Skip to main content
Log in

DAP-kinase and autophagy

  • The Universe of DAPK
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

DAP-kinase (DAPK) is a Ca2+-calmodulin regulated kinase with various, diverse cellular activities, including regulation of apoptosis and caspase-independent death programs, cytoskeletal dynamics, and immune functions. Recently, DAPK has also been shown to be a critical regulator of autophagy, a catabolic process whereby the cell consumes cytoplasmic contents and organelles within specialized vesicles, called autophagosomes. Here we present the latest findings demonstrating how DAPK modulates autophagy. DAPK positively contributes to the induction stage of autophagosome nucleation by modulating the Vps34 class III phosphatidyl inositol 3-kinase complex by two independent mechanisms. The first involves a kinase cascade in which DAPK phosphorylates protein kinase D, which then phosphorylates and activates Vps34. In the second mechanism, DAPK directly phosphorylates Beclin 1, a necessary component of the Vps34 complex, thereby releasing it from its inhibitor, Bcl-2. In addition to these established pathways, we will discuss additional connections between DAPK and autophagy and potential mechanisms that still remain to be fully validated. These include myosin-dependent trafficking of Atg9-containing vesicles to the sites of autophagosome formation, membrane fusion events that contribute to expansion of the autophagosome membrane and maturation through the endocytic pathway, and trafficking to the lysosome on microtubules. Finally, we discuss how DAPK's participation in the autophagic process may be related to its function as a tumor suppressor protein, and its role in neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Deiss LP, Feinstein E, Berissi H, Cohen O, Kimchi A (1995) Identification of a novel serine/threonine kinase and a novel 15-kD protein as potential mediators of the gamma interferon-induced cell death. Genes Dev 9(1):15–30

    Article  CAS  PubMed  Google Scholar 

  2. Bialik S, Kimchi A (2006) The death-associated protein kinases: structure, function and beyond. Annu Rev Biochem 75:189–210

    Article  CAS  PubMed  Google Scholar 

  3. Inbal B, Bialik S, Sabanay I, Shani G, Kimchi A (2002) DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J Cell Biol 157(3):455–468

    Article  CAS  PubMed  Google Scholar 

  4. Eisenberg-Lerner A, Kimchi A (2011) PKD is a kinase of Vps34 that mediates ROS-induced autophagy downstream of DAPk. Cell Death Differ 19(5):788–797

    Article  PubMed  Google Scholar 

  5. Zalckvar E, Berissi H, Mizrachy L, Idelchuk Y, Koren I, Eisenstein M, Sabanay H, Pinkas-Kramarski R, Kimchi A (2009) DAP-kinase-mediated phosphorylation on the BH3 domain of Beclin 1 promotes dissociation of Beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep 10(3):285–292. doi:10.1038/embor.2008.246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Yang Z, Klionsky DJ (2010) Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 22(2):124–131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Mizushima N, Levine B (2010) Autophagy in mammalian development and differentiation. Nat Cell Biol 12(9):823–830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Qu X, Zou Z, Sun Q, Luby-Phelps K, Cheng P, Hogan R, Gilpin C, Levine B (2007) Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128(5):931–946

    Article  CAS  PubMed  Google Scholar 

  9. Al Rawi S, Louvet-Vall S, Djeddi A, Sachse M, Culetto E, Hajjar C, Boyd L, Legouis R, Galy V (2011) Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science 334(6059):1144–1147. doi:10.1126/science.1211878

    Article  CAS  PubMed  Google Scholar 

  10. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147(4):728–741

    Article  CAS  PubMed  Google Scholar 

  11. Rubinsztein DC, Codogno P, Levine B (2012) Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov 11(9):709–730. doi:10.1038/nrd3802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Rubinstein AD, Kimchi A (2012) Life in the balance—a mechanistic view of the crosstalk between autophagy and apoptosis. J Cell Sci 125(Pt 22):5259–5268. doi:10.1242/jcs.115865

    Article  CAS  PubMed  Google Scholar 

  13. Basit F, Cristofanon S, Fulda S (2013) Obatoclax (GX15-070) triggers necroptosis by promoting the assembly of the necrosome on autophagosomal membranes. Cell Death Differ 20(9):1161–1173. doi:10.1038/cdd.2013.45

    Article  CAS  PubMed  Google Scholar 

  14. Denton D, Nicolson S, Kumar S (2012) Cell death by autophagy: facts and apparent artefacts. Cell Death Differ 19(1):87–95. doi:10.1038/cdd.2011.146

