Skip to main content
Log in

Sodium P-aminosalicylic Acid Attenuates Manganese-Induced Neuroinflammation in BV2 Microglia by Modulating NF-κB Pathway

  • Original Article
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Exposure to high levels of manganese (Mn) leads to brain Mn accumulation, and a disease referred to as manganism. Activation of microglia plays an important role in Mn-induced neuroinflammation. Sodium p-aminosalicylic acid (PAS-Na) is a non-steroidal anti-inflammatory drug that inhibits Mn-induced neuroinflammation. The aim of the current study was to explore the role of NF-κB in the protective mechanism of PAS-Na on Mn-induced neuroinflammation in BV2 microglial experimental model. We treated BV2 microglia with 200 μM Mn for 24 h followed by 48 h treatment with graded concentrations of PAS-Na, using an NF-kB inhibitor, JSH-23, as a positive control. MTT results established that 200 and 400 μM PAS-Na treatment increased the Mn-induced cell viability reduction. NF-κB (P65) mRNA expression and the phosphorylation of p65 were increased in Mn-treated BV2 cell, and suppressed by PAS-Na, analogous to the effect of JSH-23 pretreatment. Furthermore, PAS-Na significantly reduced the contents of the inflammatory cytokine TNF-α and IL-1β, both of which were increased by Mn treatment. The current results show that PAS-Na attenuated Mn-induced inflammation by abrogating the activation of the NF-κB signaling pathways and reduced the release of pro-inflammatory cytokines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current research are available from the corresponding author on request.

References

  1. Jenkitkasemwong S, Akinyode A, Paulus E, Weiskirchen R, Hojyo S, Fukada T, Giraldo G, Schrier J, Garcia A, Janus C, Giasson B, Knutson MD (2018) SLC39A14 deficiency alters manganese homeostasis and excretion resulting in brain manganese accumulation and motor deficits in mice. Proc Natl Acad Sci U S A 115(8):E1769–E1778. https://doi.org/10.1073/pnas.1720739115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cordova FM, Aguiar AS Jr, Peres TV, Lopes MW, Gonçalves FM, Pedro DZ, Lopes SC, Pilati C, Prediger RDS, Farina M, Erikson KM, Aschner M, Leal RB (2013) Manganese-exposed developing rats display motor deficits and striatal oxidative stress that are reversed by Trolox. Arch Toxicol 87(7):1231–1244. https://doi.org/10.1007/s00204-013-1017-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Parmalee NL, Aschner M (2016) Manganese and aging. Neurotoxicology 56:262–268. https://doi.org/10.1016/j.neuro.2016.06.006

    Article  CAS  PubMed  Google Scholar 

  4. Nadeem RI, Ahmed HI, El-Sayeh BM (2018) Protective effect of vinpocetine against neurotoxicity of manganese in adult male rats. Naunyn Schmiedeberg's Arch Pharmacol 391(7):729–742. https://doi.org/10.1007/s00210-018-1498-0

    Article  CAS  Google Scholar 

  5. Anagianni S, Tuschl K (2019) Genetic disorders of manganese metabolism. Curr Neurol Neurosci Rep 19(6):33. https://doi.org/10.1007/s11910-019-0942-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dobson AW, Erikson KM, Aschner M (2004) Manganese neurotoxicity. Ann N Y Acad Sci 1012:115–128. https://doi.org/10.1196/annals.1306.009

    Article  CAS  PubMed  Google Scholar 

  7. Huat TJ, Camats-Perna J, Newcombe EA, Valmas N, Kitazawa M, Medeiros R (2019) Metal toxicity links to Alzheimer's disease and Neuroinflammation. J Mol Biol 431(9):1843–1868. https://doi.org/10.1016/j.jmb.2019.01.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Peres TV et al (2016) Manganese-induced neurotoxicity: a review of its behavioral consequences and neuroprotective strategies. BMC Pharmacol Toxicol 17(1):57. https://doi.org/10.1186/s40360-016-0099-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fell JM et al (1996) Manganese toxicity in children receiving long-term parenteral nutrition. Lancet 347(9010):1218–1221. https://doi.org/10.1016/s0140-6736(96)90735-7

