Skip to main content

Advertisement

Log in

Regulation of DAPK1 by Natural Products: An Important Target in Treatment of Stroke

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Stroke is a sudden neurological disorder that occurs due to impaired blood flow to an area of the brain. Stroke can be caused by the blockage or rupture of a blood vessel in the brain, called ischemic stroke and hemorrhagic stroke, respectively. Stroke is more common in men than women. Atrial fibrillation, hypertension, kidney disease, high cholesterol and lipids, genetic predisposition, inactivity, poor nutrition, diabetes mellitus, family history and smoking are factors that increase the risk of stroke. Restoring blood flow by repositioning blocked arteries using thrombolytic agents or endovascular therapy are the most effective treatments for stroke. However, restoring circulation after thrombolysis can cause fatal edema or intracranial hemorrhage, and worsen brain damage in a process known as ischemia–reperfusion injury. Therefore, there is a pressing need to find and develop more effective treatments for stroke. In the past, the first choice of treatment was based on natural compounds. Natural compounds are able to reduce the symptoms and reduce various diseases including stroke that attract the attention of the pharmaceutical industry. Nowadays, as a result of the numerous studies carried out in the field of herbal medicine, many useful and valuable effects of plants have been identified. The death-associated protein kinase (DAPK) family is one of the vital families of serine/threonine kinases involved in the regulation of some biological functions in human cells. DAPK1 is the most studied kinase within the DAPKs family as it is involved in neuronal and recovery processes. Dysregulation of DAPK1 in the brain is involved in the developing neurological diseases such as stroke. Natural products can function in a variety of ways, including reducing cerebral edema, reducing brain endothelial cell death, and inhibiting TNFα and interleukin-1β (IL-1β) through regulating the DAPK1 signal against stroke. Due to the role of DAPK1 in neurological disorders, the aim of this article was to investigate the role of DAPK1 in stroke and its modulation by natural compounds.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Staessens S, Fitzgerald S, Andersson T, Clarençon F, Denorme F, Gounis M et al (2020) Histological stroke clot analysis after thrombectomy: technical aspects and recommendations. Int J Stroke 15(5):467–476

    Article  CAS  PubMed  Google Scholar 

  2. Franck JA (2020) Rehabilitation of patients with a moderately to severely affected arm-hand in the sub-acute phase after stroke. ProefschriftMaken, Maastricht

    Google Scholar 

  3. Markus H (2008) Stroke: causes and clinical features. Medicine 36(11):586–591

    Article  Google Scholar 

  4. Bots SH, Peters SA, Woodward M (2017) Sex differences in coronary heart disease and stroke mortality: a global assessment of the effect of ageing between 1980 and 2010. BMJ Glob Health 2(2):e000298

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ali MK, Jaacks LM, Kowalski AJ, Siegel KR, Ezzati M (2015) Noncommunicable diseases: three decades of global data show a mixture of increases and decreases in mortality rates. Health Aff 34(9):1444–1455

    Article  Google Scholar 

  6. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M et al (2015) Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation 131(4):e29–e322

    PubMed  Google Scholar 

  7. Lau KK, Li L, Schulz U, Simoni M, Chan KH, Ho SL et al (2017) Total small vessel disease score and risk of recurrent stroke: validation in 2 large cohorts. Neurology 88(24):2260–2267

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ejupi A, Brodie M, Gschwind YJ, Lord SR, Zagler WL, Delbaere K (2016) Kinect-based five-times-sit-to-stand test for clinical and in-home assessment of fall risk in older people. Gerontology 62(1):118–124

    Article  Google Scholar 

  9. Doheny EP, Walsh C, Foran T, Greene BR, Fan CW, Cunningham C et al (2013) Falls classification using tri-axial accelerometers during the five-times-sit-to-stand test. Gait Posture 38(4):1021–1025

    Article  PubMed  Google Scholar 

  10. Doheny EP, McGrath D, Greene BR, Walsh L, McKeown D, Cunningham C, et al (eds) (2012) Displacement of centre of mass during quiet standing assessed using accelerometry in older fallers and non-fallers. In: 2012 Annual international conference of the IEEE engineering in medicine and biology society. IEEE

  11. Reider N, Gaul C (2016) Fall risk screening in the elderly: a comparison of the minimal chair height standing ability test and 5-repetition sit-to-stand test. Arch Gerontol Geriatr 65:133–139

    Article  PubMed  Google Scholar 

  12. Canning CG, Ada L, O’Dwyer NJ (2000) Abnormal muscle activation characteristics associated with loss of dexterity after stroke. J Neurol Sci 176(1):45–56

    Article  CAS  PubMed  Google Scholar 

  13. Taub E, Miller NE, Novack TA, Cook EW, Fleming WC, Nepomuceno CS et al (1993) Technique to improve chronic motor deficit after stroke. Arch Phys Med Rehabil 74(4):347–354

    CAS  PubMed  Google Scholar 

  14. Veerbeek JM, van Wegen E, van Peppen R, van der Wees PJ, Hendriks E, Rietberg M et al (2014) What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS ONE 9(2):e87987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Grotta JC, Hacke W (2015) Stroke neurologist’s perspective on the new endovascular trials. Stroke 46(6):1447–1452

    Article  PubMed  Google Scholar 

  16. Mullen MT, Pisapia JM, Tilwa S, Messé SR, Stein SC (2012) Systematic review of outcome after ischemic stroke due to anterior circulation occlusion treated with intravenous, intra-arterial, or combined intravenous+ intra-arterial thrombolysis. Stroke 43(9):2350–2355