    Article  CAS  PubMed  Google Scholar 

  15. Weidberg H, Shvets E, Elazar Z (2011) Biogenesis and cargo selectivity of autophagosomes. Annu Rev Biochem 80:125–156. doi:10.1146/annurev-biochem-052709-094552

    Article  CAS  PubMed  Google Scholar 

  16. Jung CH, Ro SH, Cao J, Otto NM, Kim DH (2010) mTOR regulation of autophagy. FEBS Lett 584(7):1287–1295. doi:10.1016/j.febslet.2010.01.017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Jewell JL, Russell RC, Guan KL (2013) Amino acid signalling upstream of mTOR. Nat Rev Mol Cell Biol 14(3):133–139. doi:10.1038/nrm3522

    Article  CAS  PubMed  Google Scholar 

  18. Bar-Peled L, Chantranupong L, Cherniack AD, Chen WW, Ottina KA, Grabiner BC, Spear ED, Carter SL, Meyerson M, Sabatini DM (2013) A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340(6136):1100–1106. doi:10.1126/science.1232044

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Alers S, Loffler AS, Wesselborg S, Stork B (2012) Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol 32(1):2–11. doi:10.1128/MCB.06159-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Lamb CA, Dooley HC, Tooze SA (2013) Endocytosis and autophagy: shared machinery for degradation. BioEssays 35(1):34–45. doi:10.1002/bies.201200130

    Article  CAS  PubMed  Google Scholar 

  21. Tooze SA, Yoshimori T (2010) The origin of the autophagosomal membrane. Nat Cell Biol 12(9):831–835. doi:10.1038/ncb0910-831

    Article  CAS  PubMed  Google Scholar 

  22. Moreau K, Renna M, Rubinsztein DC (2013) Connections between SNAREs and autophagy. Trends Biochem Sci 38(2):57–63. doi:10.1016/j.tibs.2012.11.004

    Article  CAS  PubMed  Google Scholar 

  23. Zavodszky E, Vicinanza M, Rubinsztein DC (2013) Biology and trafficking of ATG9 and ATG16L1, two proteins that regulate autophagosome formation. FEBS Lett 587(13):1988–1996. doi:10.1016/j.febslet.2013.04.025

    Article  CAS  PubMed  Google Scholar 

  24. Russell RC, Tian Y, Yuan H, Park HW, Chang YY, Kim J, Kim H, Neufeld TP, Dillin A, Guan KL (2013) ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol 15(7):741–750. doi:10.1038/ncb2757

    Article  CAS  PubMed  Google Scholar 

  25. Wong PM, Puente C, Ganley IG, Jiang X (2013) The ULK1 complex: sensing nutrient signals for autophagy activation. Autophagy 9(2):124–137. doi:10.4161/auto.23323

    Article  CAS  PubMed  Google Scholar 

  26. Di Bartolomeo S, Corazzari M, Nazio F, Oliverio S, Lisi G, Antonioli M, Pagliarini V, Matteoni S, Fuoco C, Giunta L, D’Amelio M, Nardacci R, Romagnoli A, Piacentini M, Cecconi F, Fimia GM (2010) The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. J Cell Biol 191(1):155–168. doi:10.1083/jcb.201002100

    Article  PubMed  Google Scholar 

  27. Young A, Chan E, Hu X, Kochl R, Crawshaw S, High S, Hailey D, Lippincott-Schwartz J, Tooze S (2006) Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J Cell Sci 119(18):3888–3900

    Article  CAS  PubMed  Google Scholar 

  28. Tang HW, Wang YB, Wang SL, Wu MH, Lin SY, Chen GC (2011) Atg1-mediated myosin II activation regulates autophagosome formation during starvation-induced autophagy. EMBO J 30(4):636–651. doi:10.1038/emboj.2010.338

    Article  CAS  PubMed  Google Scholar 

  29. Longatti A, Tooze SA (2009) Vesicular trafficking and autophagosome formation. Cell Death Differ 16(7):956–965. doi:10.1038/cdd.2009.39

    Article  CAS  PubMed  Google Scholar 

  30. Bento CF, Puri C, Moreau K, Rubinsztein DC (2013) The role of membrane-trafficking small GTPases in the regulation of autophagy. J Cell Sci 126(Pt 5):1059–1069. doi:10.1242/jcs.123075

