li Y, Song K, Zhang H, Yuan M, An N, Wei Y et al (2020) Anti-inflammatory and immunomodulatory effects of baicalin in cerebrovascular and neurological disorders. Brain Res Bull 164:314–324

    Article  PubMed  CAS  Google Scholar 

  78. Zeng Y, Song C, Ding X, Ji X, Yi L, Zhu K (2007) Baicalin reduces the severity of experimental autoimmune encephalomyelitis. Braz J Med Biol Res 40:1003–1010

    Article  PubMed  CAS  Google Scholar 

  79. Mahdy HM, Tadros MG, Mohamed MR, Karim AM, Khalifa AE (2011) The effect of Ginkgo biloba extract on 3-nitropropionic acid-induced neurotoxicity in rats. Neurochem Int 59(6):770–778

    Article  PubMed  CAS  Google Scholar 

  80. Cho I-H (2012) Effects of Panax ginseng in neurodegenerative diseases. J Ginseng Res 36(4):342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Takahashi J (2007) Stem cell therapy for Parkinson’s disease. Expert Rev Neurother 7(6):667–675

    Article  PubMed  CAS  Google Scholar 

  82. Seol W-G (2010) Biochemical and molecular features of LRRK2 and its pathophysiological roles in Parkinson’s disease. BMB Rep 43(4):233–244

    Article  PubMed  CAS  Google Scholar 

  83. Rahman MM, Mim SA, Tumpa MAA, Sarker MT, Ahmed M, Alghamdi BS et al (2022) Exploring the management approaches of cytokines including viral infection and neuroinflammation for neurological disorders. Cytokine 157:155962

    Article  Google Scholar 

  84. Saikia A, Hussain M, Barua AR, Paul S (2020) An insight into Parkinson’s disease: researches and its complexities. Smart healthcare for disease diagnosis and prevention. Elsevier, New York, pp 59–80

    Google Scholar 

  85. Liu T-W, Ma Z-G, Zhou Y, Xie J-X (2013) Transplantation of mouse CGR8 embryonic stem cells producing GDNF and TH protects against 6-hydroxydopamine neurotoxicity in the rat. Int J Biochem Cell Biol 45(7):1265–1273

    Article  PubMed  CAS  Google Scholar 

  86. Stoddard-Bennett T, Pera RR (2020) Stem cell therapy for Parkinson’s disease: safety and modeling. Neural Regen Res 15(1):36–40

    Article  PubMed  Google Scholar 

  87. Cyranoski D (2017) Trials of embryonic stem cells to launch in China. Nat News 546(7656):15

    Article  CAS  Google Scholar 

  88. Stoddard-Bennett T, Reijo PR (2019) Treatment of Parkinson’s disease through personalized medicine and induced pluripotent stem cells. Cells 8(1):26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Essa MM, Vijayan RK, Castellano-Gonzalez G, Memon MA, Braidy N, Guillemin GJ (2012) Neuroprotective effect of natural products against Alzheimer’s disease. Neurochem Res 37(9):1829–1842

    Article  PubMed  CAS  Google Scholar 

  90. Essa M, Braidy N, Bridge W, Subash S, Manivasagam T, Vijayan R et al (2014) Review of natural products on Parkinson’s disease pathology. J Aging Res Clin Pract 3(1):1–8

    CAS  Google Scholar 

  91. Houghton PJ, Howes M-J (2005) Natural products and derivatives affecting neurotransmission relevant to Alzheimer’s and Parkinson’s disease. Neurosignals 14(1–2):6–22

    Article  PubMed  CAS  Google Scholar 

  92. Spencer JP (2009) The impact of flavonoids on memory: physiological and molecular considerations. Chem Soc Rev 38(4):1152–1161

    Article  PubMed  CAS  Google Scholar 

  93. Vafeiadou K, Vauzour D, Spencer J (2007) Neuroinflammation and its modulation by flavonoids. Endocrine Metabolic Immune Disord Drug Targets 7(3):211–224

    Article  CAS  Google Scholar 

  94. Anandhan A, Essa MM, Manivasagam T (2013) Therapeutic attenuation of neuroinflammation and apoptosis by black tea theaflavin in chronic MPTP/probenecid model of Parkinson’s disease. Neurotox Res 23(2):166–173

    Article  PubMed  CAS  Google Scholar 

  95. Mishra L-C, Singh BB, Dagenais S (2000) Scientific basis for the therapeutic use of Withania somnifera (ashwagandha): a review. Altern Med Rev 5(4):334–346

    PubMed  CAS  Google Scholar 

  96. Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radical Biol Med 27(5–6):612–616

    Article  CAS  Google Scholar 

  97. Van Kampen J, Robertson H, Hagg T, Drobitch R (2003) Neuroprotective actions of the ginseng extract G115 in two rodent models of Parkinson’s disease. Exp Neurol 184(1):521–529

    Article  PubMed  Google Scholar 

  98. Chen J-F, Xu K, Petzer JP, Staal R, Xu Y-H, Beilstein M, et al (2001) Neuroprotection by caffeine and A2A adenosine receptor inactivation in a model of Parkinson's disease. J Neurosci 21(10):RC143-RC.