    Article  CAS  PubMed  Google Scholar 

  17. Chen Y-F (2012) Traditional Chinese herbal medicine and cerebral ischemia. Front Biosci (Elite Ed) 4:809–817

    Article  Google Scholar 

  18. Xiong X-Y, Liu L, Yang Q-W (2018) Refocusing neuroprotection in cerebral reperfusion era: New challenges and strategies. Front Neurol 9:249

    Article  PubMed  PubMed Central  Google Scholar 

  19. Benderska N, Schneider-Stock R (2014) Transcription control of DAPK. Apoptosis 19(2):298–305

    Article  CAS  PubMed  Google Scholar 

  20. Farag AK, Roh EJ (2019) Death-associated protein kinase (DAPK) family modulators: current and future therapeutic outcomes. Med Res Rev 39(1):349–385

    Article  CAS  PubMed  Google Scholar 

  21. Wang W-J, Kuo J-C, Ku W, Lee Y-R, Lin F-C, Chang Y-L et al (2007) The tumor suppressor DAPK is reciprocally regulated by tyrosine kinase Src and phosphatase LAR. Mol Cell 27(5):701–716

    Article  PubMed  CAS  Google Scholar 

  22. Wang S, Shi X, Li H, Pang P, Pei L, Shen H et al (2017) DAPK1 signaling pathways in stroke: from mechanisms to therapies. Mol Neurobiol 54(6):4716–4722

    Article  CAS  PubMed  Google Scholar 

  23. Schumacher AM, Velentza AV, Watterson DM, Wainwright MS (2002) DAPK catalytic activity in the hippocampus increases during the recovery phase in an animal model of brain hypoxic-ischemic injury. Biochim Biophys Acta (BBA) 1600(1–2):128–137

    Article  CAS  Google Scholar 

  24. Shamloo M, Soriano L, Wieloch T, Nikolich K, Urfer R, Oksenberg D (2005) Death-associated protein kinase is activated by dephosphorylation in response to cerebral ischemia. J Biol Chem 280(51):42290–42299

    Article  CAS  PubMed  Google Scholar 

  25. Bamford J, Sandercock P, Dennis M, Warlow C, Burn J (1991) Classification and natural history of clinically identifiable subtypes of cerebral infarction. Lancet 337(8756):1521–1526

    Article  CAS  PubMed  Google Scholar 

  26. Donkor ES (2018) Stroke in the century: a snapshot of the burden, epidemiology, and quality of life. Stroke Res Treat 2018:1–10

    Article  Google Scholar 

  27. Béjot Y, Bailly H, Durier J, Giroud M (2016) Epidemiology of stroke in Europe and trends for the 21st century. La Presse Médicale 45(12):e391–e398

    Article  PubMed  Google Scholar 

  28. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M et al (2016) Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation 133(4):e38-360

    PubMed  Google Scholar 

  29. Guzik A, Bushnell C (2017) Stroke epidemiology and risk factor management. Continuum 23(1):15–39

    PubMed  Google Scholar 

  30. Forsgren L, Beghi E, Oun A, Sillanpää M (2005) The epidemiology of epilepsy in Europe–a systematic review. Eur J Neurol 12(4):245–253

    Article  CAS  PubMed  Google Scholar 

  31. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S et al (2018) Heart disease and stroke statistics—2018 update: a report from the American Heart Association. Circulation 137(12):e67–e492

    Article  PubMed  Google Scholar 

  32. Rennert RC, Wali AR, Steinberg JA, Santiago-Dieppa DR, Olson SE, Pannell JS et al (2019) Epidemiology, natural history, and clinical presentation of large vessel ischemic stroke. Neurosurgery 85(suppl_1):S4–S8

    Article  PubMed  PubMed Central  Google Scholar 

  33. El-Hajj M, Salameh P, Rachidi S, Hosseini H (2016) The epidemiology of stroke in the Middle East. Eur Stroke J 1(3):180–198

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gade P, Manjegowda SB, Nallar SC, Maachani UB, Cross AS, Kalvakolanu DV (2014) Regulation of the death-associated protein kinase 1 expression and autophagy via ATF6 requires apoptosis signal-regulating kinase 1. Mol Cell Biol 34(21):4033–4048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Singh P, Ravanan P, Talwar P (2016) Death associated protein kinase 1 (DAPK1): a regulator of apoptosis and autophagy. Front Mol Neurosci 9:46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Bialik S, Kimchi A (2006) The death-associated protein kinases: structure, function, and beyond. Annu Rev Biochem 75:189–210

    Article  CAS  PubMed  Google Scholar 

  37. Nair S, Hagberg H, Krishnamurthy R, Thornton C, Mallard C (2013) Death associated protein kinases: molecular structure and brain injury. Int J Mol Sci 14(7):13858–13872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Shiloh R, Bialik S, Kimchi A (2014) The DAPK family: a structure–function analysis. Apoptosis 19(2):286–297

    Article  CAS  PubMed  Google Scholar 

  39. Kim N, Chen D, Zhou XZ, Lee TH (2019) Death-associated protein kinase 1 phosphorylation in neuronal cell death and neurodegenerative disease. Int J Mol Sci 20(13):3131

    Article  CAS  PubMed Central  Google Scholar 

  40. Mor I, Carlessi R, Ast T, Feinstein E, Kimchi A (2012) Death-associated protein kinase increases glycolytic rate through binding and activation of pyruvate kinase. Oncogene 31(6):683–693

    Article  CAS  PubMed  Google Scholar 

  41. Song L, Pei L, Hu L, Pan S, Xiong W, Liu M et al (2018) Death-associated protein kinase 1 mediates interleukin-1β production through regulating inlfammasome activation in Bv2 microglial cells and mice. Sci Rep 8(1):1–11

    Google Scholar 

  42. You M-H, Kim BM, Chen C-H, Begley MJ, Cantley LC, Lee TH (2017) Death-associated protein kinase 1 phosphorylates NDRG2 and induces neuronal cell death. Cell Death Differ 24(2):238–250