    Article  CAS  PubMed  Google Scholar 

  31. Orsi A, Polson HE, Tooze SA (2010) Membrane trafficking events that partake in autophagy. Curr Opin Cell Biol 22(2):150–156. doi:10.1016/j.ceb.2009.11.013

    Article  CAS  PubMed  Google Scholar 

  32. Shani G, Marash L, Gozuacik D, Bialik S, Teitelbaum L, Shohat G, Kimchi A (2004) Death-associated protein kinase phosphorylates ZIP kinase, forming a unique kinase hierarchy to activate its cell death functions. Mol Cell Biol 24(19):8611–8626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Cohen O, Feinstein E, Kimchi A (1997) DAP-kinase is a Ca2+/calmodulin-dependent, cytoskeletal-associated protein kinase, with cell death-inducing functions that depend on its catalytic activity. EMBO J 16(5):998–1008

    Article  CAS  PubMed  Google Scholar 

  34. Shohat G, Spivak-Kroizman T, Cohen O, Bialik S, Shani G, Berrisi H, Eisenstein M, Kimchi A (2001) The pro-apoptotic function of death-associated protein kinase is controlled by a unique inhibitory autophosphorylation-based mechanism. J Biol Chem 276(50):47460–47467

    Article  CAS  PubMed  Google Scholar 

  35. Gozuacik D, Bialik S, Raveh T, Mitou G, Shohat G, Sabanay H, Mizushima N, Yoshimori T, Kimchi A (2008) DAP-kinase is a mediator of endoplasmic reticulum stress-induced caspase activation and autophagic cell death. Cell Death Differ 15(12):1875–1886. doi:10.1038/cdd.2008.121

    Article  CAS  PubMed  Google Scholar 

  36. Guenebeaud C, Goldschneider D, Castets M, Guix C, Chazot G, Delloye-Bourgeois C, Eisenberg-Lerner A, Shohat G, Zhang M, Laudet V, Kimchi A, Bernet A, Mehlen P (2010) The dependence receptor UNC5H2/B triggers apoptosis via PP2A-mediated dephosphorylation of DAP kinase. Mol Cell 40(6):863–876. doi:10.1016/j.molcel.2010.11.021

    Article  CAS  PubMed  Google Scholar 

  37. Widau RC, Jin Y, Dixon SA, Wadzinski BE, Gallagher PJ (2010) Protein phosphatase 2A (PP2A) holoenzymes regulate death-associated protein kinase (DAPK) in ceramide-induced anoikis. J Biol Chem 285(18):13827–13838. doi:10.1074/jbc.M109.085076

    Article  CAS  PubMed  Google Scholar 

  38. Carlessi R, Levin-Salomon V, Ciprut S, Bialik S, Berissi H, Albeck S, Peleg Y, Kimchi A (2011) GTP binding to the ROC domain of DAP-kinase regulates its function through intramolecular signalling. EMBO Rep 12(9):917–923

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Shiloh R, Bialik S, Kimchi A (2013) The DAPK family: a structure-function analysis. Apoptosis. doi: 10.1007/s10495-013-0924-5

  40. Shiloh R, Kimchi A (2013) The DAP-Kinase interactome. Apoptosis. doi: 10.1007/s10495-013-0926-3

  41. Ling YH, Aracil M, Zou Y, Yuan Z, Lu B, Jimeno J, Cuervo AM, Perez-Soler R (2011) PM02734 (elisidepsin) induces caspase-independent cell death associated with features of autophagy, inhibition of the Akt/mTOR signaling pathway, and activation of death-associated protein kinase. Clin Cancer Res 17(16):5353–5366. doi:10.1158/1078-0432.CCR-10-1948

    Article  CAS  PubMed  Google Scholar 

  42. Gandesiri M, Chakilam S, Ivanovska J, Benderska N, Ocker M, Di Fazio P, Feoktistova M, Gali-Muhtasib H, Rave-Frank M, Prante O, Christiansen H, Leverkus M, Hartmann A, Schneider-Stock R (2012) DAPK plays an important role in panobinostat-induced autophagy and commits cells to apoptosis under autophagy deficient conditions. Apoptosis 17(12):1300–1315. doi:10.1007/s10495-012-0757-7

