Skip to main content
Log in

Sodium Para-aminosalicylic Acid Inhibits Lead-Induced Neuroinflammation in Brain Cortex of Rats by Modulating SIRT1/HMGB1/NF-κB Pathway

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Lead (Pb) is considered to be a major environmental pollutant and occupational health hazard worldwide which may lead to neuroinflammation. However, an effective treatment for Pb-induced neuroinflammation remains elusive. The aim of this study was to investigate the mechanisms of Pb-induced neuroinflammation, and the therapeutic effect of sodium para-aminosalicylic acid (PAS-Na, a non-steroidal anti-inflammatory drug) in rat cerebral cortex. The results indicated that Pb exposure induced pathological damage in cerebral cortex, accompanied by increased levels of inflammatory factors tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β). Moreover, Pb decreased the expression of silencing information regulator 2 related enzyme 1 (SIRT1) and brain-derived neurotrophic factor (BDNF), and increased the levels of high mobile group box 1 (HMGB1) expression and p65 nuclear factor-κB (NF-κB) phosphorylation. PAS-Na treatment ameliorated Pb-induced histopathological changes in rat cerebral cortex. Moreover, PAS-Na reduced the Pb-induced increase of TNF-α and IL-1β levels concomitant with a significant increase in SIRT1 and BDNF levels, and a decrease in HMGB1 and the phosphorylation of p65 NF-κB expression. Thus, PAS-Na may exert anti-inflammatory effects by mediating the SIRT1/HMGB1/NF-κB pathway and BDNF expression. In conclusion, in this novel study PAS-Na was shown to possess an anti-inflammatory effect on cortical neuroinflammation, establishing its efficacy as a potential treatment for Pb exposures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Mitra A, Chatterjee S, Kataki S, Rastogi RP, Gupta DK (2021) Bacterial tolerance strategies against lead toxicity and their relevance in bioremediation application. Environ Sci Pollut Res Int 28(12):14271–14284. https://doi.org/10.1007/s11356-021-12583-9

    Article  Google Scholar 

  2. Mitra P, Sharma S, Purohit P, Sharma P (2017) Clinical and molecular aspects of lead toxicity: an update. Crit Rev Clin Lab Sci 54(7–8):506–528. https://doi.org/10.1080/10408363.2017.1408562

    Article  Google Scholar 

  3. Hon KL, Fung CK, Leung AK (2017) Childhood lead poisoning: an overview. Hong Kong Med J 23(6):616–621. https://doi.org/10.12809/hkmj176214

    Article  Google Scholar 

  4. Schwartz BS, Stewart WF, Bolla KI, Simon PD, Bandeen-Roche K, Gordon PB, Links JM, Todd AC (2000) Past adult lead exposure is associated with longitudinal decline in cognitive function. Neurology 55(8):1144–1150. https://doi.org/10.1212/wnl.55.8.1144

    Article  Google Scholar 

  5. Lanphear BP, Hornung R, Khoury J, Yolton K, Baghurst P, Bellinger DC, Canfield RL, Dietrich KN, Bornschein R, Greene T, Rothenberg SJ, Needleman HL, Schnaas L, Wasserman G, Graziano J, Roberts R (2005) Low-level environmental lead exposure and children’s intellectual function: an international pooled analysis. Environ Health Perspect 113(7):894–899. https://doi.org/10.1289/ehp.7688

    Article  Google Scholar 

  6. Rocha A, Trujillo KA (2019) Neurotoxicity of low-level lead exposure: history, mechanisms of action, and behavioral effects in humans and preclinical models. Neurotoxicology 73:58–80. https://doi.org/10.1016/j.neuro.2019.02.021

    Article  Google Scholar 

  7. Cecil KM, Brubaker CJ, Adler CM, Dietrich KN, Altaye M, Egelhoff JC, Wessel S, Elangovan I, Hornung R, Jarvis K, Lanphear BP (2008) Decreased brain volume in adults with childhood lead exposure. PLoS Med 5(5):112. https://doi.org/10.1371/journal.pmed.0050112