    Article  CAS  PubMed  Google Scholar 

  10. Kirk C, Gemmell L, Lamb CA, Thompson NP, Mountford CG, Toole BJ (2019) Elevated whole-blood manganese levels in adult patients prescribed "manganese-free" home parenteral nutrition. Nutr Clin Pract 35:1138–1142. https://doi.org/10.1002/ncp.10431

    Article  CAS  PubMed  Google Scholar 

  11. Sikk K, Haldre S, Aquilonius SM, Asser A, Paris M, Roose Ä, Petterson J, Eriksson SL, Bergquist J, Taba P (2013) Manganese-induced parkinsonism in methcathinone abusers: bio-markers of exposure and follow-up. Eur J Neurol 20(6):915–920. https://doi.org/10.1111/ene.12088

    Article  CAS  PubMed  Google Scholar 

  12. Zogzas CE, Mukhopadhyay S (2017) Inherited disorders of manganese metabolism. Adv Neurobiol 18:35–49. https://doi.org/10.1007/978-3-319-60189-2_3

    Article  PubMed  Google Scholar 

  13. Deng Y, Jiao C, Mi C, Xu B, Li Y, Wang F, Liu W, Xu Z (2015) Melatonin inhibits manganese-induced motor dysfunction and neuronal loss in mice: involvement of oxidative stress and dopaminergic neurodegeneration. Mol Neurobiol 51(1):68–88. https://doi.org/10.1007/s12035-014-8789-3

    Article  CAS  PubMed  Google Scholar 

  14. Bornhorst J, Meyer S, Weber T, Böker C, Marschall T, Mangerich A, Beneke S, Bürkle A, Schwerdtle T (2013) Molecular mechanisms of Mn induced neurotoxicity: RONS generation, genotoxicity, and DNA-damage response. Mol Nutr Food Res 57(7):1255–1269. https://doi.org/10.1002/mnfr.201200758

    Article  CAS  PubMed  Google Scholar 

  15. Erikson KM, Thompson K, Aschner J, Aschner M (2007) Manganese neurotoxicity: a focus on the neonate. Pharmacol Ther 113(2):369–377. https://doi.org/10.1016/j.pharmthera.2006.09.002

    Article  CAS  PubMed  Google Scholar 

  16. Xu B, Wang F, Wu SW, Deng Y, Liu W, Feng S, Yang TY, Xu ZF (2014) Alpha-Synuclein is involved in manganese-induced ER stress via PERK signal pathway in organotypic brain slice cultures. Mol Neurobiol 49(1):399–412. https://doi.org/10.1007/s12035-013-8527-2

    Article  CAS  PubMed  Google Scholar 

  17. Higashi Y, Asanuma M, Miyazaki I, Hattori N, Mizuno Y, Ogawa N (2004) Parkin attenuates manganese-induced dopaminergic cell death. J Neurochem 89(6):1490–1497. https://doi.org/10.1111/j.1471-4159.2004.02445.x

    Article  CAS  PubMed  Google Scholar 

  18. Sidoryk-Wegrzynowicz M, Aschner M (2013) Manganese toxicity in the central nervous system: the glutamine/glutamate-gamma-aminobutyric acid cycle. J Intern Med 273(5):466–477. https://doi.org/10.1111/joim.12040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tuschl K, Mills PB, Clayton PT (2013) Manganese and the brain. Int Rev Neurobiol 110:277–312. https://doi.org/10.1016/B978-0-12-410502-7.00013-2

    Article  CAS  PubMed  Google Scholar 

  20. Santos D, Batoreu MC, Aschner M, Marreilha dos Santos AP (2013) Comparison between 5-aminosalicylic acid (5-ASA) and para-aminosalicylic acid (4-PAS) as potential protectors against Mn-induced neurotoxicity. Biol Trace Elem Res 152(1):113–116. https://doi.org/10.1007/s12011-012-9597-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sarkar S, Malovic E, Harischandra DS, Ngwa HA, Ghosh A, Hogan C, Rokad D, Zenitsky G, Jin H, Anantharam V, Kanthasamy AG, Kanthasamy A (2018) Manganese exposure induces neuroinflammation by impairing mitochondrial dynamics in astrocytes. Neurotoxicology 64:204–218. https://doi.org/10.1016/j.neuro.2017.05.009