    Article  CAS  PubMed  Google Scholar 

  43. Zhang H, Chen GG, Zhang Z, Chun S, Leung BC, Lai PB (2012) Induction of autophagy in hepatocellular carcinoma cells by SB203580 requires activation of AMPK and DAPK but not p38 MAPK. Apoptosis 17(4):325–334. doi:10.1007/s10495-011-0685-y

    Article  CAS  PubMed  Google Scholar 

  44. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122(6):927–939

    Article  CAS  PubMed  Google Scholar 

  45. Tang D, Kang R, Livesey KM, Cheh CW, Farkas A, Loughran P, Hoppe G, Bianchi ME, Tracey KJ, Zeh HJ 3rd, Lotze MT (2010) Endogenous HMGB1 regulates autophagy. J Cell Biol 190(5):881–892. doi:10.1083/jcb.200911078

    Article  CAS  PubMed  Google Scholar 

  46. Shi CS, Kehrl JH (2010) TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy. Sci Signal 3(123):ra42. doi:10.1126/scisignal.2000751

    Article  PubMed  Google Scholar 

  47. Pattingre S, Bauvy C, Carpentier S, Levade T, Levine B, Codogno P (2009) Role of JNK1-dependent Bcl-2 phosphorylation in ceramide-induced macroautophagy. J Biol Chem 284(5):2719–2728. doi:10.1074/jbc.M805920200

    Article  CAS  PubMed  Google Scholar 

  48. Wei Y, Pattingre S, Sinha S, Bassik M, Levine B (2008) JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 30:678–688

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Zalckvar E, Berissi H, Eisenstein M, Kimchi A (2009) Phosphorylation of Beclin 1 by DAP-kinase promotes autophagy by weakening its interactions with Bcl-2 and Bcl-X(L). Autophagy 5(5):720–722

    Article  CAS  PubMed  Google Scholar 

  50. Gurkar AU, Chu K, Raj L, Bouley R, Lee SH, Kim YB, Dunn SE, Mandinova A, Lee SW (2013) Identification of ROCK1 kinase as a critical regulator of Beclin 1-mediated autophagy during metabolic stress. Nat Commun 4:2189. doi:10.1038/ncomms3189

    Article  PubMed  Google Scholar 

  51. Hagerty L, Weitzel DH, Chambers J, Fortner CN, Brush MH, Loiselle D, Hosoya H, Haystead TA (2007) ROCK1 phosphorylates and activates zipper-interacting protein kinase. J Biol Chem 282(7):4884–4893. doi:10.1074/jbc.M609990200

    Article  CAS  PubMed  Google Scholar 

  52. Eisenberg-Lerner A, Kimchi A (2007) DAP-kinase regulates JNK signaling by binding and activating protein kinase D under oxidative stress. Cell Death Differ 14:1908–1915

    Article  CAS  PubMed  Google Scholar 

  53. Bialik S, Bresnick AR, Kimchi A (2004) DAP-kinase-mediated morphological changes are localization dependent and involve myosin-II phosphorylation. Cell Death Differ 11(6):631–644

    CAS  PubMed  Google Scholar 

  54. Stevens C, Lin Y, Harrison B, Burch L, Ridgway RA, Sansom O, Hupp T (2009) Peptide combinatorial libraries identify TSC2 as a death-associated protein kinase (DAPK) death domain-binding protein and reveal a stimulatory role for DAPK in mTORC1 signaling. J Biol Chem 284(1):334–344. doi:10.1074/jbc.M805165200

    Article  CAS  PubMed  Google Scholar 

  55. Kuo JC, Lin JR, Staddon JM, Hosoya H, Chen RH (2003) Uncoordinated regulation of stress fibers and focal adhesions by DAP kinase. J Cell Sci 116(Pt 23):4777–4790

    Article  CAS  PubMed  Google Scholar 

  56. Wang WJ, Kuo JC, Yao CC, Chen RH (2002) DAP-kinase induces apoptosis by suppressing integrin activity and disrupting matrix survival signals. J Cell Biol 159(1):169–179

    Article  CAS  PubMed  Google Scholar 

  57. Kuo J, Wang W, Yao C, Wu P, Chen R (2006) The tumor suppressor DAPK inhibits cell motility by blocking the integrin-mediated polarity pathway. J Cell Biol 172(4):619–631

    Article  CAS  PubMed  Google Scholar 

  58. Bialik S, Pietrokovski S, Kimchi A (2011) Myosin drives autophagy in a pathway linking Atg1 to Atg9. EMBO J 30(4):629–630. doi:10.1038/emboj.2011.8