    Article  Google Scholar 

  8. Reuben A, Elliott ML, Abraham WC, Broadbent J, Houts RM, Ireland D, Knodt AR, Poulton R, Ramrakha S, Hariri AR, Caspi A, Moffitt TE (2020) Association of childhood lead exposure with MRI measurements of structural brain integrity in midlife. JAMA 324(19):1970–1979. https://doi.org/10.1001/jama.2020.19998

    Article  Google Scholar 

  9. Marshall AT, Betts S, Kan EC, McConnell R, Lanphear BP, Sowell ER (2020) Association of lead-exposure risk and family income with childhood brain outcomes. Nat Med 26(1):91–97. https://doi.org/10.1038/s41591-019-0713-y

    Article  Google Scholar 

  10. Leão LKR, Bittencourt LO, Oliveira ACA, Nascimento PC, Ferreira MKM, Miranda GHN, Ferreira RO, Eiró-Quirino L, Puty B, Dionizio A, Cartágenes SC, Freire MAM, Buzalaf MAR, Crespo-Lopez ME, Maia CSF, Lima RR (2021) Lead-induced motor dysfunction is associated with oxidative stress, proteome modulation, and neurodegeneration in motor cortex of rats. Oxid Med Cell Longev. https://doi.org/10.1155/2021/5595047

    Article  Google Scholar 

  11. Ji X, Wang B, Paudel YN, Li Z, Zhang S, Mou L, Liu K, Jin M (2021) Protective effect of chlorogenic acid and its analogues on lead-induced developmental neurotoxicity through modulating oxidative stress and autophagy. Front Mol Biosci 8:655549. https://doi.org/10.3389/fmolb.2021.655549

    Article  Google Scholar 

  12. Liu F, Wang Z, Wei Y, Liu R, Jiang C, Gong C, Liu Y, Yan B (2021) The leading role of adsorbed lead in Pm(2.5)-induced hippocampal neuronal apoptosis and synaptic damage. J Hazard Mater 416:125867. https://doi.org/10.1016/j.jhazmat.2021.125867

    Article  Google Scholar 

  13. Hernández-Coro A, Sánchez-Hernández BE, Montes S, Martínez-Lazcano JC, González-Guevara E, Pérez-Severiano F (2021) Alterations in gene expression due to chronic lead exposure induce behavioral changes. Neurosci Biobehav Rev 126:361–367. https://doi.org/10.1016/j.neubiorev.2021.03.031

    Article  Google Scholar 

  14. Lu LL, Zhang YW, Li ZC, Fang YY, Wang LL, Zhao YS, Li SJ, Ou SY, Aschner M, Jiang YM (2021) Therapeutic effects of sodium para-aminosalicylic acid on cognitive deficits and activated Erk1/2-P90(Rsk)/Nf-Κb inflammatory pathway in Pb-exposed rats. Biol Trace Elem Res. https://doi.org/10.1007/s12011-021-02874-0

    Article  Google Scholar 

  15. Hou Y, Wei Y, Lautrup S, Yang B, Wang Y, Cordonnier S, Mattson MP, Croteau DL, Bohr VA (2021) Nad(+) supplementation reduces neuroinflammation and cell senescence in a transgenic mouse model of Alzheimer’s disease via CGAS-sting. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.2011226118

    Article  Google Scholar 

  16. Ghosh S, Wu MD, Shaftel SS, Kyrkanides S, LaFerla FM, Olschowka JA, O’Banion MK (2013) Sustained interleukin-1β overexpression exacerbates tau pathology despite reduced amyloid burden in an Alzheimer’s mouse model. J Neurosci 33(11):5053–5064. https://doi.org/10.1523/jneurosci.4361-12.2013

    Article  Google Scholar 

  17. Machoń-Grecka A, Dobrakowski M, Boroń M, Lisowska G, Kasperczyk A, Kasperczyk S (2017) The influence of occupational chronic lead exposure on the levels of selected pro-inflammatory cytokines and angiogenic factors. Hum Exp Toxicol 36(5):467–473. https://doi.org/10.1177/0960327117703688

    Article  Google Scholar 

  18. Di Lorenzo L, Vacca A, Corfiati M, Lovreglio P, Soleo L (2007) Evaluation of tumor necrosis factor-alpha and granulocyte colony-stimulating factor serum levels in lead-exposed smoker workers. Int J Immunopathol Pharmacol 20(2):239–247. https://doi.org/10.1177/039463200702000204

