Skip to main content

Advertisement

Log in

Heteromeric Amino Acid Transporters in Brain: from Physiology to Pathology

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In humans, more than 50 transporters are responsible for the traffic and balance of amino acids within and between cells and tissues, and half of them have been associated with disease [1]. Covering all common amino acids, Heteromeric Amino acid Transporters (HATs) are one class of such transporters. This review first highlights structural and functional studies that solved the atomic structure of HATs and revealed molecular clues on substrate interaction. Moreover, this review focuses on HATs that have a role in the central nervous system (CNS) and that are related to neurological diseases, including: (i) LAT1/CD98hc and its role in the uptake of branched chain amino acids trough the blood brain barrier and autism. (ii) LAT2/CD98hc and its potential role in the transport of glutamine between plasma and cerebrospinal fluid. (iii) y+LAT2/CD98hc that is emerging as a key player in hepatic encephalopathy. xCT/CD98hc as a potential therapeutic target in glioblastoma, and (iv) Asc-1/CD98hc as a potential therapeutic target in pathologies with alterations in NMDA glutamate receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bröer S, Palacín M (2011) The role of amino acid transporters in inherited and acquired diseases. Biochem J 436(2):193–211. https://doi.org/10.1042/BJ20101912

    Article  CAS  PubMed  Google Scholar 

  2. Fotiadis D, Kanai Y, Palacín M (2013) The SLC3 and SLC7 families of amino acid transporters. Mol Aspects Med 34(2–3):139–158. https://doi.org/10.1016/j.mam.2012.10.007

    Article  CAS  PubMed  Google Scholar 

  3. Closs EI, Boissel JP, Habermeier A, Rotmann A (2006) Structure and function of cationic amino acid transporters (CATs). J Membr Biol 213(2):67–77. https://doi.org/10.1007/s00232-006-0875-7

    Article  CAS  PubMed  Google Scholar 

  4. Fukasawa Y, Segawa H, Kim JY, Chairoungdua A, Kim DK, Matsuo H, Cha SH, Endou H, Kanai Y (2000) Identification and characterization of a Na(+)-independent neutral amino acid transporter that associates with the 4F2 heavy chain and exhibits substrate selectivity for small neutral D- and L-amino acids. J Biol Chem 275(13):9690–9698. https://doi.org/10.1074/jbc.275.13.9690

    Article  CAS  PubMed  Google Scholar 

  5. Mastroberardino L, Spindler B, Pfeiffer R, Skelly PJ, Loffing J, Shoemaker CB, Verrey F (1998) Amino-acid transport by heterodimers of 4F2hc/CD98 and members of a permease family. Nature 395(6699):288–291. https://doi.org/10.1038/26246

    Article  CAS  PubMed  Google Scholar 

  6. Pfeiffer R, Rossier G, Spindler B, Meier C, Kühn L, Verrey F (1999) Amino acid transport of y+L-type by heterodimers of 4F2hc/CD98 and members of the glycoprotein-associated amino acid transporter family. EMBO J 18(1):49–57. https://doi.org/10.1093/emboj/18.1.49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pineda M, Fernández E, Torrents D, Estévez R, López C, Camps M, Lloberas J, Zorzano A, Palacín M (1999) Identification of a membrane protein, LAT-2, that Co-expresses with 4F2 heavy chain, an L-type amino acid transport activity with broad specificity for small and large zwitterionic amino acids. J Biol Chem 274(28):19738–19744. https://doi.org/10.1074/jbc.274.28.19738

    Article  CAS  PubMed  Google Scholar 

  8. Sato H, Tamba M, Ishii T, Bannai S (1999) Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem 274(17):11455–11458. https://doi.org/10.1074/jbc.274.17.11455

    Article  CAS  PubMed  Google Scholar 

  9. Torrents D, Estévez R, Pineda M, Fernández E, Lloberas J, Shi YB, Zorzano A, Palacín M (1998) Identification and characterization of a membrane protein (y+L amino acid transporter-1) that associates with 4F2hc to encode the amino acid transport activity y+L. A candidate gene for lysinuric protein intolerance. J Biol Chem 273 (49):32437–32445. doi:https://doi.org/10.1074/jbc.273.49.32437

  10. Feliubadaló L, Font M, Purroy J, Rousaud F, Estivill X, Nunes V, Golomb E, Centola M, Aksentijevich I, Kreiss Y, Goldman B, Pras M, Kastner DL, Pras E, Gasparini P, Bisceglia L, Beccia E, Gallucci M, de Sanctis L, Ponzone A, Rizzoni GF, Zelante L, Bassi MT, George AL, Manzoni M, De Grandi A, Riboni M, Endsley JK, Ballabio A, Borsani G, Reig N, Fernández E, Estévez R, Pineda M, Torrents D, Camps M, Lloberas J, Zorzano A, Palacín M (1999) Non-type I cystinuria caused by mutations in SLC7A9, encoding a subunit (bo,+AT) of rBAT. Nat Genet 23(1):52–57. https://doi.org/10.1038/12652

    Article  PubMed  Google Scholar 

  11. Nagamori S, Wiriyasermkul P, Guarch ME, Okuyama H, Nakagomi S, Tadagaki K, Nishinaka Y, Bodoy S, Takafuji K, Okuda S, Kurokawa J, Ohgaki R, Nunes V, Palacín M, Kanai Y (2016) Novel cystine transporter in renal proximal tubule identified as a missing partner of cystinuria-related plasma membrane protein rBAT/SLC3A1. Proc Natl Acad Sci U S A 113(3):775–780. https://doi.org/10.1073/pnas.1519959113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Calonge MJ, Gasparini P, Chillarón J, Chillón M, Gallucci M, Rousaud F, Zelante L, Testar X, Dallapiccola B, Di Silverio F (1994) Cystinuria caused by mutations in rBAT, a gene involved in the transport of cystine. Nat Genet 6(4):420–425. https://doi.org/10.1038/ng0494-420

    Article  CAS  PubMed  Google Scholar 

  13. Torrents D, Mykkänen J, Pineda M, Feliubadaló L, Estévez R, de Cid R, Sanjurjo P, Zorzano A, Nunes V, Huoponen K, Reinikainen A, Simell O, Savontaus ML, Aula P, Palacín M (1999) Identification of SLC7A7, encoding y+LAT-1, as the lysinuric protein intolerance gene. Nat Genet 21(3):293–296. https://doi.org/10.1038/6809