    Article  CAS  PubMed  Google Scholar 

  59. Graves PR, Winkfield KM, Haystead TA (2005) Regulation of zipper-interacting protein kinase activity in vitro and in vivo by multisite phosphorylation. J Biol Chem 280(10):9363–9374

    Article  CAS  PubMed  Google Scholar 

  60. Wu PR, Tsai PI, Chen GC, Chou HJ, Huang YP, Chen YH, Lin MY, Kimchi A, Chien CT, Chen RH (2011) DAPK activates MARK1/2 to regulate microtubule assembly, neuronal differentiation, and tau toxicity. Cell Death Differ 18(9):1507–1520. doi:10.1038/cdd.2011.2

    Article  CAS  PubMed  Google Scholar 

  61. Drewes G, Ebneth A, Mandelkow EM (1998) MAPs, MARKs and microtubule dynamics. Trends Biochem Sci 23(8):307–311

    Article  CAS  PubMed  Google Scholar 

  62. Harrison B, Kraus M, Burch L, Stevens C, Craig A, Gordon-Weeks P, Hupp T (2008) DAPK-1 binding to a linear peptide motif in MAP1B stimulates autophagy and membrane blebbing. J Biol Chem 283:9999–10014

    Article  CAS  PubMed  Google Scholar 

  63. Yue Z (2007) Regulation of neuronal autophagy in axon: implication of autophagy in axonal function and dysfunction/degeneration. Autophagy 3(2):139–141

    CAS  PubMed  Google Scholar 

  64. Wang QJ, Ding Y, Kohtz DS, Mizushima N, Cristea IM, Rout MP, Chait BT, Zhong Y, Heintz N, Yue Z (2006) Induction of autophagy in axonal dystrophy and degeneration. J Neurosci 26(31):8057–8068. doi:10.1523/JNEUROSCI.2261-06.2006

    Article  CAS  PubMed  Google Scholar 

  65. Capoccia BJ, Jin RU, Kong YY, Peek RM Jr, Fassan M, Rugge M, Mills JC (2013) The ubiquitin ligase Mindbomb 1 coordinates gastrointestinal secretory cell maturation. J Clin Invest 123(4):1475–1491. doi:10.1172/JCI65703

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Pelkmans L, Fava E, Grabner H, Hannus M, Habermann B, Krausz E, Zerial M (2005) Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Nature 436(7047):78–86. doi:10.1038/nature03571

    Article  CAS  PubMed  Google Scholar 

  67. Tian JH, Das S, Sheng ZH (2003) Ca2+-dependent phosphorylation of syntaxin-1A by the death-associated protein (DAP) kinase regulates its interaction with Munc18. J Biol Chem 278(28):26265–26274

    Article  CAS  PubMed  Google Scholar 

  68. Lorin S, Hamai A, Mehrpour M, Codogno P (2013) Autophagy regulation and its role in cancer. Semin Cancer Biol. doi:10.1016/j.semcancer.2013.06.007

    PubMed  Google Scholar 

  69. Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, Mukherjee C, Shi Y, Gelinas C, Fan Y, Nelson DA, Jin S, White E (2006) Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10:51–64

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Karantza-Wadsworth V, Patel S, Kravchuk O, Chen G, Mathew R, Jin S, White E (2007) Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev 21(13):1621–1635

    Article  CAS  PubMed  Google Scholar 

  71. Mathew R, Kongara S, Beaudoin B, Karp C, Bray K, Degenhardt K, Chen G, Jin S, White E (2007) Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev 21(11):1367–1381

    Article  CAS  PubMed  Google Scholar 

  72. Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY, Bray K, Reddy A, Bhanot G, Gelinas C, Dipaola RS, Karantza-Wadsworth V, White E (2009) Autophagy suppresses tumorigenesis through elimination of p62. Cell 137(6):1062–1075. doi:10.1016/j.cell.2009.03.048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. White E, Karp C, Strohecker AM, Guo Y, Mathew R (2010) Role of autophagy in suppression of inflammation and cancer. Curr Opin Cell Biol 22(2):212–217. doi:10.1016/j.ceb.2009.12.008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B (1999) Induction of autophagy and inhibition of tumorigenesis by Beclin 1. Nature 402(6762):672–676

    Article  CAS  PubMed  Google Scholar 

  75. Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen E, Mizushima N, Ohsumi Y, Cattoretti G, Levine B (2003) Promotion of tumorigenesis by heterozygous disruption of the Beclin 1 autophagy gene. J Clin Invest 112(12):1809–1820

