Skip to main content
Log in

The DAPK family: a structure–function analysis

  • The Universe of DAPK
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

DAP-kinase (DAPK) is the founding member of a family of highly related, death associated Ser/Thr kinases that belongs to the calmodulin (CaM)-regulated kinase superfamily. The family includes DRP-1 and ZIP-kinase (ZIPK), both of which share significant homology within the common N-terminal kinase domain, but differ in their extra-catalytic domains. Both DAPK and DRP-1 possess a conserved CaM autoregulatory domain, and are regulated by calcium-activated CaM and by an inhibitory auto-phosphorylation within the domain. ZIPK’s activity is independent of CaM but can be activated by DAPK. The three kinases share some common functions and substrates, such as induction of autophagy and phosphorylation of myosin regulatory light chain leading to membrane blebbing. Furthermore, all can function as tumor suppressors. However, they also each possess unique functions and intracellular localizations, which may arise from the divergence in structure in their respective C-termini. In this review we will introduce the DAPK family, and present a structure/function analysis for each individual member, and for the family as a whole. Emphasis will be placed on the various domains, and how they mediate interactions with additional proteins and/or regulation of kinase function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Deiss LP, Feinstein E, Berissi H, Cohen O, Kimchi A (1995) Identification of a novel serine/threonine kinase and a novel 15-kD protein as potential mediators of the gamma interferon-induced cell death. Genes Dev 9(1):15–30

    Article  CAS  PubMed  Google Scholar 

  2. Bialik S, Kimchi A (2006) The death-associated protein kinases: structure, function, and beyond. Annu Rev Biochem 75:189–210. doi:10.1146/annurev.biochem.75.103004.142615

    Article  CAS  PubMed  Google Scholar 

  3. Kawai T, Matsumoto M, Takeda K, Sanjo H, Akira S (1998) ZIP kinase, a novel serine/threonine kinase which mediates apoptosis. Mol Cell Biol 18(3):1642–1651

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Kogel D, Plottner O, Landsberg G, Christian S, Scheidtmann KH (1998) Cloning and characterization of Dlk, a novel serine/threonine kinase that is tightly associated with chromatin and phosphorylates core histones. Oncogene 17(20):2645–2654

    Article  CAS  PubMed  Google Scholar 

  5. Inbal B, Shani G, Cohen O, Kissil JL, Kimchi A (2000) Death-associated protein kinase-related protein 1, a novel serine/threonine kinase involved in apoptosis. Mol Cell Biol 20(3):1044–1054

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Kawai T, Nomura F, Hoshino K, Copeland NG, Gilbert DJ, Jenkins NA, Akira S (1999) Death-associated protein kinase 2 is a new calcium/calmodulin-dependent protein kinase that signals apoptosis through its catalytic activity. Oncogene 18(23):3471–3480

    Article  CAS  PubMed  Google Scholar 

  7. Sanjo H, Kawai T, Akira S (1998) DRAKs, novel serine/threonine kinases related to death-associated protein kinase that trigger apoptosis. J Biol Chem 273(44):29066–29071

    Article  CAS  PubMed  Google Scholar 

  8. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298(5600):1912–1934. doi:10.1126/science.1075762

    Article  CAS  PubMed  Google Scholar 

  9. Cohen O, Feinstein E, Kimchi A (1997) DAP-kinase is a Ca2+/calmodulin-dependent, cytoskeletal-associated protein kinase, with cell death-inducing functions that depend on its catalytic activity. EMBO J 16(5):998–1008

    Article  CAS  PubMed  Google Scholar 

  10. Inbal B, Bialik S, Sabanay I, Shani G, Kimchi A (2002) DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J Cell Biol 157(3):455–468

    Article  CAS  PubMed  Google Scholar 

  11. Zalckvar E, Berissi H, Eisenstein M, Kimchi A (2009) Phosphorylation of Beclin 1 by DAP-kinase promotes autophagy by weakening its interactions with Bcl-2 and Bcl-XL. Autophagy 5(5):720–722

    Article  CAS  PubMed  Google Scholar 

  12. Gozuacik D, Kimchi A (2006) DAPk protein family and cancer. Autophagy 2(2):74–79

    CAS  PubMed  Google Scholar 

  13. Kissil JL, Feinstein E, Cohen O, Jones PA, Tsai YC, Knowles MA, Eydmann ME, Kimchi A (1997) DAP-kinase loss of expression in various carcinoma and B-cell lymphoma cell lines: possible implications for role as tumor suppressor gene. Oncogene 15(4):403–407