    Article  CAS  PubMed  Google Scholar 

  14. Espino Guarch M, Font-Llitjós M, Murillo-Cuesta S, Errasti-Murugarren E, Celaya AM, Girotto G, Vuckovic D, Mezzavilla M, Vilches C, Bodoy S, Sahún I, González L, Prat E, Zorzano A, Dierssen M, Varela-Nieto I, Gasparini P, Palacín M, Nunes V (2018) Mutations in L-type amino acid transporter-2 support SLC7A8 as a novel gene involved in age-related hearing loss. Elife. https://doi.org/10.7554/eLife.31511

    Article  PubMed  PubMed Central  Google Scholar 

  15. Knöpfel EB, Vilches C, Camargo SMR, Errasti-Murugarren E, Stäubli A, Mayayo C, Munier FL, Miroshnikova N, Poncet N, Junza A, Bhattacharya SS, Prat E, Berry V, Berger W, Heon E, Moore AT, Yanes Ó, Nunes V, Palacín M, Verrey F, Kloeckener-Gruissem B (2019) Dysfunctional LAT2 amino acid transporter Is associated with cataract in mouse and humans. Front Physiol 10:688. https://doi.org/10.3389/fphys.2019.00688

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tărlungeanu DC, Deliu E, Dotter CP, Kara M, Janiesch PC, Scalise M, Galluccio M, Tesulov M, Morelli E, Sonmez FM, Bilguvar K, Ohgaki R, Kanai Y, Johansen A, Esharif S, Ben-Omran T, Topcu M, Schlessinger A, Indiveri C, Duncan KE, Caglayan AO, Gunel M, Gleeson JG, Novarino G (2016) Impaired amino acid transport at the blood brain barrier Is a cause of autism spectrum disorder. Cell 167(6):1481-1494.e1418. https://doi.org/10.1016/j.cell.2016.11.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Veettil MV, Sadagopan S, Sharma-Walia N, Wang FZ, Raghu H, Varga L, Chandran B (2008) Kaposi’s sarcoma-associated herpesvirus forms a multimolecular complex of integrins (alphaVbeta5, alphaVbeta3, and alpha3beta1) and CD98-xCT during infection of human dermal microvascular endothelial cells, and CD98-xCT is essential for the postentry stage of infection. J Virol 82(24):12126–12144. https://doi.org/10.1128/JVI.01146-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Baker DA, McFarland K, Lake RW, Shen H, Tang XC, Toda S, Kalivas PW (2003) Neuroadaptations in cystine-glutamate exchange underlie cocaine relapse. Nat Neurosci 6(7):743–749. https://doi.org/10.1038/nn1069

    Article  CAS  PubMed  Google Scholar 

  19. Fan X, Ross DD, Arakawa H, Ganapathy V, Tamai I, Nakanishi T (2010) Impact of system L amino acid transporter 1 (LAT1) on proliferation of human ovarian cancer cells: a possible target for combination therapy with anti-proliferative aminopeptidase inhibitors. Biochem Pharmacol 80(6):811–818. https://doi.org/10.1016/j.bcp.2010.05.021

    Article  CAS  PubMed  Google Scholar 

  20. Lo M, Wang YZ, Gout PW (2008) The x(c)- cystine/glutamate antiporter: a potential target for therapy of cancer and other diseases. J Cell Physiol 215(3):593–602. https://doi.org/10.1002/jcp.21366

    Article  CAS  PubMed  Google Scholar 

  21. Bröer A, Rahimi F, Bröer S (2016) Deletion of amino acid transporter ASCT2 (SLC1A5) reveals an essential role for transporters SNAT1 (SLC38A1) and SNAT2 (SLC38A2) to sustain glutaminolysis in cancer cells. J Biol Chem 291(25):13194–13205. https://doi.org/10.1074/jbc.M115.700534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson C, Myer VE, MacKeigan JP, Porter JA, Wang YK, Cantley LC, Finan PM, Murphy LO (2009) Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136(3):521–534. https://doi.org/10.1016/j.cell.2008.11.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vilches C, Boiadjieva-Knöpfel E, Bodoy S, Camargo S, López de Heredia M, Prat E, Ormazabal A, Artuch R, Zorzano A, Verrey F, Nunes V, Palacín M (2018) Cooperation of antiporter LAT2/CD98hc with uniporter TAT1 for renal reabsorption of neutral amino acids. J Am Soc Nephrol 29(6):1624–1635. https://doi.org/10.1681/ASN.2017111205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee Y, Wiriyasermkul P, Jin C, Quan L, Ohgaki R, Okuda S, Kusakizako T, Nishizawa T, Oda K, Ishitani R, Yokoyama T, Nakane T, Shirouzu M, Endou H, Nagamori S, Kanai Y, Nureki O (2019) Cryo-EM structure of the human L-type amino acid transporter 1 in complex with glycoprotein CD98hc. Nat Struct Mol Biol 26(6):510–517. https://doi.org/10.1038/s41594-019-0237-7

    Article  CAS  PubMed  Google Scholar 

  25. Wu D, Grund TN, Welsch S, Mills DJ, Michel M, Safarian S, Michel H (2020) Structural basis for amino acid exchange by a human heteromeric amino acid transporter. Proc Natl Acad Sci U S A 117(35):21281–21287. https://doi.org/10.1073/pnas.2008111117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yan R, Li Y, Shi Y, Zhou J, Lei J, Huang J, Zhou Q (2020) Cryo-EM structure of the human heteromeric amino acid transporter b0,+AT-rBAT. Sci Adv 6 (16):eaay6379. doi:https://doi.org/10.1126/sciadv.aay6379

  27. Yan R, Zhao X, Lei J, Zhou Q (2019) Structure of the human LAT1-4F2hc heteromeric amino acid transporter complex. Nature 568(7750):127–130. https://doi.org/10.1038/s41586-019-1011-z

    Article  CAS  PubMed  Google Scholar 

  28. Errasti-Murugarren E, Fort J, Bartoccioni P, Díaz L, Pardon E, Carpena X, Espino-Guarch M, Zorzano A, Ziegler C, Steyaert J, Fernández-Recio J, Fita I, Palacín M (2019) L amino acid transporter structure and molecular bases for the asymmetry of substrate interaction. Nat Commun 10(1):1807. https://doi.org/10.1038/s41467-019-09837-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jungnickel KEJ, Parker JL, Newstead S (2018) Structural basis for amino acid transport by the CAT family of SLC7 transporters. Nat Commun 9(1):550. https://doi.org/10.1038/s41467-018-03066-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Meier C, Ristic Z, Klauser S, Verrey F (2002) Activation of system L heterodimeric amino acid exchangers by intracellular substrates. EMBO J 21(4):580–589. https://doi.org/10.1093/emboj/21.4.580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Reig N, Chillarón J, Bartoccioni P, Fernández E, Bendahan A, Zorzano A, Kanner B, Palacín M, Bertran J (2002) The light subunit of system b(o,+) is fully functional in the absence of the heavy subunit. EMBO J 21(18):4906–4914. https://doi.org/10.1093/emboj/cdf500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sperandeo MP, Annunziata P, Ammendola V, Fiorito V, Pepe A, Soldovieri MV, Taglialatela M, Andria G, Sebastio G (2005) Lysinuric protein intolerance: identification and functional analysis of mutations of the SLC7A7 gene. Hum Mutat 25(4):410. https://doi.org/10.1002/humu.9323