    Article  CAS  PubMed  Google Scholar 

  43. Fujita Y, Yamashita T (2014) Role of DAPK in neuronal cell death. Apoptosis 19(2):339–345

    Article  CAS  PubMed  Google Scholar 

  44. Tu W, Xu X, Peng L, Zhong X, Zhang W, Soundarapandian MM et al (2010) DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. Cell 140(2):222–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yamamoto M, Takahashi H, Nakamura T, Hioki T, Nagayama S, Ooashi N et al (1999) Developmental changes in distribution of death-associated protein kinase mRNAs. J Neurosci Res 58(5):674–683

    Article  CAS  PubMed  Google Scholar 

  46. Xu L-z, Li B-q, Jia J-p (2019) DAPK1: a novel pathology and treatment target for Alzheimer’s disease. Mol Neurobiol 56(4):2838–2844

    Article  CAS  PubMed  Google Scholar 

  47. Alsaadi MS (2019) Role of DAPK1 in neuronal cell death, survival and diseases in the nervous system. Int J Dev Neurosci 74:11–17

    Article  CAS  Google Scholar 

  48. Tian J-H, Das S, Sheng Z-H (2003) Ca2+-dependent phosphorylation of syntaxin-1A by the death-associated protein (DAP) kinase regulates its interaction with Munc18. J Biol Chem 278(28):26265–26274

    Article  CAS  PubMed  Google Scholar 

  49. Lai TW, Zhang S, Wang YT (2014) Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol 115:157–188

    Article  CAS  PubMed  Google Scholar 

  50. Chen CH, Wang WJ, Kuo JC, Tsai HC, Lin JR, Chang ZF et al (2005) Bidirectional signals transduced by DAPK–ERK interaction promote the apoptotic effect of DAPK. EMBO J 24(2):294–304

    Article  CAS  PubMed  Google Scholar 

  51. Xiong W, Wu Y, Xian W, Song L, Hu L, Pan S et al (2018) DAPK1-ERK signal mediates oxygen glucose deprivation reperfusion induced apoptosis in mouse N2a cells. J Neurol Sci 387:210–219

    Article  CAS  PubMed  Google Scholar 

  52. Boots EA, Schultz SA, Clark LR, Racine AM, Darst BF, Koscik RL et al (2017) BDNF Val66Met predicts cognitive decline in the Wisconsin Registry for Alzheimer’s Prevention. Neurology 88(22):2098–2106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lim YY, Hassenstab J, Cruchaga C, Goate A, Fagan AM, Benzinger TL et al (2016) BDNF Val66Met moderates memory impairment, hippocampal function and tau in preclinical autosomal dominant Alzheimer’s disease. Brain 139(10):2766–2777

    Article  PubMed  PubMed Central  Google Scholar 

  54. Buchman AS, Yu L, Boyle PA, Schneider JA, De Jager PL, Bennett DA (2016) Higher brain BDNF gene expression is associated with slower cognitive decline in older adults. Neurology 86(8):735–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Beeri MS, Sonnen J (2016) Brain BDNF expression as a biomarker for cognitive reserve against Alzheimer disease progression. Neurology 86:702

    Article  PubMed  Google Scholar 

  56. Inan-Eroglu E, Ayaz A (2018) Is aluminum exposure a risk factor for neurological disorders? J Res Med Sci 23:51

    Article  PubMed  PubMed Central  Google Scholar 

  57. Liu S-B, Zhang N, Guo Y-Y, Zhao R, Shi T-Y, Feng S-F et al (2012) G-protein-coupled receptor 30 mediates rapid neuroprotective effects of estrogen via depression of NR2B-containing NMDA receptors. J Neurosci 32(14):4887–4900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Su Y, Deng M-F, Xiong W, Xie A-J, Guo J, Liang Z-H et al (2019) MicroRNA-26a/death-associated protein kinase 1 signaling induces synucleinopathy and dopaminergic neuron degeneration in Parkinson’s disease. Biol Psychiatry 85(9):769–781

    Article  CAS  PubMed  Google Scholar 

  59. Pei L, Wang S, Jin H, Bi L, Wei N, Yan H et al (2015) A novel mechanism of spine damages in stroke via DAPK1 and tau. Cereb Cortex 25(11):4559–4571

    Article  PubMed  PubMed Central  Google Scholar 

  60. Henshall DC, Araki T, Schindler CK, Shinoda S, Lan JQ, Simon RP (2003) Expression of death-associated protein kinase and recruitment to the tumor necrosis factor signaling pathway following brief seizures. J Neurochem 86(5):1260–1270

    Article  CAS  PubMed  Google Scholar 

  61. Henshall DC, Schindler CK, So NK, Lan JQ, Meller R, Simon RP (2004) Death-associated protein kinase expression in human temporal lobe epilepsy. Ann Neurol 55(4):485–494

    Article  CAS  PubMed  Google Scholar 

  62. Wang X, Pei L, Yan H, Wang Z, Wei N, Wang S et al (2014) Intervention of death-associated protein kinase 1–p53 interaction exerts the therapeutic effects against stroke. Stroke 45(10):3089–3091

    Article  CAS  PubMed  Google Scholar 

  63. Pei L, Shang Y, Jin H, Wang S, Wei N, Yan H et al (2014) DAPK1–p53 interaction converges necrotic and apoptotic pathways of ischemic neuronal death. J Neurosci 34(19):6546–6556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kim B, You M, Chen C, Lee S, Hong Y, Kimchi A et al (2014) Death-associated protein kinase 1 has a critical role in aberrant tau protein regulation and function. Cell Death Dis 5(5):e1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim BM, You M-H, Chen C-H, Suh J, Tanzi RE, Ho LT (2016) Inhibition of death-associated protein kinase 1 attenuates the phosphorylation and amyloidogenic processing of amyloid precursor protein. Hum Mol Genet 25(12):2498–2513