    Article  CAS  PubMed  Google Scholar 

  14. Raveh T, Droguett G, Horwitz MS, DePinho RA, Kimchi A (2001) DAP kinase activates a p19ARF/p53-mediated apoptotic checkpoint to suppress oncogenic transformation. Nat Cell Biol 3(1):1–7

    Article  CAS  PubMed  Google Scholar 

  15. Inbal B, Cohen O, Polak-Charcon S, Kopolovic J, Vadai E, Eisenbach L, Kimchi A (1997) DAP kinase links the control of apoptosis to metastasis. Nature 390(6656):180–184

    Article  CAS  PubMed  Google Scholar 

  16. Kuo JC, Wang WJ, Yao CC, Wu PR, Chen RH (2006) The tumor suppressor DAPK inhibits cell motility by blocking the integrin-mediated polarity pathway. J Cell Biol 172(4):619–631. doi:10.1083/jcb.200505138

    Article  CAS  PubMed  Google Scholar 

  17. Wang WJ, Kuo JC, Yao CC, Chen RH (2002) DAP-kinase induces apoptosis by suppressing integrin activity and disrupting matrix survival signals. J Cell Biol 159(1):169–179

    Article  CAS  PubMed  Google Scholar 

  18. Bialik S, Bresnick AR, Kimchi A (2004) DAP-kinase-mediated morphological changes are localization dependent and involve myosin-II phosphorylation. Cell Death Differ 11(6):631–644. doi:10.1038/sj.cdd.4401386

    CAS  PubMed  Google Scholar 

  19. Kuo JC, Lin JR, Staddon JM, Hosoya H, Chen RH (2003) Uncoordinated regulation of stress fibers and focal adhesions by DAP kinase. J Cell Sci 116(Pt 23):4777–4790

    Article  CAS  PubMed  Google Scholar 

  20. Shamloo M, Soriano L, Wieloch T, Nikolich K, Urfer R, Oksenberg D (2005) Death-associated protein kinase is activated by dephosphorylation in response to cerebral ischemia. J Biol Chem 280(51):42290–42299. doi:10.1074/jbc.M505804200

    Article  CAS  PubMed  Google Scholar 

  21. Li Y, Grupe A, Rowland C, Nowotny P, Kauwe JS, Smemo S, Hinrichs A, Tacey K, Toombs TA, Kwok S, Catanese J, White TJ, Maxwell TJ, Hollingworth P, Abraham R, Rubinsztein DC, Brayne C, Wavrant-De Vrieze F, Hardy J, O’Donovan M, Lovestone S, Morris JC, Thal LJ, Owen M, Williams J, Goate A (2006) DAPK1 variants are associated with Alzheimer’s disease and allele-specific expression. Hum Mol Genet 15(17):2560–2568. doi:10.1093/hmg/ddl178

    Article  CAS  PubMed  Google Scholar 

  22. Tu W, Xu X, Peng L, Zhong X, Zhang W, Soundarapandian MM, Balel C, Wang M, Jia N, Lew F, Chan SL, Chen Y, Lu Y (2010) DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. Cell 140(2):222–234. doi:10.1016/j.cell.2009.12.055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Chuang YT, Fang LW, Lin-Feng MH, Chen RH, Lai MZ (2008) The tumor suppressor death-associated protein kinase targets to TCR-stimulated NF-kappa B activation. J Immunol 180(5):3238–3249. doi:180/5/3238

    CAS  PubMed  Google Scholar 

  24. Chuang YT, Lin YC, Lin KH, Chou TF, Kuo WC, Yang KT, Wu PR, Chen RH, Kimchi A, Lai MZ (2011) Tumor suppressor death-associated protein kinase is required for full IL-1beta production. Blood 117(3):960–970. doi:10.1182/blood-2010-08-303115

    Article  CAS  PubMed  Google Scholar 

  25. Mukhopadhyay R, Ray PS, Arif A, Brady AK, Kinter M, Fox PL (2008) DAPK-ZIPK-L13a axis constitutes a negative-feedback module regulating inflammatory gene expression. Mol Cell 32(3):371–382. doi:10.1016/j.molcel.2008.09.019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Nakav S, Cohen S, Feigelson SW, Bialik S, Shoseyov D, Kimchi A, Alon R (2012) Tumor suppressor death-associated protein kinase attenuates inflammatory responses in the lung. Am J Respir Cell Mol Biol 46(3):313–322. doi:10.1165/rcmb.2011-0181OC