    Article  PubMed  Google Scholar 

  33. Fang Y, Jayaram H, Shane T, Kolmakova-Partensky L, Wu F, Williams C, Xiong Y, Miller C (2009) Structure of a prokaryotic virtual proton pump at 3.2 A resolution. Nature 460 (7258):1040–1043. doi:https://doi.org/10.1038/nature08201

  34. Gao X, Zhou L, Jiao X, Lu F, Yan C, Zeng X, Wang J, Shi Y (2010) Mechanism of substrate recognition and transport by an amino acid antiporter. Nature 463(7282):828–832. https://doi.org/10.1038/nature08741

    Article  CAS  PubMed  Google Scholar 

  35. Ilgü H, Jeckelmann JM, Gapsys V, Ucurum Z, de Groot BL, Fotiadis D (2016) Insights into the molecular basis for substrate binding and specificity of the wild-type L-arginine/agmatine antiporter AdiC. Proc Natl Acad Sci U S A 113(37):10358–10363. https://doi.org/10.1073/pnas.1605442113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kowalczyk L, Ratera M, Paladino A, Bartoccioni P, Errasti-Murugarren E, Valencia E, Portella G, Bial S, Zorzano A, Fita I, Orozco M, Carpena X, Vázquez-Ibar JL, Palacín M (2011) Molecular basis of substrate-induced permeation by an amino acid antiporter. Proc Natl Acad Sci U S A 108(10):3935–3940. https://doi.org/10.1073/pnas.1018081108

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shaffer PL, Goehring A, Shankaranarayanan A, Gouaux E (2009) Structure and mechanism of a Na+-independent amino acid transporter. Science 325(5943):1010–1014. https://doi.org/10.1126/science.1176088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Singh N, Ecker GF (2018) Insights into the structure, function, and ligand discovery of the Large neutral Amino acid Transporter 1, LAT1. Int J Mol Sci. https://doi.org/10.3390/ijms19051278

    Article  PubMed  PubMed Central  Google Scholar 

  39. Torrecillas IR, Conde-Ceide S, de Lucas AI, Garcı A, Molina A, Trabanco AA, Lavreysen H, Pardo L, Tresadern G (2019) Inhibition of the alanine-serine-cysteine-1 transporter by BMS-466442. ACS Chem Neurosci 10(5):2510–2517. https://doi.org/10.1021/acschemneuro.9b00019

    Article  CAS  PubMed  Google Scholar 

  40. Fort J, de la Ballina LR, Burghardt HE, Ferrer-Costa C, Turnay J, Ferrer-Orta C, Usón I, Zorzano A, Fernández-Recio J, Orozco M, Lizarbe MA, Fita I, Palacín M (2007) The structure of human 4F2hc ectodomain provides a model for homodimerization and electrostatic interaction with plasma membrane. J Biol Chem 282(43):31444–31452. https://doi.org/10.1074/jbc.M704524200

    Article  CAS  PubMed  Google Scholar 

  41. Fernández E, Jiménez-Vidal M, Calvo M, Zorzano A, Tebar F, Palacín M, Chillarón J (2006) The structural and functional units of heteromeric amino acid transporters. The heavy subunit rBAT dictates oligomerization of the heteromeric amino acid transporters. J Biol Chem 281(36):26552–26561. https://doi.org/10.1074/jbc.M604049200

    Article  CAS  PubMed  Google Scholar 

  42. Rosell A, Meury M, Álvarez-Marimon E, Costa M, Pérez-Cano L, Zorzano A, Fernández-Recio J, Palacín M, Fotiadis D (2014) Structural bases for the interaction and stabilization of the human amino acid transporter LAT2 with its ancillary protein 4F2hc. Proc Natl Acad Sci U S A 111(8):2966–2971. https://doi.org/10.1073/pnas.1323779111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bodoy S, Sotillo F, Espino-Guarch M, Sperandeo MP, Ormazabal A, Zorzano A, Sebastio G, Artuch R, Palacín M (2019) Inducible Slc7a7 knockout mouse model recapitulates lysinuric protein intolerance disease. Int J Mol Sci . https://doi.org/10.3390/ijms20215294

  44. Palacín M, Bertran J, Chillarón J, Estévez R, Zorzano A (2004) Lysinuric protein intolerance: mechanisms of pathophysiology. Mol Genet Metab 81(Suppl 1):S27-37. https://doi.org/10.1016/j.ymgme.2003.11.015

    Article  CAS  PubMed  Google Scholar 

  45. Kanai Y, Segawa H, Miyamoto K, Uchino H, Takeda E, Endou H (1998) Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J Biol Chem 273(37):23629–23632. https://doi.org/10.1074/jbc.273.37.23629

    Article  CAS  PubMed  Google Scholar 

  46. Furuya M, Horiguchi J, Nakajima H, Kanai Y, Oyama T (2012) Correlation of L-type amino acid transporter 1 and CD98 expression with triple negative breast cancer prognosis. Cancer Sci 103(2):382–389. https://doi.org/10.1111/j.1349-7006.2011.02151.x

    Article  CAS  PubMed  Google Scholar 

  47. Haining Z, Kawai N, Miyake K, Okada M, Okubo S, Zhang X, Fei Z, Tamiya T (2012) Relation of LAT1/4F2hc expression with pathological grade, proliferation and angiogenesis in human gliomas. BMC Clin Pathol 12:4. https://doi.org/10.1186/1472-6890-12-4

    Article  PubMed  PubMed Central  Google Scholar 

  48. Nawashiro H, Otani N, Shinomiya N, Fukui S, Ooigawa H, Shima K, Matsuo H, Kanai Y, Endou H (2006) L-type amino acid transporter 1 as a potential molecular target in human astrocytic tumors. Int J Cancer 119(3):484–492. https://doi.org/10.1002/ijc.21866

    Article  CAS  PubMed  Google Scholar 

  49. Wang Q, Holst J (2015) L-type amino acid transport and cancer: targeting the mTORC1 pathway to inhibit neoplasia. Am J Cancer Res 5(4):1281–1294