    Article  CAS  PubMed  Google Scholar 

  22. Popichak KA, Afzali MF, Kirkley KS, Tjalkens RB (2018) Glial-neuronal signaling mechanisms underlying the neuroinflammatory effects of manganese. J Neuroinflammation 15(1):324. https://doi.org/10.1186/s12974-018-1349-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kirkley KS, Popichak KA, Afzali MF, Legare ME, Tjalkens RB (2017) Microglia amplify inflammatory activation of astrocytes in manganese neurotoxicity. J Neuroinflammation 14(1):99. https://doi.org/10.1186/s12974-017-0871-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hickman S, Izzy S, Sen P, Morsett L, el Khoury J (2018) Microglia in neurodegeneration. Nat Neurosci 21(10):1359–1369. https://doi.org/10.1038/s41593-018-0242-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Krishna S, Dodd CA, Hekmatyar SK, Filipov NM (2014) Brain deposition and neurotoxicity of manganese in adult mice exposed via the drinking water. Arch Toxicol 88(1):47–64. https://doi.org/10.1007/s00204-013-1088-3

    Article  CAS  PubMed  Google Scholar 

  26. Park E, Chun HS (2017) Melatonin attenuates manganese and lipopolysaccharide-induced inflammatory activation of BV2 microglia. Neurochem Res 42(2):656–666. https://doi.org/10.1007/s11064-016-2122-7

    Article  CAS  PubMed  Google Scholar 

  27. Grogg MW, Braydich-Stolle LK, Maurer-Gardner EI, Hill NT, Sakaram S, Kadakia MP, Hussain SM (2016) Modulation of miRNA-155 alters manganese nanoparticle-induced inflammatory response. Toxicol Res (Camb) 5(6):1733–1743. https://doi.org/10.1039/c6tx00208k

    Article  CAS  Google Scholar 

  28. Park EJ, Park K (2010) Induction of oxidative stress and inflammatory cytokines by manganese chloride in cultured T98G cells, human brain glioblastoma cell line. Toxicol in Vitro 24(2):472–479. https://doi.org/10.1016/j.tiv.2009.09.022

    Article  CAS  PubMed  Google Scholar 

  29. Mokgobu MI, Cholo MC, Anderson R, Steel HC, Motheo MP, Hlatshwayo TN, Tintinger GR, Theron AJ (2015) Oxidative induction of pro-inflammatory cytokine formation by human monocyte-derived macrophages following exposure to manganese in vitro. J Immunotoxicol 12(1):98–103. https://doi.org/10.3109/1547691x.2014.902877

    Article  CAS  PubMed  Google Scholar 

  30. Wang D, Zhang J, Jiang W, Cao Z, Zhao F, Cai T, Aschner M, Luo W (2017) The role of NLRP3-CASP1 in inflammasome-mediated neuroinflammation and autophagy dysfunction in manganese-induced, hippocampal-dependent impairment of learning and memory ability. Autophagy 13(5):914–927. https://doi.org/10.1080/15548627.2017.1293766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim J, Pajarillo E, Rizor A, Son DS, Lee J, Aschner M, Lee E (2019) LRRK2 kinase plays a critical role in manganese-induced inflammation and apoptosis in microglia. PLoS One 14(1):e0210248. https://doi.org/10.1371/journal.pone.0210248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang L, Sun D, Bao Y, Shi Y, Cui Y, Guo M (2017) Nerolidol protects against LPS-induced acute kidney injury via inhibiting TLR4/NF-kappaB signaling. Phytother Res 31(3):459–465. https://doi.org/10.1002/ptr.5770

    Article  CAS  PubMed  Google Scholar 

  33. Nkpaa KW, Onyeso GI, Kponee KZ (2019) Rutin abrogates manganese-induced striatal and hippocampal toxicity via inhibition of iron depletion, oxidative stress, inflammation and suppressing the NF-kappaB signaling pathway. J Trace Elem Med Biol 53:8–15. https://doi.org/10.1016/j.jtemb.2019.01.014