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Araki T, Shinoda S, Schindler CK, Quan-Lan J, Meller R, Taki W et al (2004) Expression, interaction, and proteolysis of death-associated protein kinase and p53 within vulnerable and resistant hippocampal subfields following seizures. Hippocampus 14(3):326–336

    Article  CAS  PubMed  Google Scholar 

  67. Won J, Hong Y (2016) Enhancement of neural regeneration and functional recovery via DAPK1 suppression in stroke animal model. FASEB J 30:630

    Google Scholar 

  68. Kang BN, Ahmad AS, Saleem S, Patterson RL, Hester L, Doré S et al (2010) Death-associated protein kinase-mediated cell death modulated by interaction with DANGER. J Neurosci 30(1):93–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Duan D-X, Chai G-S, Ni Z-F, Hu Y, Luo Y, Cheng X-S et al (2013) Phosphorylation of tau by death-associated protein kinase 1 antagonizes the kinase-induced cell apoptosis. J Alzheimers Dis 37(4):795–808

    Article  CAS  PubMed  Google Scholar 

  70. Wang S, Chen K, Yu J, Wang X, Li Q, Lv F et al (2020) Presynaptic Caytaxin prevents apoptosis via deactivating DAPK1 in the acute phase of cerebral ischemic stroke. Exp Neurol 329:113303

    Article  CAS  PubMed  Google Scholar 

  71. Guo Y, Li H, Ke X, Deng M, Wu Z, Cai Y et al (2019) Degradation of caytaxin causes learning and memory deficits via activation of DAPK1 in aging. Mol Neurobiol 56(5):3368–3379

    Article  CAS  PubMed  Google Scholar 

  72. Nabavi SF, Sureda A, Sanches-Silva A, Pandima Devi K, Ahmed T, Shahid M et al (2019) Novel therapeutic strategies for stroke: the role of autophagy. Crit Rev Clin Lab Sci 56(3):182–199

    Article  CAS  PubMed  Google Scholar 

  73. Noori T, Dehpour AR, Sureda A, Sobarzo-Sanchez E, Shirooie S (2021) Role of natural products for the treatment of Alzheimer’s disease. Eur J Pharmacol 2021:173974

    Article  CAS  Google Scholar 

  74. Li X, Zhang D, Bai Y, Xiao J, Jiao H, He R (2019) Ginaton improves neurological function in ischemic stroke rats via inducing autophagy and maintaining mitochondrial homeostasis. Neuropsychiatry Dis Treat 15:1813

    Article  CAS  Google Scholar 

  75. Yan BC, Wang J, Rui Y, Cao J, Xu P, Jiang D et al (2019) Neuroprotective effects of gabapentin against cerebral ischemia reperfusion-induced neuronal autophagic injury via regulation of the PI3K/Akt/mTOR signaling pathways. J Neuropathol Exp Neurol 78(2):157–171

    Article  CAS  PubMed  Google Scholar 

  76. Cai C-C, Zhu J-H, Ye L-X, Dai Y-Y, Fang M-C, Hu Y-Y et al (2019) Glycine protects against hypoxic-ischemic brain injury by regulating mitochondria-mediated autophagy via the AMPK pathway. Oxid Med Cell Longev 2019:1–29

    Google Scholar 

  77. Shi G, Shi J, Liu K, Liu N, Wang Y, Fu Z et al (2013) Increased miR-195 aggravates neuropathic pain by inhibiting autophagy following peripheral nerve injury. Glia 61(4):504–512

    Article  PubMed  Google Scholar 

  78. Mo Y, Sun Y-Y, Liu K-Y (2020) Autophagy and inflammation in ischemic stroke. Neural Regen Res 15(8):1388–1396

    Article  PubMed  PubMed Central  Google Scholar 

  79. Levin-Salomon V, Bialik S, Kimchi A (2014) DAP-kinase and autophagy. Apoptosis 19(2):346–356

    Article  CAS  PubMed  Google Scholar 

  80. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8(9):741–752

    Article  CAS  PubMed  Google Scholar 

  81. Kiyono K, Suzuki HI, Matsuyama H, Morishita Y, Komuro A, Kano MR et al (2009) Autophagy is activated by TGF-β and potentiates TGF-β–mediated growth inhibition in human hepatocellular carcinoma cells. Can Res 69(23):8844–8852

    Article  CAS  Google Scholar 

  82. Jang C-W, Chen C-H, Chen C-C, Chen J-Y, Su Y-H, Chen R-H (2002) TGF-β induces apoptosis through Smad-mediated expression of DAP-kinase. Nat Cell Biol 4(1):51–58

    Article  CAS  PubMed  Google Scholar 

  83. Cohen O, Feinstein E, Kimchi A (1997) DAP-kinase is a Ca2+/calmodulin-dependent, cytoskeletal-associated protein kinase, with cell death-inducing functions that depend on its catalytic activity. EMBO J 16(5):998–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cohen O, Inbal B, Kissil JL, Raveh T, Berissi H, Spivak-Kroizaman T et al (1999) DAP-kinase participates in TNF-α–and Fas-induced apoptosis and its function requires the death domain. J Cell Biol 146(1):141–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bialik S, Kimchi A (2010) Lethal weapons: DAP-kinase, autophagy and cell death: DAP-kinase regulates autophagy. Curr Opin Cell Biol 22(2):199–205