    Article  CAS  PubMed  Google Scholar 

  27. Bialik S, Kimchi A (2013) The DAP-kinase interactome. Apoptosis. doi:10.1007/s10495-013-0926-3

  28. Kogel D, Reimertz C, Mech P, Poppe M, Fruhwald MC, Engemann H, Scheidtmann KH, Prehn JH (2001) Dlk/ZIP kinase-induced apoptosis in human medulloblastoma cells: requirement of the mitochondrial apoptosis pathway. Br J Cancer 85(11):1801–1808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Tang HW, Wang YB, Wang SL, Wu MH, Lin SY, Chen GC (2011) Atg1-mediated myosin II activation regulates autophagosome formation during starvation-induced autophagy. EMBO J 30(4):636–651. doi:10.1038/emboj.2010.338

    Article  CAS  PubMed  Google Scholar 

  30. Brognard J, Zhang YW, Puto LA, Hunter T (2011) Cancer-associated loss-of-function mutations implicate DAPK3 as a tumor-suppressing kinase. Cancer Res 71(8):3152–3161. doi:10.1158/0008-5472.CAN-10-3543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Murata-Hori M, Suizu F, Iwasaki T, Kikuchi A, Hosoya H (1999) ZIP kinase identified as a novel myosin regulatory light chain kinase in HeLa cells. FEBS Lett 451(1):81–84

    Article  CAS  PubMed  Google Scholar 

  32. Murata-Hori M, Fukuta Y, Ueda K, Iwasaki T, Hosoya H (2001) HeLa ZIP kinase induces diphosphorylation of myosin II regulatory light chain and reorganization of actin filaments in nonmuscle cells. Oncogene 20(57):8175–8183

    Article  CAS  PubMed  Google Scholar 

  33. Haystead TA (2005) ZIP kinase, a key regulator of myosin protein phosphatase 1. Cell Signal 17(11):1313–1322. doi:10.1016/j.cellsig.2005.05.008

    Article  CAS  PubMed  Google Scholar 

  34. Sato N, Kawai T, Sugiyama K, Muromoto R, Imoto S, Sekine Y, Ishida M, Akira S, Matsuda T (2005) Physical and functional interactions between STAT3 and ZIP kinase. Int Immunol 17(12):1543–1552. doi:10.1093/intimm/dxh331

    Article  CAS  PubMed  Google Scholar 

  35. Usui T, Okada M, Yamawaki H (2013) Zipper interacting protein kinase (ZIPK): function and signaling. Apoptosis. doi:10.1007/s10495-013-0934-3

  36. Fang J, Menon M, Zhang D, Torbett B, Oxburgh L, Tschan M, Houde E, Wojchowski DM (2008) Attenuation of EPO-dependent erythroblast formation by death-associated protein kinase-2. Blood 112(3):886–890. doi:10.1182/blood-2008-02-138909

    Article  CAS  PubMed  Google Scholar 

  37. Rizzi M, Tschan MP, Britschgi C, Britschgi A, Hugli B, Grob TJ, Leupin N, Mueller BU, Simon HU, Ziemiecki A, Torbett BE, Fey MF, Tobler A (2007) The death-associated protein kinase 2 is up-regulated during normal myeloid differentiation and enhances neutrophil maturation in myeloid leukemic cells. J Leukoc Biol 81(6):1599–1608. doi:10.1189/jlb.0606400

    Article  CAS  PubMed  Google Scholar 

  38. Tur MK, Neef I, Jost E, Galm O, Jager G, Stocker M, Ribbert M, Osieka R, Klinge U, Barth S (2009) Targeted restoration of down-regulated DAPK2 tumor suppressor activity induces apoptosis in Hodgkin lymphoma cells. J Immunother 32(5):431–441. doi:10.1097/CJI.0b013e31819f1cb6

    Article  CAS  PubMed  Google Scholar 

  39. Li H, Ray G, Yoo BH, Erdogan M, Rosen KV (2009) Down-regulation of death-associated protein kinase-2 is required for beta-catenin-induced anoikis resistance of malignant epithelial cells. J Biol Chem 284(4):2012–2022. doi:10.1074/jbc.M805612200

    Article  CAS  PubMed  Google Scholar 

  40. Tereshko V, Teplova M, Brunzelle J, Watterson DM, Egli M (2001) Crystal structures of the catalytic domain of human protein kinase associated with apoptosis and tumor suppression. Nat Struct Biol 8(10):899–907