    Article  Google Scholar 

  19. Li N, Liu F, Song L, Zhang P, Qiao M, Zhao Q, Li W (2014) The effects of early life Pb exposure on the expression of Il1-Β, Tnf-Α and Aβ in cerebral cortex of mouse pups. J Trace Elem Med Biol 28(1):100–104. https://doi.org/10.1016/j.jtemb.2013.07.003

    Article  Google Scholar 

  20. Chen C, Zhou M, Ge Y, Wang X (2020) Sirt1 and aging related signaling pathways. Mech Ageing Dev 187:111215. https://doi.org/10.1016/j.mad.2020.111215

    Article  Google Scholar 

  21. Jiao F, Gong Z (2020) The beneficial roles of Sirt1 in neuroinflammation-related diseases. Oxid Med Cell Longev 2020:6782872. https://doi.org/10.1155/2020/6782872

    Article  Google Scholar 

  22. Chen X, Chen C, Fan S, Wu S, Yang F, Fang Z, Fu H, Li Y (2018) Omega-3 polyunsaturated fatty acid attenuates the inflammatory response by modulating microglia polarization through Sirt1-mediated deacetylation of the Hmgb1/Nf-Κb pathway following experimental traumatic brain injury. J Neuroinflamm 15(1):116. https://doi.org/10.1186/s12974-018-1151-3

    Article  Google Scholar 

  23. Chen F, Zhou CC, Yang Y, Liu JW, Yan CH (2019) Gm1 ameliorates lead-induced cognitive deficits and brain damage through activating the Sirt1/Creb/Bdnf pathway in the developing male rat hippocampus. Biol Trace Elem Res 190(2):425–436. https://doi.org/10.1007/s12011-018-1569-6

    Article  Google Scholar 

  24. Hossain S, Bhowmick S, Jahan S, Rozario L, Sarkar M, Islam S, Basunia MA, Rahman A, Choudhury BK, Shahjalal H (2016) Maternal lead exposure decreases the levels of brain development and cognition-related proteins with concomitant upsurges of oxidative stress, inflammatory response and apoptosis in the offspring rats. Neurotoxicology 56:150–158. https://doi.org/10.1016/j.neuro.2016.07.013

    Article  Google Scholar 

  25. Peng DJ, Li J, Deng Y, Zhu X, Zhao L, Zhang Y, Li Z, Ou S, Li S, Jiang Y (2020) Sodium para-aminosalicylic acid inhibits manganese-induced Nlrp3 inflammasome-dependent pyroptosis by inhibiting Nf-Κb pathway activation and oxidative stress. J Neuroinflammation 17(1):343. https://doi.org/10.1186/s12974-020-02018-6

    Article  Google Scholar 

  26. Li SJ, Qin WX, Peng DJ, Yuan ZX, He SN, Luo YN, Aschner M, Jiang YM, Liang DY, Xie BY, Xu F (2018) Sodium P-aminosalicylic acid inhibits sub-chronic manganese-induced neuroinflammation in rats by modulating Mapk and Cox-2. Neurotoxicology 64:219–229. https://doi.org/10.1016/j.neuro.2017.06.012

    Article  Google Scholar 

  27. Ky SQ, Deng HS, Xie PY, Hu W (1992) A report of two cases of chronic serious manganese poisoning treated with sodium para-aminosalicylic acid. Br J Ind Med 49(1):66–69. https://doi.org/10.1136/oem.49.1.66

    Article  Google Scholar 

  28. Jiang YM, Mo XA, Du FQ, Fu X, Zhu XY, Gao HY, Xie JL, Liao FL, Pira E, Zheng W (2006) Effective treatment of manganese-induced occupational parkinsonism with P-aminosalicylic acid: a case of 17-year follow-up study. J Occup Environ Med 48(6):644–649. https://doi.org/10.1097/01.jom.0000204114.01893.3e