    Article  CAS  PubMed  Google Scholar 

  86. Kuo J, Wang W, Yao C, Wu PR, Chen RH (2006) The tumor suppressor daPK inhibits cell motility by blocking the integrin-mediated polarity pathway. J Cell Biol 172:619–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Atanasov AG, Zotchev SB, Dirsch VM, Orhan IE, Banach M, Rollinger JM et al (2021) Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov 20(3):200–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nikhil K, Sharan S, Palla SR, Sondhi SM, Peddinti RK, Roy P (2015) Understanding the mode of action of a pterostilbene derivative as anti-inflammatory agent. Int Immunopharmacol 28(1):10–21

    Article  CAS  PubMed  Google Scholar 

  89. Kim JH, Won J, Hong Y (2017) Suppression of DAPK1 benefits to ischemia brain injury via mechanism (s) of ER stress mediated apoptotic pathway. FASEB J 31:876.1

    Google Scholar 

  90. Che X, Yan H, Sun H, Dongol S, Wang Y, Lv Q et al (2016) Grifolin induces autophagic cell death by inhibiting the Akt/mTOR/S6K pathway in human ovarian cancer cells. Oncol Rep 36(2):1041–1047

    Article  CAS  PubMed  Google Scholar 

  91. Jing S, Ying P, Hu X, Yu Z, Sun J, Ding Y et al (2017) Protective effect of grifolin against brain injury in an acute cerebral ischemia rat model. Trop J Pharm Res 16(6):1299–1305

    Article  CAS  Google Scholar 

  92. Wu Z, Li Y (2017) Grifolin exhibits anti-cancer activity by inhibiting the development and invasion of gastric tumor cells. Oncotarget 8(13):21454

    Article  PubMed  PubMed Central  Google Scholar 

  93. Kavanagh F, Hervey A, Robbins WJ (1950) Antibiotic Substances from Basidiomycetes: V. Poria Corticola, Poria Tenuis and an Unidentified Basidiomycete. Proc Natl Acad Sci USA 36(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zeb M, Lee CH (2021) Medicinal properties and bioactive compounds from wild mushrooms native to North America. Molecules 26(2):251

    Article  CAS  PubMed Central  Google Scholar 

  95. Ye M, Luo X, Li L, Shi Y, Tan M, Weng X et al (2007) Grifolin, a potential antitumor natural product from the mushroom Albatrellus confluens, induces cell-cycle arrest in G1 phase via the ERK1/2 pathway. Cancer Lett 258(2):199–207

    Article  CAS  PubMed  Google Scholar 

  96. Jin S, Pang R-P, Shen J-N, Huang G, Wang J, Zhou J-G (2007) Grifolin induces apoptosis via inhibition of PI3K/AKT signalling pathway in human osteosarcoma cells. Apoptosis 12(7):1317–1326

    Article  CAS  PubMed  Google Scholar 

  97. Luo X, Yu X, Liu S, Deng Q, Liu X, Peng S et al (2015) The role of targeting kinase activity by natural products in cancer chemoprevention and chemotherapy. Oncol Rep 34(2):547–554

    Article  CAS  PubMed  Google Scholar 

  98. Luo XJ, Li LL, Deng QP, Yu XF, Yang LF, Luo FJ et al (2011) Grifolin, a potent antitumour natural product upregulates death-associated protein kinase 1 DAPK1 via p53 in nasopharyngeal carcinoma cells. Eur J Cancer (Oxford, England: 1990) 47(2):316–325

    Article  CAS  Google Scholar 

  99. Chen D, Zhou XZ, Lee TH (2019) Death-associated protein kinase 1 as a promising drug target in cancer and Alzheimer’s disease. Recent Pat Anticancer Drug Discov 14(2):144–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yanqin Y, Jing T, Wei C, Nan L (2017) Grifolin attenuates white matter lesion in oxygen/glucose deprivation. Transl Neurosci 8:102–110

    PubMed  PubMed Central  Google Scholar 

  101. Wang Z-M, Zhao D, Nie Z-L, Zhao H, Zhou B, Gao W et al (2014) Flavonol intake and stroke risk: a meta-analysis of cohort studies. Nutrition 30(5):518–523

    Article  PubMed  CAS  Google Scholar 

  102. Tang Z, Li M, Zhang X, Hou W (2016) Dietary flavonoid intake and the risk of stroke: a dose-response meta-analysis of prospective cohort studies. BMJ Open 6(6):e008680

    Article  PubMed  PubMed Central  Google Scholar 

  103. Bondonno NP, Bondonno CP, Blekkenhorst LC, Considine MJ, Maghzal G, Stocker R et al (2018) Flavonoid-rich apple improves endothelial function in individuals at risk for cardiovascular disease: a randomized controlled clinical trial. Mol Nutr Food Res 62(3):1700674

    Article  CAS  Google Scholar 

  104. Machha A, Mustafa MR (2005) Chronic treatment with flavonoids prevents endothelial dysfunction in spontaneously hypertensive rat aorta. J Cardiovasc Pharmacol 46(1):36–40

    Article  CAS  PubMed  Google Scholar 

  105. Cassidy A, Bertoia M, Chiuve S, Flint A, Forman J, Rimm EB (2016) Habitual intake of anthocyanins and flavanones and risk of cardiovascular disease in men. Am J Clin Nutr 104(3):587–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Williamson G, Kay CD, Crozier A (2018) The bioavailability, transport, and bioactivity of dietary flavonoids: a review from a historical perspective. Comp Rev Food Sci Food Saf 17(5):1054–1112

    Article  Google Scholar 

  107. Khamchai S, Chumboatong W, Hata J, Tocharus C, Suksamrarn A, Tocharus J (2020) Morin protects the blood–brain barrier integrity against cerebral ischemia reperfusion through anti-inflammatory actions in rats. Sci Rep 10(1):13379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yokoyama T, Kosaka Y, Mizuguchi M (2015) Structural insight into the interactions between death-associated protein kinase 1 and natural flavonoids. J Med Chem 58(18):7400–7408