    Article  CAS  PubMed  Google Scholar 

  41. Zimmermann M, Atmanene C, Xu Q, Fouillen L, Van Dorsselaer A, Bonnet D, Marsol C, Hibert M, Sanglier-Cianferani S, Pigault C, McNamara LK, Watterson DM, Haiech J, Kilhoffer MC (2010) Homodimerization of the death-associated protein kinase catalytic domain: development of a new small molecule fluorescent reporter. PLoS One 5(11):e14120. doi:10.1371/journal.pone.0014120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Patel AK, Yadav RP, Majava V, Kursula I, Kursula P (2011) Structure of the dimeric autoinhibited conformation of DAPK2, a pro-apoptotic protein kinase. J Mol Biol 409(3):369–383. doi:10.1016/j.jmb.2011.03.065

    Article  CAS  PubMed  Google Scholar 

  43. Velentza AV, Schumacher AM, Weiss C, Egli M, Watterson DM (2001) A protein kinase associated with apoptosis and tumor suppression: structure, activity, and discovery of peptide substrates. J Biol Chem 276(42):38956–38965

    Article  CAS  PubMed  Google Scholar 

  44. Shani G, Marash L, Gozuacik D, Bialik S, Teitelbaum L, Shohat G, Kimchi A (2004) Death-associated protein kinase phosphorylates ZIP kinase, forming a unique kinase hierarchy to activate its cell death functions. Mol Cell Biol 24(19):8611–8626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Pike AC, Rellos P, Niesen FH, Turnbull A, Oliver AW, Parker SA, Turk BE, Pearl LH, Knapp S (2008) Activation segment dimerization: a mechanism for kinase autophosphorylation of non-consensus sites. EMBO J 27(4):704–714. doi:10.1038/emboj.2008.8

    Article  CAS  PubMed  Google Scholar 

  46. Nolen B, Taylor S, Ghosh G (2004) Regulation of protein kinases; controlling activity through activation segment conformation. Mol Cell 15(5):661–675

    Article  CAS  PubMed  Google Scholar 

  47. Graves PR, Winkfield KM, Haystead TA (2005) Regulation of zipper-interacting protein kinase activity in vitro and in vivo by multisite phosphorylation. J Biol Chem 280(10):9363–9374

    Article  CAS  PubMed  Google Scholar 

  48. Temmerman K, Simon B, Wilmanns M (2013) Structural and functional diversity in the activity and regulation of DAPK-related protein kinases. FEBS J. doi:10.1111/febs.12384

    PubMed  Google Scholar 

  49. Citri A, Harari D, Shohat G, Ramakrishnan P, Gan J, Lavi S, Eisenstein M, Kimchi A, Wallach D, Pietrokovski S, Yarden Y (2006) Hsp90 recognizes a common surface on client kinases. J Biol Chem 281(20):14361–14369. doi:10.1074/jbc.M512613200

    Article  CAS  PubMed  Google Scholar 

  50. de Diego I, Kuper J, Bakalova N, Kursula P, Wilmanns M (2010) Molecular basis of the death-associated protein kinase-calcium/calmodulin regulator complex. Sci Signal 3(106):ra6. doi:10.1126/scisignal.2000552

    Article  PubMed  Google Scholar 

  51. Anjum R, Roux PP, Ballif BA, Gygi SP, Blenis J (2005) The tumor suppressor DAP kinase is a target of RSK-mediated survival signaling. Curr Biol 15(19):1762–1767. doi:10.1016/j.cub.2005.08.050

    Article  CAS  PubMed  Google Scholar 

  52. Shani G, Henis-Korenblit S, Jona G, Gileadi O, Eisenstein M, Ziv T, Admon A, Kimchi A (2001) Autophosphorylation restrains the apoptotic activity of DRP-1 kinase by controlling dimerization and calmodulin binding. EMBO J 20(5):1099–1113

    Article  CAS  PubMed  Google Scholar 

  53. Shohat G, Spivak-Kroizman T, Cohen O, Bialik S, Shani G, Berrisi H, Eisenstein M, Kimchi A (2001) The pro-apoptotic function of death-associated protein kinase is controlled by a unique inhibitory autophosphorylation-based mechanism. J Biol Chem 276(50):47460–47467