  99. Chen J-F, Steyn S, Staal R, Petzer JP, Xu K, Van der Schyf CJ et al (2002) 8-(3-Chlorostyryl) caffeine may attenuate MPTP neurotoxicity through dual actions of monoamine oxidase inhibition and A2A receptor antagonism. J Biol Chem 277(39):36040–36044

    Article  PubMed  CAS  Google Scholar 

  100. Li J, Long X, Hu J, Bi J, Zhou T, Guo X et al (2019) Multiple pathways for natural product treatment of Parkinson’s disease: a mini review. Phytomedicine 60:152954

    Article  PubMed  CAS  Google Scholar 

  101. Wang J-Y, Chiu J-H, Tsai T-H, Tsou A-P, Hu C-P, Chi C-W et al (2005) Gene expression profiling predicts liver responses to a herbal remedy after partial hepatectomy in mice. Int J Mol Med 16(2):221–231

    PubMed  CAS  Google Scholar 

  102. Cheng Y, He G, Mu X, Zhang T, Li X, Hu J et al (2008) Neuroprotective effect of baicalein against MPTP neurotoxicity: behavioral, biochemical and immunohistochemical profile. Neurosci Lett 441(1):16–20

    Article  PubMed  CAS  Google Scholar 

  103. Ernst E (2006) Herbal remedies for anxiety–a systematic review of controlled clinical trials. Phytomedicine 13(3):205–208

    Article  PubMed  CAS  Google Scholar 

  104. McColgan P, Tabrizi SJ (2018) Huntington’s disease: a clinical review. Eur J Neurol 25(1):24–34

    Article  PubMed  CAS  Google Scholar 

  105. Leitman J, Hartl FU, Lederkremer GZ (2013) Soluble forms of polyQ-expanded huntingtin rather than large aggregates cause endoplasmic reticulum stress. Nat Commun 4(1):1–10

    Article  Google Scholar 

  106. Im W, Lee S-T, Chu K, Kim M, Roh J-K (2009) Stem cells transplantation and Huntington’s disease. Int J Stem Cells 2(2):102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Song J, Lee S-T, Kang W, Park J-E, Chu K, Lee S-E et al (2007) Human embryonic stem cell-derived neural precursor transplants attenuate apomorphine-induced rotational behavior in rats with unilateral quinolinic acid lesions. Neurosci Lett 423(1):58–61

    Article  PubMed  CAS  Google Scholar 

  108. McBride JL, Behrstock SP, Chen EY, Jakel RJ, Siegel I, Svendsen CN et al (2004) Human neural stem cell transplants improve motor function in a rat model of Huntington’s disease. J Compar Neurol 475(2):211–219

    Article  Google Scholar 

  109. Park I-H, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A et al (2008) Disease-specific induced pluripotent stem cells. Cell 134(5):877–886

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19(3):180–192

    Article  PubMed  CAS  Google Scholar 

  111. Edalatmanesh M-A, Matin MM, Neshati Z, Bahrami A-R, Kheirabadi M (2010) Systemic transplantation of mesenchymal stem cells can reduce cognitive and motor deficits in rats with unilateral lesions of the neostriatum. Neurol Res 32(2):166–172

    Article  PubMed  Google Scholar 

  112. Long Y, Yang K (2003) Bone marrow derived cells for brain repair: recent findings and current controversies. Curr Mol Med 3(8):719–725

    Article  PubMed  CAS  Google Scholar 

  113. Dey ND, Bombard MC, Roland BP, Davidson S, Lu M, Rossignol J et al (2010) Genetically engineered mesenchymal stem cells reduce behavioral deficits in the YAC 128 mouse model of Huntington’s disease. Behav Brain Res 214(2):193–200

    Article  PubMed  CAS  Google Scholar 

  114. Jeon I, Lee N, Li JY, Park IH, Park KS, Moon J et al (2012) Neuronal properties, in vivo effects, and pathology of a Huntington’s disease patient-derived induced pluripotent stem cells. Stem Cells 30(9):2054–2062