    Article  CAS  PubMed  Google Scholar 

  109. Chen Y, Li Y, Xu H, Li G, Ma Y, Pang YJ (2017) Morin mitigates oxidative stress, apoptosis and inflammation in cerebral ischemic rats. Afr J Tradit Complement Altern Med 14(2):348–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lee J-K, Kwak H-J, Piao M-S, Jang J-W, Kim S-H, Kim H-S (2011) Quercetin reduces the elevated matrix metalloproteinases-9 level and improves functional outcome after cerebral focal ischemia in rats. Acta Neurochir 153(6):1321–1329

    Article  PubMed  Google Scholar 

  111. Park D-J, Shah F-A, Koh P-O (2018) Quercetin attenuates neuronal cells damage in a middle cerebral artery occlusion animal model. J Vet Med Sci 80:676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lee JH, Rho SB, Chun T (2005) Programmed cell death 6 (PDCD6) protein interacts with death-associated protein kinase 1 (DAPk1): additive effect on apoptosis via caspase-3 dependent pathway. Biotechnol Lett 27(14):1011–1015

    Article  CAS  PubMed  Google Scholar 

  113. Lin X, Lin C-H, Zhao T, Zuo D, Ye Z, Liu L et al (2017) Quercetin protects against heat stroke-induced myocardial injury in male rats: antioxidative and antiinflammatory mechanisms. Chem Biol Interact 265:47–54

    Article  CAS  PubMed  Google Scholar 

  114. Xia S-F, Xie Z-X, Qiao Y, Li L-R, Cheng X-R, Tang X et al (2015) Differential effects of quercetin on hippocampus-dependent learning and memory in mice fed with different diets related with oxidative stress. Physiol Behav 138:325–331

    Article  CAS  PubMed  Google Scholar 

  115. Sabogal-Guáqueta AM, Munoz-Manco JI, Ramírez-Pineda JR, Lamprea-Rodriguez M, Osorio E, Cardona-Gómez GP (2015) The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology 93:134–145

    Article  PubMed  CAS  Google Scholar 

  116. Kerimi A, Williamson G (2018) Differential impact of flavonoids on redox modulation, bioenergetics, and cell signaling in normal and tumor cells: a comprehensive review. Antioxid Redox Signal 29(16):1633–1659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Qi P, Li J, Gao S, Yuan Y, Sun Y, Liu N et al (2020) Network pharmacology-based and experimental identification of the effects of quercetin on Alzheimer’s disease. Front Aging Neurosci 12:793012–793012

    Google Scholar 

  118. Tsai Y-M, Chien C-F, Lin L-C, Tsai T-H (2011) Curcumin and its nano-formulation: the kinetics of tissue distribution and blood–brain barrier penetration. Int J Pharm 416(1):331–338

    Article  CAS  PubMed  Google Scholar 

  119. Hagl S, Kocher A, Schiborr C, Kolesova N, Frank J, Eckert GP (2015) Curcumin micelles improve mitochondrial function in neuronal PC12 cells and brains of NMRI mice–Impact on bioavailability. Neurochem Int 89:234–242

    Article  CAS  PubMed  Google Scholar 

  120. Liu L, Zhang W, Wang L, Li Y, Tan B, Lu X et al (2014) Curcumin prevents cerebral ischemia reperfusion injury via increase of mitochondrial biogenesis. Neurochem Res 39(7):1322–1331

    Article  CAS  PubMed  Google Scholar 

  121. Lopresti AL, Maes M, Maker GL, Hood SD, Drummond PD (2014) Curcumin for the treatment of major depression: a randomised, double-blind, placebo controlled study. J Affect Disord 167:368–375

    Article  CAS  PubMed  Google Scholar 

  122. Liu S, Cao Y, Qu M, Zhang Z, Feng L, Ye Z et al (2016) Curcumin protects against stroke and increases levels of Notch intracellular domain. Neurol Res 38(6):553–559

    Article  CAS  PubMed  Google Scholar 

  123. Altinay S, Cabalar M, Isler C, Yildirim F, Celik DS, Zengi O et al (2017) Is chronic curcumin supplementation neuroprotective against ischemia for antioxidant activity, neurological deficit, or neuronal apoptosis in an experimental stroke model. Turk Neurosurg 27(4):537–545

    PubMed  Google Scholar 

  124. Lan C, Chen X, Zhang Y, Wang W, Wang WE, Liu Y et al (2018) Curcumin prevents strokes in stroke-prone spontaneously hypertensive rats by improving vascular endothelial function. BMC Cardiovasc Disord 18(1):1–10

    Article  CAS  Google Scholar 

  125. Ahmad N, Umar S, Ashafaq M, Akhtar M, Iqbal Z, Samim M et al (2013) A comparative study of PNIPAM nanoparticles of curcumin, demethoxycurcumin, and bisdemethoxycurcumin and their effects on oxidative stress markers in experimental stroke. Protoplasma 250(6):1327–1338

    Article  CAS  PubMed  Google Scholar 

  126. Kalani A, Kamat PK, Kalani K, Tyagi N (2015) Epigenetic impact of curcumin on stroke prevention. Metab Brain Dis 30(2):427–435

    Article  CAS  PubMed  Google Scholar 

  127. Miao Y, Zhao S, Gao Y, Wang R, Wu Q, Wu H et al (2016) Curcumin pretreatment attenuates inflammation and mitochondrial dysfunction in experimental stroke: the possible role of Sirt1 signaling. Brain Res Bull 121:9–15