    PubMed  PubMed Central  Google Scholar 

  50. Yue M, Jiang J, Gao P, Liu H, Qing G (2017) Oncogenic MYC activates a feedforward regulatory loop promoting essential amino acid metabolism and tumorigenesis. Cell Rep 21(13):3819–3832. https://doi.org/10.1016/j.celrep.2017.12.002

    Article  CAS  PubMed  Google Scholar 

  51. Saxton RA, Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 169(2):361–371. https://doi.org/10.1016/j.cell.2017.03.035

    Article  CAS  PubMed  Google Scholar 

  52. Chen R, Zou Y, Mao D, Sun D, Gao G, Shi J, Liu X, Zhu C, Yang M, Ye W, Hao Q, Li R, Yu L (2014) The general amino acid control pathway regulates mTOR and autophagy during serum/glutamine starvation. J Cell Biol 206(2):173–182. https://doi.org/10.1083/jcb.201403009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang Q, Bailey CG, Ng C, Tiffen J, Thoeng A, Minhas V, Lehman ML, Hendy SC, Buchanan G, Nelson CC, Rasko JE, Holst J (2011) Androgen receptor and nutrient signaling pathways coordinate the demand for increased amino acid transport during prostate cancer progression. Cancer Res 71(24):7525–7536. https://doi.org/10.1158/0008-5472.CAN-11-1821

    Article  CAS  PubMed  Google Scholar 

  54. Elorza A, Soro-Arnáiz I, Meléndez-Rodríguez F, Rodríguez-Vaello V, Marsboom G, de Cárcer G, Acosta-Iborra B, Albacete-Albacete L, Ordóñez A, Serrano-Oviedo L, Giménez-Bachs JM, Vara-Vega A, Salinas A, Sánchez-Prieto R, Martín del Río R, Sánchez-Madrid F, Malumbres M, Landázuri MO, Aragonés J (2012) HIF2α acts as an mTORC1 activator through the amino acid carrier SLC7A5. Mol Cell 48(5):681–691. https://doi.org/10.1016/j.molcel.2012.09.017

    Article  CAS  PubMed  Google Scholar 

  55. Brand K (1981) Metabolism of 2-oxoacid analogues of leucine, valine and phenylalanine by heart muscle, brain and kidney of the rat. Biochim Biophys Acta 677(1):126–132. https://doi.org/10.1016/0304-4165(81)90153-7

    Article  CAS  PubMed  Google Scholar 

  56. Yudkoff M (2017) Interactions in the metabolism of glutamate and the branched-chain amino acids and ketoacids in the CNS. Neurochem Res 42(1):10–18. https://doi.org/10.1007/s11064-016-2057-z

    Article  CAS  PubMed  Google Scholar 

  57. García-Cazorla A, Oyarzabal A, Fort J, Robles C, Castejón E, Ruiz-Sala P, Bodoy S, Merinero B, Lopez-Sala A, Dopazo J, Nunes V, Ugarte M, Artuch R, Palacín M, Rodríguez-Pombo P, Alcaide P, Navarrete R, Sanz P, Font-Llitjós M, Vilaseca MA, Ormaizabal A, Pristoupilova A, Agulló SB (2014) Two novel mutations in the BCKDK (branched-chain keto-acid dehydrogenase kinase) gene are responsible for a neurobehavioral deficit in two pediatric unrelated patients. Hum Mutat 35(4):470–477. https://doi.org/10.1002/humu.22513

    Article  CAS  PubMed  Google Scholar 

  58. Novarino G, El-Fishawy P, Kayserili H, Meguid NA, Scott EM, Schroth J, Silhavy JL, Kara M, Khalil RO, Ben-Omran T, Ercan-Sencicek AG, Hashish AF, Sanders SJ, Gupta AR, Hashem HS, Matern D, Gabriel S, Sweetman L, Rahimi Y, Harris RA, State MW, Gleeson JG (2012) Mutations in BCKD-kinase lead to a potentially treatable form of autism with epilepsy. Science 338(6105):394–397. https://doi.org/10.1126/science.1224631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Boado RJ, Li JY, Nagaya M, Zhang C, Pardridge WM (1999) Selective expression of the large neutral amino acid transporter at the blood-brain barrier. Proc Natl Acad Sci U S A 96(21):12079–12084. https://doi.org/10.1073/pnas.96.21.12079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bauch C, Forster N, Loffing-Cueni D, Summa V, Verrey F (2003) Functional cooperation of epithelial heteromeric amino acid transporters expressed in madin-darby canine kidney cells. J Biol Chem 278(2):1316–1322. https://doi.org/10.1074/jbc.M210449200

    Article  CAS  PubMed  Google Scholar 

  61. del Amo EM, Urtti A, Yliperttula M (2008) Pharmacokinetic role of L-type amino acid transporters LAT1 and LAT2. Eur J Pharm Sci 35(3):161–174. https://doi.org/10.1016/j.ejps.2008.06.015

    Article  CAS  PubMed  Google Scholar 

  62. Kanai Y, Endou H (2001) Heterodimeric amino acid transporters: molecular biology and pathological and pharmacological relevance. Curr Drug Metab 2(4):339–354. https://doi.org/10.2174/1389200013338324

    Article  CAS  PubMed  Google Scholar 

  63. Rossier G, Meier C, Bauch C, Summa V, Sordat B, Verrey F, Kühn LC (1999) LAT2, a new basolateral 4F2hc/CD98-associated amino acid transporter of kidney and intestine. J Biol Chem 274(49):34948–34954. https://doi.org/10.1074/jbc.274.49.34948

    Article  CAS  PubMed  Google Scholar 

  64. Widdows KL, Panitchob N, Crocker IP, Please CP, Hanson MA, Sibley CP, Johnstone ED, Sengers BG, Lewis RM, Glazier JD (2015) Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms. FASEB J 29(6):2583–2594. https://doi.org/10.1096/fj.14-267773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gaccioli F, Aye IL, Roos S, Lager S, Ramirez VI, Kanai Y, Powell TL, Jansson T (2015) Expression and functional characterisation of System L amino acid transporters in the human term placenta. Reprod Biol Endocrinol 13:57. https://doi.org/10.1186/s12958-015-0054-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Braun D, Wirth EK, Wohlgemuth F, Reix N, Klein MO, Grüters A, Köhrle J, Schweizer U (2011) Aminoaciduria, but normal thyroid hormone levels and signalling, in mice lacking the amino acid and thyroid hormone transporter Slc7a8. Biochem J 439(2):249–255. https://doi.org/10.1042/BJ20110759