    Article  CAS  PubMed  Google Scholar 

  34. Mattson MP, Meffert MK (2006) Roles for NF-kappaB in nerve cell survival, plasticity, and disease. Cell Death Differ 13(5):852–860. https://doi.org/10.1038/sj.cdd.4401837

    Article  CAS  PubMed  Google Scholar 

  35. Lee E, Yin Z, Sidoryk-Węgrzynowicz M, Jiang H, Aschner M (2012) 15-Deoxy-Delta12,14-prostaglandin J(2) modulates manganese-induced activation of the NF-kappaB, Nrf2, and PI3K pathways in astrocytes. Free Radic Biol Med 52(6):1067–1074. https://doi.org/10.1016/j.freeradbiomed.2011.12.016

    Article  CAS  PubMed  Google Scholar 

  36. Tjalkens RB, Popichak KA, Kirkley KA (2017) Inflammatory activation of microglia and astrocytes in manganese neurotoxicity. Adv Neurobiol 18:159–181. https://doi.org/10.1007/978-3-319-60189-2_8

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bahar E, Kim JY, Yoon H (2017) Quercetin attenuates manganese-induced neuroinflammation by alleviating oxidative stress through regulation of apoptosis, iNOS/NF-κB and HO-1/Nrf2 Pathways. Int J Mol Sci 18:9. https://doi.org/10.3390/ijms18091989

    Article  CAS  Google Scholar 

  38. Moreno JA, Streifel KM, Sullivan KA, Hanneman WH, Tjalkens RB (2011) Manganese-induced NF-kappaB activation and nitrosative stress is decreased by estrogen in juvenile mice. Toxicol Sci 122(1):121–133. https://doi.org/10.1093/toxsci/kfr091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kresovich JK, Bulka CM, Joyce BT, Vokonas PS, Schwartz J, Baccarelli AA, Hibler EA, Hou L (2018) The inflammatory potential of dietary manganese in a cohort of elderly men. Biol Trace Elem Res 183(1):49–57. https://doi.org/10.1007/s12011-017-1127-7

    Article  CAS  PubMed  Google Scholar 

  40. Herrero Hernandez E, Discalzi G, Valentini C, Venturi F, Chiò A, Carmellino C, Rossi L, Sacchetti A, Pira E (2006) Follow-up of patients affected by manganese-induced Parkinsonism after treatment with CaNa2EDTA. Neurotoxicology 27(3):333–339. https://doi.org/10.1016/j.neuro.2005.09.003

    Article  CAS  PubMed  Google Scholar 

  41. Hazell AS, Normandin L, Norenberg MD, Kennedy G, Yi JH (2006) Alzheimer type II astrocytic changes following sub-acute exposure to manganese and its prevention by antioxidant treatment. Neurosci Lett 396(3):167–171. https://doi.org/10.1016/j.neulet.2005.11.064

    Article  CAS  PubMed  Google Scholar 

  42. Adedara IA, Subair TI, Ego VC, Oyediran O, Farombi EO (2017) Chemoprotective role of quercetin in manganese-induced toxicity along the brain-pituitary-testicular axis in rats. Chem Biol Interact 263:88–98. https://doi.org/10.1016/j.cbi.2016.12.019

    Article  CAS  PubMed  Google Scholar 

  43. Peng DJ, Zhang YW, Li ZC, Li SJ, Cai M, Qin WX, Ou SY, Huang XW, Yuan ZX, Jiang YM (2019) Preventive impacts of PAS-Na on the slow growth and activated inflammatory responses in Mn-exposed rats. J Trace Elem Med Biol 54:134–141. https://doi.org/10.1016/j.jtemb.2019.04.013

    Article  CAS  PubMed  Google Scholar 

  44. Li SJ, Qin WX, Peng DJ, Yuan ZX, He SN, Luo YN, Aschner M, Jiang YM, Liang DY, Xie BY, Xu F (2018) Sodium P-aminosalicylic acid inhibits sub-chronic manganese-induced neuroinflammation in rats by modulating MAPK and COX-2. Neurotoxicology 64:219–229. https://doi.org/10.1016/j.neuro.2017.06.012