    Article  Google Scholar 

  29. Deng Y, Peng D, Yang C, Zhao L, Li J, Lu L, Zhu X, Li S, Aschner M, Jiang Y (2021) Preventive treatment with sodium para-aminosalicylic acid inhibits manganese-induced apoptosis and inflammation via the Mapk pathway in rat thalamus. Drug Chem Toxicol. https://doi.org/10.1080/01480545.2021.2008127

    Article  Google Scholar 

  30. Li J, Deng Y, Peng D, Zhao L, Fang Y, Zhu X, Li S, Aschner M, Ou S, Jiang Y (2021) Sodium P-aminosalicylic acid attenuates manganese-induced neuroinflammation in Bv2 microglia by modulating Nf-Κb pathway. Biol Trace Elem Res 199(12):4688–4699. https://doi.org/10.1007/s12011-021-02581-w

    Article  Google Scholar 

  31. Deng YF, Ou SY, Jiang YM, Chen HB, Dang X, Lu S, Wang K, Jiang YH, Li G, Lu JP (2009) Efects of sodium para-aminosalicylic acid on hippocampal ultramicro-structure of subchronic lead-exposed rats. J Toxicol 23(03):213–216. https://doi.org/10.16421/j.cnki.1002-3127.2009.03.011 (in Chinese)

    Article  Google Scholar 

  32. Li Z-c, Wang L-l, Zhao Y-s, Peng D-j, Chen J, Jiang S-y, Zhao L, Aschner M, Li S-j, Jiang Y-m (2022) Sodium para-aminosalicylic acid ameliorates lead-induced hippocampal neuronal apoptosis by suppressing the activation of the Ip3r-Ca2+-Ask1-P38 signaling pathway. Ecotoxicol Environ Saf 241:113829. https://doi.org/10.1016/j.ecoenv.2022.113829

    Article  Google Scholar 

  33. He SN, Qin WX, Lu YH, Li K, Luo YN, Yuan ZX, Jiang XL, Mo YH, Li WJ, Jiang YM (2017) Effects of sodium para-aminosalicylic acid on apoptosis of Pc12 cells induced by lead-exposure. Chin J Pharmacol Toxicol 31(02):159–164. https://doi.org/10.3867/j.issn.1000-3002.2017.02.06 (in Chinese)

    Article  Google Scholar 

  34. Roppongi RT, Champagne-Jorgensen KP, Siddiqui TJ (2017) Low-density primary hippocampal neuron culture. J Vis Exp. https://doi.org/10.3791/55000

    Article  Google Scholar 

  35. Caito S, Aschner M (2015) Neurotoxicity of metals. Handb Clin Neurol 131:169–189. https://doi.org/10.1016/b978-0-444-62627-1.00011-1

    Article  Google Scholar 

  36. Chen A, Dietrich KN, Ware JH, Radcliffe J, Rogan WJ (2005) Iq and blood lead from 2 to 7 years of age: are the effects in older children the residual of high blood lead concentrations in 2-year-olds? Environ Health Perspect 113(5):597–601. https://doi.org/10.1289/ehp.7625

    Article  Google Scholar 

  37. Zhao J, Zhang Q, Zhang B, Xu T, Yin D, Gu W, Bai J (2020) Developmental exposure to lead at environmentally relevant concentrations impaired neurobehavior and Nmdar-dependent Bdnf signaling in zebrafish larvae. Environ Pollut 257:113627. https://doi.org/10.1016/j.envpol.2019.113627

    Article  Google Scholar 

  38. Gao J, Wang WY, Mao YW, Gräff J, Guan JS, Pan L, Mak G, Kim D, Su SC, Tsai LH (2010) A novel pathway regulates memory and plasticity via Sirt1 and Mir-134. Nature 466(7310):1105–1109. https://doi.org/10.1038/nature09271

    Article  Google Scholar 

  39. Wang T, Zhang J, Xu Y (2020) Epigenetic basis of lead-induced neurological disorders. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph17134878

    Article  Google Scholar 

  40. Atuadu V, Benneth BA, Oyem J, Esom E, Mba C, Nebo K, Ezemeka G, Anibeze C (2020) Adansonia digitata L. leaf extract attenuates lead-induced cortical histoarchitectural changes and oxidative stress in the prefrontal cortex of adult male wistar rats. Drug Metab Pers Ther. https://doi.org/10.1515/dmdi-2020-0116