    Article  CAS  PubMed  Google Scholar 

  67. Dolgodilina E, Camargo SM, Roth E, Herzog B, Nunes V, Palacín M, Verrey F (2020) Choroid plexus LAT2 and SNAT3 as partners in CSF amino acid homeostasis maintenance. Fluids Barriers CNS 17(1):17. https://doi.org/10.1186/s12987-020-0178-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cascio L, Chen CF, Pauly R, Srikanth S, Jones K, Skinner CD, Stevenson RE, Schwartz CE, Boccuto L (2020) Abnormalities in the genes that encode large amino acid transporters increase the risk of autism spectrum disorder. Mol Genet Genomic Med 8(1):e1036. https://doi.org/10.1002/mgg3.1036

    Article  PubMed  Google Scholar 

  69. McGale EH, Pye IF, Stonier C, Hutchinson EC, Aber GM (1977) Studies of the inter-relationship between cerebrospinal fluid and plasma amino acid concentrations in normal individuals. J Neurochem 29(2):291–297. https://doi.org/10.1111/j.1471-4159.1977.tb09621.x

    Article  CAS  PubMed  Google Scholar 

  70. Perry TL, Hansen S, Kennedy J (1975) CSF amino acids and plasma–CSF amino acid ratios in adults. J Neurochem 24(3):587–589. https://doi.org/10.1111/j.1471-4159.1975.tb07680.x

    Article  CAS  PubMed  Google Scholar 

  71. Heckel T, Broer A, Wiesinger H, Lang F, Broer S (2003) Asymmetry of glutamine transporters in cultured neural cells. Neurochem Int 43(4–5):289–298. https://doi.org/10.1016/s0197-0186(03)00014-7

    Article  CAS  PubMed  Google Scholar 

  72. Leke R, Schousboe A (2016) The glutamine transporters and their role in the glutamate/GABA-glutamine cycle. Adv Neurobiol 13:223–257. https://doi.org/10.1007/978-3-319-45096-4_8

    Article  PubMed  Google Scholar 

  73. Albrecht J, Zielinska M (2019) Exchange-mode glutamine transport across CNS cell membranes. Neuropharmacology 161:107560. https://doi.org/10.1016/j.neuropharm.2019.03.003

    Article  CAS  PubMed  Google Scholar 

  74. Schioth HB, Roshanbin S, Hagglund MG, Fredriksson R (2013) Evolutionary origin of amino acid transporter families SLC32, SLC36 and SLC38 and physiological, pathological and therapeutic aspects. Mol Aspects Med 34(2–3):571–585. https://doi.org/10.1016/j.mam.2012.07.012

    Article  CAS  PubMed  Google Scholar 

  75. Hellsten SV, Hagglund MG, Eriksson MM, Fredriksson R (2017) The neuronal and astrocytic protein SLC38A10 transports glutamine, glutamate, and aspartate, suggesting a role in neurotransmission. FEBS Open Bio 7(6):730–746. https://doi.org/10.1002/2211-5463.12219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Conway ME (2020) Alzheimer’s disease: targeting the glutamatergic system. Biogerontology 21(3):257–274. https://doi.org/10.1007/s10522-020-09860-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Broer A, Wagner CA, Lang F, Broer S (2000) The heterodimeric amino acid transporter 4F2hc/y+LAT2 mediates arginine efflux in exchange with glutamine. Biochem J 349(Pt 3):787–795. https://doi.org/10.1042/bj3490787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lyck R, Ruderisch N, Moll AG, Steiner O, Cohen CD, Engelhardt B, Makrides V, Verrey F (2009) Culture-induced changes in blood-brain barrier transcriptome: implications for amino-acid transporters in vivo. J Cereb Blood Flow Metab 29(9):1491–1502. https://doi.org/10.1038/jcbfm.2009.72

    Article  CAS  PubMed  Google Scholar 

  79. Felipo V (2013) Hepatic encephalopathy: effects of liver failure on brain function. Nat Rev Neurosci 14(12):851–858. https://doi.org/10.1038/nrn3587

    Article  CAS  PubMed  Google Scholar 

  80. Dabrowska K, Skowronska K, Popek M, Obara-Michlewska M, Albrecht J, Zielinska M (2018) Roles of glutamate and glutamine transport in ammonia neurotoxicity: state of the art and question marks. Endocr Metab Immune Disord Drug Targets 18(4):306–315. https://doi.org/10.2174/1871520618666171219124427

    Article  CAS  PubMed  Google Scholar 

  81. Hermenegildo C, Monfort P, Felipo V (2000) Activation of N-methyl-D-aspartate receptors in rat brain in vivo following acute ammonia intoxication: characterization by in vivo brain microdialysis. Hepatology 31(3):709–715. https://doi.org/10.1002/hep.510310322

    Article  CAS  PubMed  Google Scholar 

  82. Skowronska M, Albrecht J (2013) Oxidative and nitrosative stress in ammonia neurotoxicity. Neurochem Int 62(5):731–737. https://doi.org/10.1016/j.neuint.2012.10.013

    Article  CAS  PubMed  Google Scholar 

  83. Llansola M, Rodrigo R, Monfort P, Montoliu C, Kosenko E, Cauli O, Piedrafita B, El Mlili N, Felipo V (2007) NMDA receptors in hyperammonemia and hepatic encephalopathy. Metab Brain Dis 22(3–4):321–335. https://doi.org/10.1007/s11011-007-9067-0

    Article  CAS  PubMed  Google Scholar 

  84. Hilgier W, Fresko I, Klemenska E, Beresewicz A, Oja SS, Saransaari P, Albrecht J, Zielinska M (2009) Glutamine inhibits ammonia-induced accumulation of cGMP in rat striatum limiting arginine supply for NO synthesis. Neurobiol Dis 35(1):75–81. https://doi.org/10.1016/j.nbd.2009.04.004

    Article  CAS  PubMed  Google Scholar 

  85. Zielinska M, Ruszkiewicz J, Hilgier W, Fresko I, Albrecht J (2011) Hyperammonemia increases the expression and activity of the glutamine/arginine transporter y+ LAT2 in rat cerebral cortex: implications for the nitric oxide/cGMP pathway. Neurochem Int 58(2):190–195. https://doi.org/10.1016/j.neuint.2010.11.015

    Article  CAS  PubMed  Google Scholar 

  86. Zielinska M, Skowronska M, Fresko I, Albrecht J (2012) Upregulation of the heteromeric y(+)LAT2 transporter contributes to ammonia-induced increase of arginine uptake in rat cerebral cortical astrocytes. Neurochem Int 61(4):531–535. https://doi.org/10.1016/j.neuint.2012.02.021