    Article  CAS  PubMed  Google Scholar 

  54. Carlessi R, Levin-Salomon V, Ciprut S, Bialik S, Berissi H, Albeck S, Peleg Y, Kimchi A (2011) GTP binding to the ROC domain of DAP-kinase regulates its function through intramolecular signalling. EMBO Rep 12(9):917–923. doi:10.1038/embor.2011.126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Gozuacik D, Bialik S, Raveh T, Mitou G, Shohat G, Sabanay H, Mizushima N, Yoshimori T, Kimchi A (2008) DAP-kinase is a mediator of endoplasmic reticulum stress-induced caspase activation and autophagic cell death. Cell Death Differ 15(12):1875–1886. doi:10.1038/cdd.2008.121

    Article  CAS  PubMed  Google Scholar 

  56. Guenebeaud C, Goldschneider D, Castets M, Guix C, Chazot G, Delloye-Bourgeois C, Eisenberg-Lerner A, Shohat G, Zhang M, Laudet V, Kimchi A, Bernet A, Mehlen P (2010) The dependence receptor UNC5H2/B triggers apoptosis via PP2A-mediated dephosphorylation of DAP kinase. Mol Cell 40(6):863–876. doi:10.1016/j.molcel.2010.11.021

    Article  CAS  PubMed  Google Scholar 

  57. Widau RC, Jin Y, Dixon SA, Wadzinski BE, Gallagher PJ (2010) Protein phosphatase 2A (PP2A) holoenzymes regulate death-associated protein kinase (DAPK) in ceramide-induced anoikis. J Biol Chem 285(18):13827–13838. doi:10.1074/jbc.M109.085076

    Article  CAS  PubMed  Google Scholar 

  58. Dagher R, Peng S, Gioria S, Feve M, Zeniou M, Zimmermann M, Pigault C, Haiech J (1813) Kilhoffer MC (2011) A general strategy to characterize calmodulin-calcium complexes involved in CaM-target recognition: DAPK and EGFR calmodulin binding domains interact with different calmodulin-calcium complexes. Biochim Biophys Acta 5:1059–1067. doi:10.1016/j.bbamcr.2010.11.004

    Google Scholar 

  59. Raveh T, Berissi H, Eisenstein M, Spivak T, Kimchi A (2000) A functional genetic screen identifies regions at the C-terminal tail and death-domain of death-associated protein kinase that are critical for its proapoptotic activity. Proc Natl Acad Sci USA 97(4):1572–1577

    Article  CAS  PubMed  Google Scholar 

  60. Jin Y, Blue EK, Dixon S, Shao Z, Gallagher PJ (2002) A death-associated protein kinase (DAPK)-interacting protein, DIP-1, is an E3 ubiquitin ligase that promotes tumor necrosis factor-induced apoptosis and regulates the cellular levels of DAPK. J Biol Chem 277(49):46980–46986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Capoccia BJ, Jin RU, Kong YY, Peek RM Jr, Fassan M, Rugge M, Mills JC (2013) The ubiquitin ligase Mindbomb 1 coordinates gastrointestinal secretory cell maturation. J Clin Invest 123(4):1475–1491. doi:10.1172/JCI65703

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Wang WJ, Kuo JC, Ku W, Lee YR, Lin FC, Chang YL, Lin YM, Chen CH, Huang YP, Chiang MJ, Yeh SW, Wu PR, Shen CH, Wu CT, Chen RH (2007) The tumor suppressor DAPK is reciprocally regulated by tyrosine kinase Src and phosphatase LAR. Mol Cell 27(5):701–716. doi:10.1016/j.molcel.2007.06.037

    Article  PubMed  Google Scholar 

  63. Klein CL, Rovelli G, Springer W, Schall C, Gasser T, Kahle PJ (2009) Homo- and heterodimerization of ROCO kinases: LRRK2 kinase inhibition by the LRRK2 ROCO fragment. J Neurochem 111(3):703–715. doi:10.1111/j.1471-4159.2009.06358.x

    Article  CAS  PubMed  Google Scholar 

  64. Lee TH, Chen C-H, Suizu F, Huang P, Schiene-Fischer C, Daum S, Zhang YJ, Goate A, Chen R-H, Zhou XZ, Lu KP (2011) Death-associated protein kinase 1 phosphorylates pin1 and inhibits its prolyl isomerase activity and cellular function. Mol Cell 42(2):147–159

    Article  PubMed Central  PubMed  Google Scholar 

  65. Cohen O, Inbal B, Kissil JL, Raveh T, Berissi H, Spivak-Kroizaman T, Feinstein E, Kimchi A (1999) DAP-kinase participates in TNF-alpha- and Fas-induced apoptosis and its function requires the death domain. J Cell Biol 146(1):141–148