    Article  PubMed  CAS  Google Scholar 

  115. Choudhary S, Kumar P, Malik J (2013) Plants and phytochemicals for Huntington’s disease. Pharmacogn Rev 7(14):81

    Article  PubMed  PubMed Central  Google Scholar 

  116. Nataraj J, Manivasagam T, Thenmozhi AJ, Babu CS, Essa MM (2018) Therapeutic options for Huntington’s disease: Ayurvedic medicinal plants. Food for Huntington’s Disease. Nova Science Publishers Inc, Hauppauge, pp 239–249

    Google Scholar 

  117. Dey A, De JN (2015) Neuroprotective therapeutics from botanicals and phytochemicals against Huntington’s disease and related neurodegenerative disorders. J Herbal Med 5(1):1–19

    Article  Google Scholar 

  118. Gohil KJ, Patel JA (2010) A review on Bacopa monniera: current research and future prospects. Int J Green Pharmacy 4(1).

  119. Shinomol GK (2011) Bacopa monnieri modulates endogenous cytoplasmic and mitochondrial oxidative markers in prepubertal mice brain. Phytomedicine 18(4):317–326

    Article  PubMed  Google Scholar 

  120. Stough C, Lloyd J, Clarke J, Downey L, Hutchison C, Rodgers T et al (2001) The chronic effects of an extract of Bacopa monniera (Brahmi) on cognitive function in healthy human subjects. Psychopharmacology 156(4):481–484

    Article  PubMed  CAS  Google Scholar 

  121. Isah T (2015) Rethinking Ginkgo biloba L.: medicinal uses and conservation. Pharmacogn Rev 9(18):140–148

    Article  PubMed  PubMed Central  Google Scholar 

  122. Baker JT, Borris RP, Carté B, Cordell GA, Soejarto DD, Cragg GM et al (1995) Natural product drug discovery and development: new perspectives on international collaboration. J Nat Prod 58(9):1325–1357

    Article  PubMed  CAS  Google Scholar 

  123. Kt CHOI (2008) Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng CA Meyer. Acta Pharmacol Sin 29(9):1109–1118

    Article  Google Scholar 

  124. Durg S, Dhadde SB, Vandal R, Shivakumar BS, Charan CS (2015) W ithania somnifera (Ashwagandha) in neurobehavioural disorders induced by brain oxidative stress in rodents: a systematic review and meta-analysis. J Pharm Pharmacol 67(7):879–899

    Article  PubMed  CAS  Google Scholar 

  125. Kulkarni S, Dhir A (2008) Withania somnifera: an Indian ginseng. Prog Neuropsychopharmacol Biol Psychiatry 32(5):1093–1105

    Article  PubMed  CAS  Google Scholar 

  126. Joshi T, Kumar V, Kaznacheyeva EV, Jana NR (2021) Withaferin a induces heat shock response and ameliorates disease progression in a mouse model of Huntington’s disease. Mol Neurobiol 1–15.

  127. Walton C, King R, Rechtman L, Kaye W, Leray E, Marrie RA et al (2020) Rising prevalence of multiple sclerosis worldwide: insights from the Atlas of MS. Mult Scler J 26(14):1816–1821

    Article  Google Scholar 

  128. Healthline. Multiple sclerosis 2021. https://www.healthline.com/search?q1=multiple%20sclerosis.

  129. Mojaverrostami S, Bojnordi MN, Ghasemi-Kasman M, Ebrahimzadeh MA, Hamidabadi HG (2018) A review of herbal therapy in multiple sclerosis. Adv Pharmaceut Bull 8(4):575

    Article  CAS  Google Scholar 

  130. Today MSN. MS Statistics 2020. https://multiplesclerosisnewstoday.com/multiple-sclerosis-overview/statistics/.

  131. Arruda LC, de Azevedo JT, de Oliveira GL, Scortegagna GT, Rodrigues ES, Palma PV et al (2016) Immunological correlates of favorable long-term clinical outcome in multiple sclerosis patients after autologous hematopoietic stem cell transplantation. Clin Immunol 169:47–57

    Article  PubMed  CAS  Google Scholar 

  132. Xiao J, Yang R, Biswas S, Zhu Y, Qin X, Zhang M et al (2018) Neural stem cell-based regenerative approaches for the treatment of multiple sclerosis. Mol Neurobiol 55(4):3152–3171

    Article  PubMed  CAS  Google Scholar 

  133. Shroff G (2018) A review on stem cell therapy for multiple sclerosis: special focus on human embryonic stem cells. Stem Cells Cloning 11:1

    PubMed  PubMed Central  Google Scholar 

  134. Xue CC, Zhang AL, Lin V, Da Costa C, Story DF (2007) Complementary and alternative medicine use in Australia: a national population-based survey. J Altern Complement Med 13(6):643–650

    Article  PubMed  Google Scholar 

  135. Fumia A, Cicero N, Gitto M, Nicosia N, Alesci A (2021) Role of nutraceuticals on neurodegenerative diseases: neuroprotective and immunomodulant activity. Nat Prod Res 1–18.