    Article  CAS  PubMed  Google Scholar 

  87. Zielinska M, Milewski K, Skowronska M, Gajos A, Zieminska E, Beresewicz A, Albrecht J (2015) Induction of inducible nitric oxide synthase expression in ammonia-exposed cultured astrocytes is coupled to increased arginine transport by upregulated y(+)LAT2 transporter. J Neurochem 135(6):1272–1281. https://doi.org/10.1111/jnc.13387

    Article  CAS  PubMed  Google Scholar 

  88. Bassi MT, Gasol E, Manzoni M, Pineda M, Riboni M, Martín R, Zorzano A, Borsani G, Palacín M (2001) Identification and characterisation of human xCT that co-expresses, with 4F2 heavy chain, the amino acid transport activity system xc-. Pflugers Arch 442(2):286–296. https://doi.org/10.1007/s004240100537

    Article  CAS  PubMed  Google Scholar 

  89. Ottestad-Hansen S, Hu QX, Follin-Arbelet VV, Bentea E, Sato H, Massie A, Zhou Y, Danbolt NC (2018) The cystine-glutamate exchanger (xCT, Slc7a11) is expressed in significant concentrations in a subpopulation of astrocytes in the mouse brain. Glia 66(5):951–970. https://doi.org/10.1002/glia.23294

    Article  PubMed  Google Scholar 

  90. Sato H, Shiiya A, Kimata M, Maebara K, Tamba M, Sakakura Y, Makino N, Sugiyama F, Yagami K, Moriguchi T, Takahashi S, Bannai S (2005) Redox imbalance in cystine/glutamate transporter-deficient mice. J Biol Chem 280(45):37423–37429. https://doi.org/10.1074/jbc.M506439200

    Article  CAS  PubMed  Google Scholar 

  91. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B, Stockwell BR (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072. https://doi.org/10.1016/j.cell.2012.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Liu J, Xia X, Huang P (2020) xCT: A critical molecule that links cancer metabolism to redox signaling. Mol Ther. https://doi.org/10.1016/j.ymthe.2020.08.021

    Article  PubMed  PubMed Central  Google Scholar 

  93. Dai L, Noverr MC, Parsons C, Kaleeba JA, Qin Z (2015) xCT, not just an amino-acid transporter: a multi-functional regulator of microbial infection and associated diseases. Front Microbiol 6:120. https://doi.org/10.3389/fmicb.2015.00120

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hsieh CH, Lin YJ, Chen WL, Huang YC, Chang CW, Cheng FC, Liu RS, Shyu WC (2017) HIF-1α triggers long-lasting glutamate excitotoxicity via system xc− in cerebral ischaemia–reperfusion. J Pathol 241(3):337–349. https://doi.org/10.1002/path.4838

    Article  CAS  PubMed  Google Scholar 

  95. Merckx E, Albertini G, Paterka M, Jensen C, Albrecht P, Dietrich M, Van Liefferinge J, Bentea E, Verbruggen L, Demuyser T, Deneyer L, Lewerenz J, van Loo G, De Keyser J, Sato H, Maher P, Methner A, Massie A (2017) Absence of system x c- on immune cells invading the central nervous system alleviates experimental autoimmune encephalitis. J Neuroinflammation 14(1):9. https://doi.org/10.1186/s12974-016-0787-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fan Z, Wirth AK, Chen D, Wruck CJ, Rauh M, Buchfelder M, Savaskan N (2017) Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogenesis 6(8):e371. https://doi.org/10.1038/oncsis.2017.65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Roh JL, Kim EH, Jang H, Shin D (2017) Aspirin plus sorafenib potentiates cisplatin cytotoxicity in resistant head and neck cancer cells through xCT inhibition. Free Radic Biol Med 104:1–9. https://doi.org/10.1016/j.freeradbiomed.2017.01.002

    Article  CAS  PubMed  Google Scholar 

  98. Wang SF, Chen MS, Chou YC, Ueng YF, Yin PH, Yeh TS, Lee HC (2016) Mitochondrial dysfunction enhances cisplatin resistance in human gastric cancer cells via the ROS-activated GCN2-eIF2α-ATF4-xCT pathway. Oncotarget 7(45):74132–74151. https://doi.org/10.18632/oncotarget.12356

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ishimoto T, Nagano O, Yae T, Tamada M, Motohara T, Oshima H, Oshima M, Ikeda T, Asaba R, Yagi H, Masuko T, Shimizu T, Ishikawa T, Kai K, Takahashi E, Imamura Y, Baba Y, Ohmura M, Suematsu M, Baba H, Saya H (2011) CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth. Cancer Cell 19(3):387–400. https://doi.org/10.1016/j.ccr.2011.01.038

    Article  CAS  PubMed  Google Scholar 

  100. Ju HQ, Lu YX, Chen DL, Tian T, Mo HY, Wei XL, Liao JW, Wang F, Zeng ZL, Pelicano H, Aguilar M, Jia WH, Xu RH (2016) Redox regulation of stem-like cells though the CD44v-xCT axis in colorectal cancer: mechanisms and therapeutic implications. Theranostics 6(8):1160–1175. https://doi.org/10.7150/thno.14848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bolli E, O’Rourke JP, Conti L, Lanzardo S, Rolih V, Christen JM, Barutello G, Forni M, Pericle F, Cavallo F (2018) A virus-like-particle immunotherapy targeting epitope-specific anti-xCT expressed on cancer stem cell inhibits the progression of metastatic cancer. Oncoimmunology 7(3):e1408746. https://doi.org/10.1080/2162402X.2017.1408746

    Article  PubMed  Google Scholar 

  102. Hilf N, Kuttruff-Coqui S, Frenzel K, Bukur V, Stevanović S, Gouttefangeas C, Platten M, Tabatabai G, Dutoit V, van der Burg SH, Thor Straten P, Martínez-Ricarte F, Ponsati B, Okada H, Lassen U, Admon A, Ottensmeier CH, Ulges A, Kreiter S, von Deimling A, Skardelly M, Migliorini D, Kroep JR, Idorn M, Rodon J, Piró J, Poulsen HS, Shraibman B, McCann K, Mendrzyk R, Löwer M, Stieglbauer M, Britten CM, Capper D, Welters MJP, Sahuquillo J, Kiesel K, Derhovanessian E, Rusch E, Bunse L, Song C, Heesch S, Wagner C, Kemmer-Brück A, Ludwig J, Castle JC, Schoor O, Tadmor AD, Green E, Fritsche J, Meyer M, Pawlowski N, Dorner S, Hoffgaard F, Rössler B, Maurer D, Weinschenk T, Reinhardt C, Huber C, Rammensee HG, Singh-Jasuja H, Sahin U, Dietrich PY, Wick W (2019) Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 565(7738):240–245. https://doi.org/10.1038/s41586-018-0810-y