    Article  CAS  PubMed  Google Scholar 

  128. Li Y, Li J, Li S, Li Y, Wang X, Liu B et al (2015) Curcumin attenuates glutamate neurotoxicity in the hippocampus by suppression of ER stress-associated TXNIP/NLRP3 inflammasome activation in a manner dependent on AMPK. Toxicol Appl Pharmacol 286(1):53–63

    Article  CAS  PubMed  Google Scholar 

  129. Wiciński M, Socha M, Walczak M, Wódkiewicz E, Malinowski B, Rewerski S et al (2018) Beneficial effects of resveratrol administration: focus on potential biochemical mechanisms in cardiovascular conditions. Nutrients 10(11):1813

    Article  PubMed Central  CAS  Google Scholar 

  130. Bastianetto S, Ménard C, Quirion R (2015) Neuroprotective action of resveratrol. Biochim et Biophys Acta (BBA) 1852(6):1195–1201

    Article  CAS  Google Scholar 

  131. Clark D, Tuor UI, Thompson R, Institoris A, Kulynych A, Zhang X et al (2012) Protection against recurrent stroke with resveratrol: endothelial protection. PLoS ONE 7(10):e47792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Girbovan C, Plamondon H (2015) Resveratrol downregulates type-1 glutamate transporter expression and microglia activation in the hippocampus following cerebral ischemia reperfusion in rats. Brain Res 1608:203–214

    Article  CAS  PubMed  Google Scholar 

  133. Shin JA, Lee H, Lim Y-K, Koh Y, Choi JH, Park E-M (2010) Therapeutic effects of resveratrol during acute periods following experimental ischemic stroke. J Neuroimmunol 227(1–2):93–100

    Article  CAS  PubMed  Google Scholar 

  134. Simão F, Matté A, Pagnussat AS, Netto CA, Salbego CG (2012) Resveratrol preconditioning modulates inflammatory response in the rat hippocampus following global cerebral ischemia. Neurochem Int 61(5):659–665

    Article  PubMed  CAS  Google Scholar 

  135. Song J, Cheon SY, Jung W, Lee WT, Lee JE (2014) Resveratrol induces the expression of interleukin-10 and brain-derived neurotrophic factor in BV2 microglia under hypoxia. Int J Mol Sci 15(9):15512–15529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Mokni M, Hamlaoui S, Karkouch I, Amri M, Marzouki L, Limam F et al (2013) Resveratrol provides cardioprotection after ischemia/reperfusion injury via modulation of antioxidant enzyme activities. Iran J Pharm Res IJPR 12(4):867

    CAS  PubMed  Google Scholar 

  137. Ghazavi H, Shirzad S, Forouzanfar F, Negah SS, Rad MR, Vafaee F (2020) The role of resveratrol as a natural modulator in glia activation in experimental models of stroke. Avicenna J Phytomed 10(6):557

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Yokoyama T, Suzuki R, Mizuguchi M (2021) Crystal structure of death-associated protein kinase 1 in complex with the dietary compound resveratrol. IUCr J 8(1):131–138

    Article  CAS  Google Scholar 

  139. Jafari S, Saeidnia S, Abdollahi M (2014) Role of natural phenolic compounds in cancer chemoprevention via regulation of the cell cycle. Curr Pharm Biotechnol 15(4):409–421

    Article  CAS  PubMed  Google Scholar 

  140. Zhang J-C, Xu H, Yuan Y, Chen J-Y, Zhang Y-J, Lin Y et al (2017) Delayed treatment with green tea polyphenol EGCG promotes neurogenesis after ischemic stroke in adult mice. Mol Neurobiol 54(5):3652–3664

    Article  CAS  PubMed  Google Scholar 

  141. Pervin M, Unno K, Nakagawa A, Takahashi Y, Iguchi K, Yamamoto H et al (2017) Blood brain barrier permeability of (-)-epigallocatechin gallate, its proliferation-enhancing activity of human neuroblastoma SH-SY5Y cells, and its preventive effect on age-related cognitive dysfunction in mice. Biochem Biophys Rep 9:180–186

    PubMed  PubMed Central  Google Scholar 

  142. Chen D, Kanthasamy AG, Reddy MB (2015) EGCG protects against 6-OHDA-induced neurotoxicity in a cell culture model. Parkinson’s Dis 2015:1–10

    Article  CAS  Google Scholar 

  143. Walker JM, Klakotskaia D, Ajit D, Weisman GA, Wood WG, Sun GY et al (2015) Beneficial effects of dietary EGCG and voluntary exercise on behavior in an Alzheimer’s disease mouse model. J Alzheimers Dis 44(2):561–572

    Article  CAS  PubMed  Google Scholar 

  144. Zeng L, Holly JM, Perks CM (2014) Effects of physiological levels of the green tea extract epigallocatechin-3-gallate on breast cancer cells. Front Endocrinol 5:61

    Article  Google Scholar 

  145. Yao C, Zhang J, Liu G, Chen F, Lin Y (2014) Neuroprotection by (-)-epigallocatechin-3-gallate in a rat model of stroke is mediated through inhibition of endoplasmic reticulum stress. Mol Med Rep 9(1):69–72

    Article  CAS  PubMed  Google Scholar 

  146. Zhang F, Li N, Jiang L, Chen L, Huang M (2015) Neuroprotective effects of (−)-epigallocatechin-3-gallate against focal cerebral ischemia/reperfusion injury in rats through attenuation of inflammation. Neurochem Res 40(8):1691–1698

    Article  CAS  PubMed  Google Scholar 

  147. Bai Q, Lyu Z, Yang X, Pan Z, Lou J, Dong T (2017) Epigallocatechin-3-gallate promotes angiogenesis via up-regulation of Nfr2 signaling pathway in a mouse model of ischemic stroke. Behav Brain Res 321:79–86