    Article  CAS  PubMed  Google Scholar 

  45. Ky SQ, Deng HS, Xie PY, Hu W (1992) A report of two cases of chronic serious manganese poisoning treated with sodium para-aminosalicylic acid. Br J Ind Med 49(1):66–69. https://doi.org/10.1136/oem.49.1.66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jiang YM, Mo XA, du FQ, Fu X, Zhu XY, Gao HY, Xie JL, Liao FL, Pira E, Zheng W (2006) Effective treatment of manganese-induced occupational Parkinsonism with p-aminosalicylic acid: a case of 17-year follow-up study. J Occup Environ Med 48(6):644–649. https://doi.org/10.1097/01.jom.0000204114.01893.3e

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lu CL, Tang S, Meng ZJ, He YY, Song LY, Liu YP, Ma N, Li XY, Guo SC (2014) Taurine improves the spatial learning and memory ability impaired by sub-chronic manganese exposure. J Biomed Sci 21(1):51. https://doi.org/10.1186/1423-0127-21-51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Leggett RW (2011) A biokinetic model for manganese. Sci Total Environ 409(20):4179–4186. https://doi.org/10.1016/j.scitotenv.2011.07.003

    Article  CAS  PubMed  Google Scholar 

  49. Chen J, Su P, Luo W, Chen J (2018) Role of LRRK2 in manganese-induced neuroinflammation and microglial autophagy. Biochem Biophys Res Commun 498(1):171–177. https://doi.org/10.1016/j.bbrc.2018.02.007

    Article  CAS  PubMed  Google Scholar 

  50. Wang H, Yang F, Xin R, Cui D, He J, Zhang S, Sun Y (2020) The gut microbiota attenuate neuroinflammation in manganese exposure by inhibiting cerebral NLRP3 inflammasome. Biomed Pharmacother 129:110449. https://doi.org/10.1016/j.biopha.2020.110449

    Article  CAS  PubMed  Google Scholar 

  51. Filipov NM, Dodd CA (2012) Role of glial cells in manganese neurotoxicity. J Appl Toxicol 32(5):310–317. https://doi.org/10.1002/jat.1762

    Article  CAS  PubMed  Google Scholar 

  52. Zhang P, Lokuta KM, Turner DAE, Liu B (2010) Synergistic dopaminergic neurotoxicity of manganese and lipopolysaccharide: differential involvement of microglia and astroglia. J Neurochem 112(2):434–443. https://doi.org/10.1111/j.1471-4159.2009.06477.x

    Article  CAS  PubMed  Google Scholar 

  53. Liu M, Cai T, Zhao F, Zheng G, Wang Q, Chen Y, Huang C, Luo W, Chen J (2009) Effect of microglia activation on dopaminergic neuronal injury induced by manganese, and its possible mechanism. Neurotox Res 16(1):42–49. https://doi.org/10.1007/s12640-009-9045-x

    Article  CAS  PubMed  Google Scholar 

  54. Zhao F, Cai T, Liu M, Zheng G, Luo W, Chen J (2009) Manganese induces dopaminergic neurodegeneration via microglial activation in a rat model of manganism. Toxicol Sci 107(1):156–164. https://doi.org/10.1093/toxsci/kfn213

    Article  CAS  PubMed  Google Scholar 

  55. Abud EM et al (2017) iPSC-derived human microglia-like cells to study neurological diseases. Neuron 94(2):278–293.e9. https://doi.org/10.1016/j.neuron.2017.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Das A, Kim SH, Arifuzzaman S, Yoon T, Chai JC, Lee YS, Park KS, Jung KH, Chai YG (2016) Transcriptome sequencing reveals that LPS-triggered transcriptional responses in established microglia BV2 cell lines are poorly representative of primary microglia. J Neuroinflammation 13(1):182. https://doi.org/10.1186/s12974-016-0644-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vijayan B, Raj V, Nandakumar S, Kishore A, Thekkuveettil A (2019) Spermine protects alpha-synuclein expressing dopaminergic neurons from manganese-induced degeneration. Cell Biol Toxicol 35(2):147–159. https://doi.org/10.1007/s10565-018-09449-1