    Article  Google Scholar 

  41. Chibowska K, Korbecki J, Gutowska I, Metryka E, Tarnowski M, Goschorska M, Barczak K, Chlubek D, Baranowska-Bosiacka I (2020) Pre- and neonatal exposure to lead (Pb) induces neuroinflammation in the forebrain cortex, hippocampus and cerebellum of rat pups. Int J Mol Sci. https://doi.org/10.3390/ijms21031083

    Article  Google Scholar 

  42. Leng F, Edison P (2021) Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol 17(3):157–172. https://doi.org/10.1038/s41582-020-00435-y

    Article  Google Scholar 

  43. Chibowska K, Baranowska-Bosiacka I, Falkowska A, Gutowska I, Goschorska M, Chlubek D (2016) Effect of lead (Pb) on inflammatory processes in the brain. Int J Mol Sci. https://doi.org/10.3390/ijms17122140

    Article  Google Scholar 

  44. Liu MC, Liu XQ, Wang W, Shen XF, Che HL, Guo YY, Zhao MG, Chen JY, Luo WJ (2012) Involvement of microglia activation in the lead induced long-term potentiation impairment. PLoS ONE 7(8):e43924. https://doi.org/10.1371/journal.pone.0043924

    Article  Google Scholar 

  45. Xu L, He D, Bai Y (2016) Microglia-mediated inflammation and neurodegenerative disease. Mol Neurobiol 53(10):6709–6715. https://doi.org/10.1007/s12035-015-9593-4

    Article  Google Scholar 

  46. Pan S, Wu Y, Pei L, Li S, Song L, Xia H, Wang Y, Yu Y, Yang X, Shu H, Zhang J, Yuan S, Shang Y (2018) Bml-111 reduces neuroinflammation and cognitive impairment in mice with sepsis via the Sirt1/Nf-Κb signaling pathway. Front Cell Neurosci 12:267. https://doi.org/10.3389/fncel.2018.00267

    Article  Google Scholar 

  47. Arioz BI, Tastan B, Tarakcioglu E, Tufekci KU, Olcum M, Ersoy N, Bagriyanik A, Genc K, Genc S (2019) Melatonin attenuates Lps-induced acute depressive-like behaviors and microglial Nlrp3 inflammasome activation through the Sirt1/Nrf2 pathway. Front Immunol 10:1511. https://doi.org/10.3389/fimmu.2019.01511

    Article  Google Scholar 

  48. Li D, Liang H, Li Y, Zhang J, Qiao L, Luo H (2021) Allicin alleviates lead-induced bone loss by preventing oxidative stress and osteoclastogenesis via Sirt1/Foxo1 pathway in mice. Biol Trace Elem Res 199(1):237–243. https://doi.org/10.1007/s12011-020-02136-5

    Article  Google Scholar 

  49. Zhao Y, Mao A, Zhang R, Guan S, Lu J (2022) Sirt1/Mtor pathway-mediated autophagy dysregulation promotes Pb-induced hepatic lipid accumulation in Hepg2 cells. Environ Toxicol 37(3):549–563. https://doi.org/10.1002/tox.23420

    Article  Google Scholar 

  50. Okuma Y, Liu K, Wake H, Zhang J, Maruo T, Date I, Yoshino T, Ohtsuka A, Otani N, Tomura S, Shima K, Yamamoto Y, Yamamoto H, Takahashi HK, Mori S, Nishibori M (2012) Anti-high mobility group box-1 antibody therapy for traumatic brain injury. Ann Neurol 72(3):373–384. https://doi.org/10.1002/ana.23602

    Article  Google Scholar 

  51. Nakamura Y, Fukuta A, Miyashita K, Zhang FF, Wang D, Liu K, Wake H, Hisaoka-Nakashima K, Nishibori M, Morioka N (2021) Perineural high-mobility group box 1 induces mechanical hypersensitivity through activation of spinal microglia: involvement of glutamate-Nmda receptor dependent mechanism in spinal dorsal horn. Biochem Pharmacol 186:114496. https://doi.org/10.1016/j.bcp.2021.114496