    Article  CAS  PubMed  Google Scholar 

  103. Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND, Li S, Oliveira G, Giobbie-Hurder A, Felt K, Gjini E, Shukla SA, Hu Z, Li L, Le PM, Allesøe RL, Richman AR, Kowalczyk MS, Abdelrahman S, Geduldig JE, Charbonneau S, Pelton K, Iorgulescu JB, Elagina L, Zhang W, Olive O, McCluskey C, Olsen LR, Stevens J, Lane WJ, Salazar AM, Daley H, Wen PY, Chiocca EA, Harden M, Lennon NJ, Gabriel S, Getz G, Lander ES, Regev A, Ritz J, Neuberg D, Rodig SJ, Ligon KL, Suvà ML, Wucherpfennig KW, Hacohen N, Fritsch EF, Livak KJ, Ott PA, Wu CJ, Reardon DA (2019) Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 565(7738):234–239. https://doi.org/10.1038/s41586-018-0792-9

    Article  CAS  PubMed  Google Scholar 

  104. Sontheimer H, Bridges RJ (2012) Sulfasalazine for brain cancer fits. Expert Opin Investig Drugs 21(5):575–578. https://doi.org/10.1517/13543784.2012.670634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Robert SM, Buckingham SC, Campbell SL, Robel S, Holt KT, Ogunrinu-Babarinde T, Warren PP, White DM, Reid MA, Eschbacher JM, Berens ME, Lahti AC, Nabors LB, Sontheimer H (2015) SLC7A11 expression is associated with seizures and predicts poor survival in patients with malignant glioma. Sci Transl Med 7(289):286. https://doi.org/10.1126/scitranslmed.aaa8103

    Article  CAS  Google Scholar 

  106. Sørensen MF, Heimisdóttir SB, Sørensen MD, Mellegaard CS, Wohlleben H, Kristensen BW, Beier CP (2018) High expression of cystine-glutamate antiporter xCT (SLC7A11) is an independent biomarker for epileptic seizures at diagnosis in glioma. J Neurooncol 138(1):49–53. https://doi.org/10.1007/s11060-018-2785-9

    Article  CAS  PubMed  Google Scholar 

  107. Savaskan NE, Heckel A, Hahnen E, Engelhorn T, Doerfler A, Ganslandt O, Nimsky C, Buchfelder M, Eyüpoglu IY (2008) Small interfering RNA-mediated xCT silencing in gliomas inhibits neurodegeneration and alleviates brain edema. Nat Med 14(6):629–632. https://doi.org/10.1038/nm1772

    Article  CAS  PubMed  Google Scholar 

  108. Chen L, Li X, Liu L, Yu B, Xue Y, Liu Y (2015) Erastin sensitizes glioblastoma cells to temozolomide by restraining xCT and cystathionine-γ-lyase function. Oncol Rep 33(3):1465–1474. https://doi.org/10.3892/or.2015.3712

    Article  CAS  PubMed  Google Scholar 

  109. Sehm T, Rauh M, Wiendieck K, Buchfelder M, Eyüpoglu IY, Savaskan NE (2016) Temozolomide toxicity operates in a xCT/SLC7a11 dependent manner and is fostered by ferroptosis. Oncotarget 7(46):74630–74647. https://doi.org/10.18632/oncotarget.11858

    Article  PubMed  PubMed Central  Google Scholar 

  110. Sleire L, Skeie BS, Netland IA, Førde HE, Dodoo E, Selheim F, Leiss L, Heggdal JI, Pedersen PH, Wang J, Enger P (2015) Drug repurposing: sulfasalazine sensitizes gliomas to gamma knife radiosurgery by blocking cystine uptake through system Xc-, leading to glutathione depletion. Oncogene 34(49):5951–5959. https://doi.org/10.1038/onc.2015.60

    Article  CAS  PubMed  Google Scholar 

  111. Bauer AJ, Gieschler S, Lemberg KM, McDermott AE, Stockwell BR (2011) Functional model of metabolite gating by human voltage-dependent anion channel 2. Biochemistry 50(17):3408–3410. https://doi.org/10.1021/bi2003247

    Article  CAS  PubMed  Google Scholar 

  112. Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M, Thomas AG, Gleason CE, Tatonetti NP, Slusher BS, Stockwell BR (2014) Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife 3:e02523. https://doi.org/10.7554/eLife.02523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Keating GM, Santoro A (2009) Sorafenib: a review of its use in advanced hepatocellular carcinoma. Drugs 69(2):223–240. https://doi.org/10.2165/00003495-200969020-00006

    Article  CAS  PubMed  Google Scholar 

  114. Shukla K, Thomas AG, Ferraris DV, Hin N, Sattler R, Alt J, Rojas C, Slusher BS, Tsukamoto T (2011) Inhibition of xc transporter-mediated cystine uptake by sulfasalazine analogs. Bioorg Med Chem Lett 21(20):6184–6187. https://doi.org/10.1016/j.bmcl.2011.07.081

    Article  CAS  PubMed  Google Scholar 

  115. Patel SA, Rajale T, O’Brien E, Burkhart DJ, Nelson JK, Twamley B, Blumenfeld A, Szabon-Watola MI, Gerdes JM, Bridges RJ, Natale NR (2010) Isoxazole analogues bind the system xc- transporter: structure-activity relationship and pharmacophore model. Bioorg Med Chem 18(1):202–213. https://doi.org/10.1016/j.bmc.2009.11.001

    Article  CAS  PubMed  Google Scholar 

  116. Newell JL, Keyari CM, McDaniel SW, Diaz PJ, Natale NR, Patel SA, Bridges RJ (2014) Novel di-aryl-substituted isoxazoles act as noncompetitive inhibitors of the system Xc(-) cystine/glutamate exchanger. Neurochem Int 73:132–138. https://doi.org/10.1016/j.neuint.2013.11.012

    Article  CAS  PubMed  Google Scholar 

  117. Song X, Zhu S, Chen P, Hou W, Wen Q, Liu J, Xie Y, Klionsky DJ, Kroemer G, Lotze MT, Zeh HJ, Kang R, Tang D (2018) AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system X c- activity. Curr Biol 28(15):2388-2399.e2385. https://doi.org/10.1016/j.cub.2018.05.094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Pineda M, Font M, Bassi MT, Manzoni M, Borsani G, Marigo V, Fernández E, Río RM, Purroy J, Zorzano A, Nunes V, Palacín M (2004) The amino acid transporter asc-1 is not involved in cystinuria. Kidney Int 66(4):1453–1464. https://doi.org/10.1111/j.1523-1755.2004.00908.x