    Article  CAS  PubMed  Google Scholar 

  58. Desole MS, Sciola L, Delogu MR, Sircana S, Migheli R (1996) Manganese and 1-methyl-4-(2′-ethylpheny1)-1,2,3,6-tetrahydropyridine induce apoptosis in PC12 cells. Neurosci Lett 209(3):193–196. https://doi.org/10.1016/0304-3940(96)12645-8

    Article  CAS  PubMed  Google Scholar 

  59. Park E, Chun HS (2017) Protective effects of curcumin on manganese-induced BV-2 microglial cell death. Biol Pharm Bull 40(8):1275–1281. https://doi.org/10.1248/bpb.b17-00160

    Article  CAS  PubMed  Google Scholar 

  60. Song WM, Colonna M (2018) The identity and function of microglia in neurodegeneration. Nat Immunol 19(10):1048–1058. https://doi.org/10.1038/s41590-018-0212-1

    Article  CAS  PubMed  Google Scholar 

  61. Colonna M, Butovsky O (2017) Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol 35:441–468. https://doi.org/10.1146/annurev-immunol-051116-052358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chen CJ, Ou YC, Lin SY, Liao SL, Chen SY, Chen JH (2006) Manganese modulates pro-inflammatory gene expression in activated glia. Neurochem Int 49(1):62–71. https://doi.org/10.1016/j.neuint.2005.12.020

    Article  CAS  PubMed  Google Scholar 

  63. Searles Nielsen S, Checkoway H, Criswell SR, Farin FM, Stapleton PL, Sheppard L, Racette BA (2015) Inducible nitric oxide synthase gene methylation and parkinsonism in manganese-exposed welders. Parkinsonism Relat Disord 21(4):355–360. https://doi.org/10.1016/j.parkreldis.2015.01.007

    Article  PubMed  Google Scholar 

  64. Filipov NM, Seegal RF, Lawrence DA (2005) Manganese potentiates in vitro production of proinflammatory cytokines and nitric oxide by microglia through a nuclear factor kappa B-dependent mechanism. Toxicol Sci 84(1):139–148. https://doi.org/10.1093/toxsci/kfi055

    Article  CAS  PubMed  Google Scholar 

  65. Prabhakaran K, Chapman GD, Gunasekar PG (2011) α-Synuclein overexpression enhances manganese-induced neurotoxicity through the NF-κB-mediated pathway. Toxicol Mech Methods 21(6):435–443. https://doi.org/10.3109/15376516.2011.560210

    Article  CAS  PubMed  Google Scholar 

  66. Nkpaa KW, Adedara IA, Amadi BA, Wegwu MO, Farombi EO (2019) Ethanol via regulation of NF-κB/p53 signaling pathway increases manganese-induced inflammation and apoptosis in hypothalamus of rats. Biol Trace Elem Res 190(1):101–108. https://doi.org/10.1007/s12011-018-1535-3

    Article  CAS  PubMed  Google Scholar 

  67. Nelson M, Huggins T, Licorish R, Carroll MA, Catapane EJ (2010) Effects of p-aminosalicylic acid on the neurotoxicity of manganese on the dopaminergic innervation of the cilia of the lateral cells of the gill of the bivalve mollusc, Crassostrea virginica. Comp Biochem Physiol C Toxicol Pharmacol 151(2):264–270. https://doi.org/10.1016/j.cbpc.2009.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li ZC, Wang F, Li SJ, Zhao L, Li JY, Deng Y, Zhu XJ, Zhang YW, Peng DJ, Jiang YM (2019) Sodium para-aminosalicylic acid reverses changes of glutamate turnover in manganese-exposed rats. Biol Trace Elem Res 197:544–554. https://doi.org/10.1007/s12011-019-02001-0