    Article  Google Scholar 

  52. Liu X, Lu B, Fu J, Zhu X, Song E, Song Y (2021) Amorphous silica nanoparticles induce inflammation via activation of Nlrp3 inflammasome and Hmgb1/Tlr4/Myd88/Nf-Kb signaling pathway in Huvec cells. J Hazard Mater 404:124050. https://doi.org/10.1016/j.jhazmat.2020.124050

    Article  Google Scholar 

  53. Wang CS, Kavalali ET, Monteggia LM (2022) BDNF signaling in context: from synaptic regulation to psychiatric disorders. Cell 185(1):62–76. https://doi.org/10.1016/j.cell.2021.12.003

    Article  Google Scholar 

  54. Neal AP, Stansfield KH, Worley PF, Thompson RE, Guilarte TR (2010) Lead exposure during synaptogenesis alters vesicular proteins and impairs vesicular release: potential role of NMDA receptor-dependent BDNF signaling. Toxicol Sci 116(1):249–263. https://doi.org/10.1093/toxsci/kfq111

    Article  Google Scholar 

  55. Lima Giacobbo B, Doorduin J, Klein HC, Dierckx R, Bromberg E, de Vries EFJ (2019) Brain-derived neurotrophic factor in brain disorders: focus on neuroinflammation. Mol Neurobiol 56(5):3295–3312. https://doi.org/10.1007/s12035-018-1283-6

    Article  Google Scholar 

  56. Patra RC, Swarup D, Dwivedi SK (2001) Antioxidant effects of alpha tocopherol, ascorbic acid and l-methionine on lead induced oxidative stress to the liver, kidney and brain in rats. Toxicology 162(2):81–88. https://doi.org/10.1016/s0300-483x(01)00345-6

    Article  Google Scholar 

  57. Hong L, Jiang W, Zheng W, Zeng S (2011) Hplc analysis of para-aminosalicylic acid and its metabolite in plasma, cerebrospinal fluid and brain tissues. J Pharm Biomed Anal 54(5):1101–1109. https://doi.org/10.1016/j.jpba.2010.11.031

    Article  Google Scholar 

  58. Hong L, Jiang W, Pan H, Jiang Y, Zeng S, Zheng W (2011) Brain regional pharmacokinetics of P-aminosalicylic acid and its N-acetylated metabolite: effectiveness in chelating brain manganese. Drug Metab Dispos 39(10):1904–1909. https://doi.org/10.1124/dmd.111.040915

    Article  Google Scholar 

  59. Zheng W, Jiang YM, Zhang Y, Jiang W, Wang X, Cowan DM (2009) Chelation therapy of manganese intoxication with para-aminosalicylic acid (PAS) in Sprague–Dawley rats. Neurotoxicology 30(2):240–248. https://doi.org/10.1016/j.neuro.2008.12.007

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Yan Li from Guangxi Zhuang Autonomous Region Institute for the Prevention and Treatment of Occupational Disease for her help in the detection of cerebral cortex Pb levels.

Funding

Funding support was provided by grants from the National Natural Science Foundation of China (Grant No. NSFC 81773476).

Author information

Authors and Affiliations

Authors

Contributions

YSZ: Investigation, Formal analysis, Writing original draft, Writing—review & editing. JYL: Investigation, Methodology, Formal analysis, Data curation. ZCL: Investigation, Writing original draft, Writing—review & editing. LLW: Methodology, Formal analysis. CLG, JC and SYJ: Methodology, Validation. MA: Language polishing. SYO: Investigation, Supervision. YMJ: Supervision, Project administration, Funding acquisition.

Corresponding authors

Correspondence to Shi-yan Ou or Yue-ming Jiang.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

All animal procedures performed in this study were performed strictly according to the international standards of animal care guidelines and have been approved by the Animal Care and Use Committee of Guangxi Medical University (Approval Number: 201806386).

Consent for Publish

The paper has been approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Ys., Li, Jy., Li, Zc. et al. Sodium Para-aminosalicylic Acid Inhibits Lead-Induced Neuroinflammation in Brain Cortex of Rats by Modulating SIRT1/HMGB1/NF-κB Pathway. Neurochem Res 48, 238–249 (2023). https://doi.org/10.1007/s11064-022-03739-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03739-1

Keywords

Navigation