  136. Alesci A, Nicosia N, Fumia A, Giorgianni F, Santini A, Cicero N (2022) Resveratrol and immune cells: a link to improve human health. Molecules (Basel, Switzerland) 27(2):424

    Article  PubMed  CAS  Google Scholar 

  137. Muresanu D, Balea M, Verisezan Rosu O, Buzoianu A, Slavoaca D (2016) Neuroprotection and recovery in multiple sclerosis. In Trending topics in multiple sclerosis. IntechOpen.

  138. Verbeek R, van Tol EA, van Noort JM (2005) Oral flavonoids delay recovery from experimental autoimmune encephalomyelitis in SJL mice. Biochem Pharmacol 70(2):220–228

    Article  PubMed  CAS  Google Scholar 

  139. Guo Y-X, Zhang Y, Gao Y-H, Deng S-Y, Wang L-M, Li C-Q et al (2021) Role of plant-derived natural compounds in experimental autoimmune encephalomyelitis: a review of the treatment potential and development strategy. Front Pharmacol 12:1626

    Google Scholar 

  140. Gandhi GR, Vasconcelos ABS, Wu D-T, Li H-B, Antony PJ, Li H et al (2020) Citrus flavonoids as promising phytochemicals targeting diabetes and related complications: a systematic review of in vitro and in vivo studies. Nutrients 12(10):2907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Yang J, Chen H, Wang Q, Deng S, Huang M, Ma X et al (2018) Inhibitory effect of kurarinone on growth of human non-small cell lung cancer: an experimental study both in vitro and in vivo studies. Front Pharmacol 9:252

    Article  PubMed  PubMed Central  Google Scholar 

  142. Ahmed OM, Fahim HI, Ahmed HY, Al-Muzafar HM, Ahmed RR, Amin KA et al (2019) The preventive effects and the mechanisms of action of navel orange peel hydroethanolic extract, naringin, and naringenin in N-acetyl-p-aminophenol-induced liver injury in Wistar rats. Oxidat Med Cell Longev 2019.

  143. Baradaran S, Hajizadeh Moghaddam A, Ghasemi-Kasman M (2018) Hesperetin reduces myelin damage and ameliorates glial activation in lysolecithin-induced focal demyelination model of rat optic chiasm. Life Sci 207:471–479

    Article  PubMed  CAS  Google Scholar 

  144. Solanki I, Parihar P, Mansuri ML, Parihar MS (2015) Flavonoid-based therapies in the early management of neurodegenerative diseases. Adv Nutr 6(1):64–72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Li-Weber M (2009) New therapeutic aspects of flavones: the anticancer properties of Scutellaria and its main active constituents Wogonin. Baicalein Baicalin Cancer Treat Rev 35(1):57–68

    Article  PubMed  CAS  Google Scholar 

  146. Tullman MJ (2013) Overview of the epidemiology, diagnosis, and disease progression associated with multiple sclerosis. Am J Manag Care 19(2 Suppl):S15-20

    PubMed  Google Scholar 

  147. Wei M, Zhao R, Peng X, Feng C, Gu H, Yang L (2020) Ultrasound-assisted extraction of taxifolin, diosmin, and quercetin from Abies nephrolepis (Trautv.) maxim: kinetic and thermodynamic characteristics. Molecules (Basel, Switzerland). 25(6):1401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Xu W, Liu J, Ma D, Yuan G, Lu Y, Yang Y (2017) Capsaicin reduces Alzheimer-associated tau changes in the hippocampus of type 2 diabetes rats. PLoS ONE 12(2):e0172477

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study is not supported by any funding.

Author information

Authors and Affiliations

Authors

Contributions

NM, AKM write the primary draft. ALM, AB revised the paper and designed the figures and tables. AMK , MSH and MMZfinal revision of paper and intellectual contribution

Corresponding authors

Correspondence to Mehdi Shakibaei or Masoumeh Majidi Zolbin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brockmueller, A., Mahmoudi, N., Movaeni, A.K. et al. Stem Cells and Natural Agents in the Management of Neurodegenerative Diseases: A New Approach. Neurochem Res 48, 39–53 (2023). https://doi.org/10.1007/s11064-022-03746-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03746-2

Keywords

Navigation