    Article  CAS  PubMed  Google Scholar 

  66. Chen CH, Wang WJ, Kuo JC, Tsai HC, Lin JR, Chang ZF, Chen RH (2005) Bidirectional signals transduced by DAPK–ERK interaction promote the apoptotic effect of DAPK. EMBO J 24(2):294–304

    Article  CAS  PubMed  Google Scholar 

  67. Llambi F, Lourenco FC, Gozuacik D, Guix C, Pays L, Del Rio G, Kimchi A, Mehlen P (2005) The dependence receptor UNC5H2 mediates apoptosis through DAP-kinase. EMBO J 24(6):1192–1201

    Article  CAS  PubMed  Google Scholar 

  68. Lee YR, Yuan WC, Ho HC, Chen CH, Shih HM, Chen RH (2010) The Cullin 3 substrate adaptor KLHL20 mediates DAPK ubiquitination to control interferon responses. EMBO J 29(10):1748–1761. doi:10.1038/emboj.2010.62

    Article  CAS  PubMed  Google Scholar 

  69. Wu PR, Tsai PI, Chen GC, Chou HJ, Huang YP, Chen YH, Lin MY, Kimchi A, Chien CT, Chen RH (2011) DAPK activates MARK1/2 to regulate microtubule assembly, neuronal differentiation, and tau toxicity. Cell Death Differ 18(9):1507–1520. doi:10.1038/cdd.2011.2

    Article  CAS  PubMed  Google Scholar 

  70. Mor I, Carlessi R, Ast T, Feinstein E, Kimchi A (2011) Death-associated protein kinase increases glycolytic rate through binding and activation of pyruvate kinase. Oncogene 31(6):683–693. doi:10.1038/onc.2011.264

    Article  PubMed  Google Scholar 

  71. Stevens C, Lin Y, Harrison B, Burch L, Ridgway RA, Sansom O, Hupp T (2009) Peptide combinatorial libraries identify TSC2 as a death-associated protein kinase (DAPK) death domain-binding protein and reveal a stimulatory role for DAPK in mTORC1 signaling. J Biol Chem 284(1):334–344. doi:10.1074/jbc.M805165200

    Article  CAS  PubMed  Google Scholar 

  72. Kogel D, Bierbaum H, Preuss U, Scheidtmann KH (1999) C-terminal truncation of Dlk/ZIP kinase leads to abrogation of nuclear transport and high apoptotic activity. Oncogene 18(51):7212–7218

    Article  CAS  PubMed  Google Scholar 

  73. Shoval Y, Pietrokovski S, Kimchi A (2007) ZIPK: a unique case of murine-specific divergence of a conserved vertebrate gene. PLoS Genet 3(10):1884–1893. doi:10.1371/journal.pgen.0030180

    Article  CAS  PubMed  Google Scholar 

  74. Page G, Kogel D, Rangnekar V, Scheidtmann KH (1999) Interaction partners of Dlk/ZIP kinase: co-expression of Dlk/ZIP kinase and Par-4 results in cytoplasmic retention and apoptosis. Oncogene 18(51):7265–7273

    Article  CAS  PubMed  Google Scholar 

  75. Vetterkind S, Illenberger S, Kubicek J, Boosen M, Appel S, Naim HY, Scheidtmann KH, Preuss U (2005) Binding of Par-4 to the actin cytoskeleton is essential for Par-4/Dlk-mediated apoptosis. Exp Cell Res 305(2):392–408

    Article  CAS  PubMed  Google Scholar 

  76. Nehru V, Almeida FN, Aspenstrom P (2013) Interaction of RhoD and ZIP kinase modulates actin filament assembly and focal adhesion dynamics. Biochem Biophys Res Commun 433(2):163–169. doi:10.1016/j.bbrc.2013.02.046

    Article  CAS  PubMed  Google Scholar 

  77. Shoval Y, Berissi H, Kimchi A, Pietrokovski S (2011) New modularity of DAP-kinases: alternative splicing of the DRP-1 gene produces a ZIPk-like isoform. PLoS One 6(2):e17344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Flight Attendants Medical Research Institute (FAMRI) and the European Research Council (ERC) FP7. AK is the incumbent of the Helena Rubinstein Chair of Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adi Kimchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiloh, R., Bialik, S. & Kimchi, A. The DAPK family: a structure–function analysis. Apoptosis 19, 286–297 (2014). https://doi.org/10.1007/s10495-013-0924-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0924-5

Keywords

Navigation