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Bialik S, Kimchi A (2008) Autophagy and tumor suppression: recent advances in understanding the link between autophagic cell death pathways and tumor development. Adv Exp Med Biol 615:177–200

    Article  CAS  PubMed  Google Scholar 

  77. Liu J, Xia H, Kim M, Xu L, Li Y, Zhang L, Cai Y, Norberg HV, Zhang T, Furuya T, Jin M, Zhu Z, Wang H, Yu J, Li Y, Hao Y, Choi A, Ke H, Ma D, Yuan J (2011) Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13. Cell 147(1):223–234. doi:10.1016/j.cell.2011.08.037

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Raveh T, Droguett G, Horwitz MS, DePinho RA, Kimchi A (2001) DAP kinase activates a p19ARF/p53-mediated apoptotic checkpoint to suppress oncogenic transformation. Nat Cell Biol 3(1):1–7

    Article  CAS  PubMed  Google Scholar 

  79. Inbal B, Cohen O, Polak-Charcon S, Kopolovic J, Vadai E, Eisenbach L, Kimchi A (1997) DAP kinase links the control of apoptosis to metastasis. Nature 390(6656):180–184

    Article  CAS  PubMed  Google Scholar 

  80. Mor I, Carlessi R, Ast T, Feinstein E, Kimchi A (2011) Death-associated protein kinase increases glycolytic rate through binding and activation of pyruvate kinase. Oncogene 31(6):683–693. doi:10.1038/onc.2011.264

    Article  PubMed  Google Scholar 

  81. Li Y, Grupe A, Rowland C, Nowotny P, Kauwe JSK, Smemo S, Hinrichs A, Tacey K, Toombs TA, Kwok S, Catanese J, White TJ, Maxwell TJ, Hollingworth P, Abraham R, Rubinsztein DC, Brayne C, Wavrant-De Vrieze F, Hardy J, O’Donovan M, Lovestone S, Morris JC, Thal LJ, Owen M, Williams J, Goate A (2006) DAPK1 variants are associated with Alzheimer’s disease and allele-specific expression. Human Mol Gen 15(17):2560–2568. doi:10.1093/hmg/ddl178.

    Google Scholar 

  82. Henshall DC, Schindler CK, So NK, Lan JQ, Meller R, Simon RP (2004) Death-associated protein kinase expression in human temporal lobe epilepsy. Ann Neurol 55(4):485–494

    Article  CAS  PubMed  Google Scholar 

  83. Velentza AV, Wainwright MS, Zasadzki M, Mirzoeva S, Schumacher AM, Haiech J, Focia PJ, Egli M, Watterson DM (2003) An aminopyridazine-based inhibitor of a pro-apoptotic protein kinase attenuates hypoxia-ischemia induced acute brain injury. Bioorg Med Chem Lett 13(20):3465–3470

    Article  CAS  PubMed  Google Scholar 

  84. Pelled D, Raveh T, Riebeling C, Fridkin M, Berissi H, Futerman AH, Kimchi A (2002) Death-associated protein (DAP) kinase plays a central role in ceramide-induced apoptosis in cultured hippocampal neurons. J Biol Chem 277(3):1957–1961

    Article  CAS  PubMed  Google Scholar 

  85. Schori H, Yoles E, Wheeler LA, Raveh T, Kimchi A, Schwartz M (2002) Immune-related mechanisms participating in resistance and susceptibility to glutamate toxicity. Eur J Neurosci 16(4):557–564

    Article  PubMed  Google Scholar 

  86. Tu W, Xu X, Peng L, Zhong X, Zhang W, Soundarapandian MM, Belal C, Wang M, Jia N, Zhang W, Lew F, Chan SL, Chen Y, Lu Y (2010) DAPK1 Interaction with NMDA Receptor NR2B Subunits Mediates Brain Damage in Stroke. Cell 140(2):222–234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the Flight Attendants Medical Research Institute (FAMRI) and the European Research Council (ERC) FP7. AK is the incumbent of the Helena Rubinstein Chair of Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adi Kimchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levin-Salomon, V., Bialik, S. & Kimchi, A. DAP-kinase and autophagy. Apoptosis 19, 346–356 (2014). https://doi.org/10.1007/s10495-013-0918-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0918-3

Keywords

Navigation