    Article  CAS  PubMed  Google Scholar 

  69. Zheng W, Jiang YM, Zhang Y, Jiang W, Wang X, Cowan DM (2009) Chelation therapy of manganese intoxication with para-aminosalicylic acid (PAS) in Sprague-Dawley rats. Neurotoxicology 30(2):240–248. https://doi.org/10.1016/j.neuro.2008.12.007

    Article  CAS  PubMed  Google Scholar 

  70. Li SJ, Ou CY, He SN, Huang XW, Luo HL, Meng HY, Lu GD, Jiang YM, Vieira Peres T, Luo YN, Deng XF (2017) Sodium p-aminosalicylic acid reverses sub-chronic manganese-induced impairments of spatial learning and memory abilities in rats, but fails to restore gamma-aminobutyric acid levels. Int J Environ Res Public Health:14(4). https://doi.org/10.3390/ijerph14040400

  71. Li SJ, Meng HY, Deng XF, Fu X, Chen JW, Huang S, Huang YS, Luo HL, Ou SY, Jiang YM (2015) Protective effects of sodium p-aminosalicylic acid on learning and memory via increasing the number of basal forebrain choline acetyltransferase neurons in manganese-exposed rats. Hum Exp Toxicol 34(3):240–248. https://doi.org/10.1177/0960327114529454

    Article  CAS  PubMed  Google Scholar 

  72. Ou CY, Luo YN, He SN, Deng XF, Luo HL, Yuan ZX, Meng HY, Mo YH, Li SJ, Jiang YM (2017) Sodium P-aminosalicylic acid improved manganese-induced learning and memory dysfunction via restoring the ultrastructural alterations and gamma-aminobutyric acid metabolism imbalance in the basal ganglia. Biol Trace Elem Res 176(1):143–153. https://doi.org/10.1007/s12011-016-0802-4

    Article  CAS  PubMed  Google Scholar 

  73. Franchi L, Munoz-Planillo R, Nunez G (2012) Sensing and reacting to microbes through the inflammasomes. Nat Immunol 13(4):325–332. https://doi.org/10.1038/ni.2231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yu X, Lan P, Hou X, Han Q, Lu N, Li T, Jiao C, Zhang J, Zhang C, Tian Z (2017) HBV inhibits LPS-induced NLRP3 inflammasome activation and IL-1beta production via suppressing the NF-kappaB pathway and ROS production. J Hepatol 66(4):693–702. https://doi.org/10.1016/j.jhep.2016.12.018

    Article  CAS  PubMed  Google Scholar 

  75. Zhong Z, Umemura A, Sanchez-Lopez E, Liang S, Shalapour S, Wong J, He F, Boassa D, Perkins G, Ali SR, McGeough MD, Ellisman MH, Seki E, Gustafsson AB, Hoffman HM, Diaz-Meco MT, Moscat J, Karin M (2016) NF-kappaB restricts Inflammasome activation via elimination of damaged mitochondria. Cell 164(5):896–910. https://doi.org/10.1016/j.cell.2015.12.057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fang Y, Peng D, Liang Y, Lu L, Li J, Zhao L, Ou S, Li S, Aschner M, Jiang Y (2020) Sodium P-aminosalicylic acid inhibits manganese-induced neuroinflammation in BV2 microglial cells via NLRP3-CASP1 inflammasome pathway. Biol Trace Elem Res. https://doi.org/10.1007/s12011-020-02471-7

  77. Ramesh GT, Ghosh D, Gunasekar PG (2002) Activation of early signaling transcription factor, NF-kappaB following low-level manganese exposure. Toxicol Lett 136(2):151–158. https://doi.org/10.1016/s0378-4274(02)00332-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Thanks to the fund support provided by grants from the National Natural Science Foundation of China (NSFC 81460505, 81973094). MA was supported in part by a grant from the National Institute of Environmental Health Science (NIEHS) R01ES10563 and R01ES07331.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueming Jiang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Deng, Y., Peng, D. et al. Sodium P-aminosalicylic Acid Attenuates Manganese-Induced Neuroinflammation in BV2 Microglia by Modulating NF-κB Pathway. Biol Trace Elem Res 199, 4688–4699 (2021). https://doi.org/10.1007/s12011-021-02581-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02581-w

Keywords

Navigation