    Article  CAS  PubMed  Google Scholar 

  148. Park D-J, Kang J-B, Koh P-O (2020) Epigallocatechin gallate alleviates neuronal cell damage against focal cerebral ischemia in rats. J Vet Med Sci 82(5):639–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Park D-J, Kang J-B, Koh P-O (2021) Identification of regulated proteins by epigallocatechin gallate treatment in an ischemic cerebral cortex animal model: a proteomics approach. J Vet Med Sci 83:916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lee WJ, Shim J-Y, Zhu BT (2005) Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol 68(4):1018–1030

    Article  CAS  PubMed  Google Scholar 

  151. Khan MA, Hussain A, Sundaram MK, Alalami U, Gunasekera D, Ramesh L et al (2015) (-)-Epigallocatechin-3-gallate reverses the expression of various tumor-suppressor genes by inhibiting DNA methyltransferases and histone deacetylases in human cervical cancer cells. Oncol Rep 33(4):1976–1984

    Article  CAS  PubMed  Google Scholar 

  152. Takahashi H, Suzuki Y, Mohamed JS, Gotoh T, Pereira SL, Alway SE (2017) Epigallocatechin-3-gallate increases autophagy signaling in resting and unloaded plantaris muscles but selectively suppresses autophagy protein abundance in reloaded muscles of aged rats. Exp Gerontol 92:56–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Blagosklonny MV (2019) Rapamycin for longevity: opinion article. Aging (Albany NY) 11(19):8048

    Article  CAS  Google Scholar 

  154. Liu Y, Feng M, Chen H, Yang G, Qiu J, Zhao F et al (2020) Mechanistic target of rapamycin in the tumor microenvironment and its potential as a therapeutic target for pancreatic cancer. Cancer Lett 485:1–13

    Article  CAS  PubMed  Google Scholar 

  155. Kaeberlein M, Galvan V (2019) Rapamycin and Alzheimer’s disease: time for a clinical trial? Sci Transl Med 11(476):eaar4289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Yin L, Ye S, Chen Z, Zeng Y (2012) Rapamycin preconditioning attenuates transient focal cerebral ischemia/reperfusion injury in mice. Int J Neurosci 122(12):748–756

    Article  CAS  PubMed  Google Scholar 

  157. Jing C-H, Wang L, Liu P-P, Wu C, Ruan D, Chen G (2012) Autophagy activation is associated with neuroprotection against apoptosis via a mitochondrial pathway in a rat model of subarachnoid hemorrhage. Neuroscience 213:144–153

    Article  CAS  PubMed  Google Scholar 

  158. Sheng R, Zhang L-S, Han R, Liu X-Q, Gao B, Qin Z-H (2010) Autophagy activation is associated with neuroprotection in a rat model of focal cerebral ischemic preconditioning. Autophagy 6(4):482–494

    Article  CAS  PubMed  Google Scholar 

  159. Praet J, Guglielmetti C, Berneman Z, Van der Linden A, Ponsaerts P (2014) Cellular and molecular neuropathology of the cuprizone mouse model: clinical relevance for multiple sclerosis. Neurosci Biobehav Rev 47:485–505

    Article  CAS  PubMed  Google Scholar 

  160. Chi OZ, Mellender SJ, Barsoum S, Liu X, Damito S, Weiss HR (2016) Effects of rapamycin pretreatment on blood-brain barrier disruption in cerebral ischemia-reperfusion. Neurosci Lett 620:132–136

    Article  CAS  PubMed  Google Scholar 

  161. Kirino T, Tamura A, Sano K (1984) Delayed neuronal death in the rat hippocampus following transient forebrain ischemia. Acta Neuropathol 64(2):139–147

    Article  CAS  PubMed  Google Scholar 

  162. Guo W, Feng G, Miao Y, Liu G, Xu C (2014) Rapamycin alleviates brain edema after focal cerebral ischemia reperfusion in rats. Immunopharmacol Immunotoxicol 36(3):211–223

    Article  CAS  PubMed  Google Scholar 

  163. Wu M, Zhang H, Kai J, Zhu F, Dong J, Xu Z et al (2018) Rapamycin prevents cerebral stroke by modulating apoptosis and autophagy in penumbra in rats. Ann Clin Transl Neurol 5(2):138–146

    Article  CAS  PubMed  Google Scholar 

  164. Lin A-L, Jahrling JB, Zhang W, DeRosa N, Bakshi V, Romero P et al (2017) Rapamycin rescues vascular, metabolic and learning deficits in apolipoprotein E4 transgenic mice with pre-symptomatic Alzheimer’s disease. J Cereb Blood Flow Metab 37(1):217–226

    Article  CAS  PubMed  Google Scholar 

  165. Wang Z, Wang X, Cheng F, Wen X, Feng S, Yu F et al (2021) Rapamycin inhibits glioma cells growth and promotes autophagy by miR-26a-5p/DAPK1 axis. Cancer Manag Res 13:2691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wei Z, Du Q, Li P, Liu H, Xia M, Chen Y et al (2021) Death-associated protein kinase 1 (DAPK1) controls CD8+ T cell activation, trafficking, and antitumor activity. FASEB J 35(1):e21138

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

SS and TN contributed to the conception of the manuscript. SS, TN, AS and AD drafted the manuscript. All of the authors revised the manuscript and gave the final approval.

Corresponding author

Correspondence to Samira Shirooie.

Ethics declarations

Conflict of interest

All the authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noori, T., Shirooie, S., Sureda, A. et al. Regulation of DAPK1 by Natural Products: An Important Target in Treatment of Stroke. Neurochem Res 47, 2142–2157 (2022). https://doi.org/10.1007/s11064-022-03628-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03628-7

Keywords

Navigation