    Article  CAS  PubMed  Google Scholar 

  119. Nicoll RA (2017) A brief history of long-term potentiation. Neuron 93(2):281–290. https://doi.org/10.1016/j.neuron.2016.12.015

    Article  CAS  PubMed  Google Scholar 

  120. Hill MD, Goyal M, Menon BK, Nogueira RG, McTaggart RA, Demchuk AM, Poppe AY, Buck BH, Field TS, Dowlatshahi D, van Adel BA, Swartz RH, Shah RA, Sauvageau E, Zerna C, Ospel JM, Joshi M, Almekhlafi MA, Ryckborst KJ, Lowerison MW, Heard K, Garman D, Haussen D, Cutting SM, Coutts SB, Roy D, Rempel JL, Rohr ACR, Iancu D, Sahlas DJ, Yu AYX, Devlin TG, Hanel RA, Puetz V, Silver FL, Campbell BCV, Chapot R, Teitelbaum J, Mandzia JL, Kleinig TJ, Turkel-Parrella D, Heck D, Kelly ME, Bharatha A, Bang OY, Jadhav A, Gupta R, Frei DF, Tarpley JW, McDougall CG, Holmin S, Rha JH, Puri AS, Camden MC, Thomalla G, Choe H, Phillips SJ, Schindler JL, Thornton J, Nagel S, Heo JH, Sohn SI, Psychogios MN, Budzik RF, Starkman S, Martin CO, Burns PA, Murphy S, Lopez GA, English J, Tymianski M (2020) Efficacy and safety of nerinetide for the treatment of acute ischaemic stroke (ESCAPE-NA1): a multicentre, double-blind, randomised controlled trial. Lancet 395(10227):878–887. https://doi.org/10.1016/S0140-6736(20)30258-0

    Article  CAS  PubMed  Google Scholar 

  121. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62(3):405–496. https://doi.org/10.1124/pr.109.002451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Uno Y, Coyle JT (2019) Glutamate hypothesis in schizophrenia. Psychiatry Clin Neurosci 73(5):204–215. https://doi.org/10.1111/pcn.12823

    Article  PubMed  Google Scholar 

  123. Kaplan E, Zubedat S, Radzishevsky I, Valenta AC, Rechnitz O, Sason H, Sajrawi C, Bodner O, Konno K, Esaki K, Derdikman D, Yoshikawa T, Watanabe M, Kennedy RT, Billard JM, Avital A, Wolosker H (2018) ASCT1 (Slc1a4) transporter is a physiologic regulator of brain d-serine and neurodevelopment. Proc Natl Acad Sci U S A 115(38):9628–9633. https://doi.org/10.1073/pnas.1722677115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Helboe L, Egebjerg J, Møller M, Thomsen C (2003) Distribution and pharmacology of alanine-serine-cysteine transporter 1 (asc-1) in rodent brain. Eur J Neurosci 18(8):2227–2238. https://doi.org/10.1046/j.1460-9568.2003.02966.x

    Article  PubMed  Google Scholar 

  125. Rosenberg D, Artoul S, Segal AC, Kolodney G, Radzishevsky I, Dikopoltsev E, Foltyn VN, Inoue R, Mori H, Billard JM, Wolosker H (2013) Neuronal D-serine and glycine release via the Asc-1 transporter regulates NMDA receptor-dependent synaptic activity. J Neurosci 33(8):3533–3544. https://doi.org/10.1523/JNEUROSCI.3836-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sakimura K, Nakao K, Yoshikawa M, Suzuki M, Kimura H (2016) A novel Na(+) -Independent alanine-serine-cysteine transporter 1 inhibitor inhibits both influx and efflux of D-Serine. J Neurosci Res 94(10):888–895. https://doi.org/10.1002/jnr.23772

    Article  CAS  PubMed  Google Scholar 

  127. Sason H, Billard JM, Smith GP, Safory H, Neame S, Kaplan E, Rosenberg D, Zubedat S, Foltyn VN, Christoffersen CT, Bundgaard C, Thomsen C, Avital A, Christensen KV, Wolosker H (2017) Asc-1 transporter regulation of synaptic activity via the tonic release of d-serine in the forebrain. Cereb Cortex 27(2):1573–1587. https://doi.org/10.1093/cercor/bhv350

    Article  PubMed  Google Scholar 

  128. Safory H, Neame S, Shulman Y, Zubedat S, Radzishevsky I, Rosenberg D, Sason H, Engelender S, Avital A, Hülsmann S, Schiller J, Wolosker H (2015) The alanine-serine-cysteine-1 (Asc-1) transporter controls glycine levels in the brain and is required for glycinergic inhibitory transmission. EMBO Rep 16(5):590–598. https://doi.org/10.15252/embr.201439561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Stępnicki P, Kondej M, Kaczor AA (2018) Current concepts and treatments of schizophrenia. Molecules 23 (8). doi:https://doi.org/10.3390/molecules23082087

  130. Ishiwata S, Ogata S, Umino A, Shiraku H, Ohashi Y, Kajii Y, Nishikawa T (2013) Increasing effects of S-methyl-L-cysteine on the extracellular D-serine concentrations in the rat medial frontal cortex. Amino Acids 44(5):1391–1395. https://doi.org/10.1007/s00726-013-1464-6

    Article  CAS  PubMed  Google Scholar 

  131. Chamorro Á, Dirnagl U, Urra X, Planas AM (2016) Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol 15(8):869–881. https://doi.org/10.1016/S1474-4422(16)00114-9

    Article  CAS  PubMed  Google Scholar 

  132. Brown JM, Hunihan L, Prack MM, Harden DG, Bronson J, Dzierba CD, Gentles RG, Hendricson A, Krause R, Macor JE, Westphal RS (2014) In vitro characterization of a small molecule inhibitor of the alanine serine cysteine transporter -1 (SLC7A10). J Neurochem 129(2):275–283. https://doi.org/10.1111/jnc.12618

    Article  CAS  PubMed  Google Scholar 

  133. Kutchukian PS, Warren L, Magliaro BC, Amoss A, Cassaday JA, O’Donnell G, Squadroni B, Zuck P, Pascarella D, Culberson JC, Cooke AJ, Hurzy D, Schlegel KS, Thomson F, Johnson EN, Uebele VN, Hermes JD, Parmentier-Batteur S, Finley M (2017) Iterative focused screening with biological fingerprints identifies selective Asc-1 inhibitors distinct from traditional high throughput screening. ACS Chem Biol 12(2):519–527. https://doi.org/10.1021/acschembio.6b00913

    Article  CAS  PubMed  Google Scholar 

  134. Yanagida O, Kanai Y, Chairoungdua A, Kim DK, Segawa H, Nii T, Cha SH, Matsuo H, Fukushima J, Fukasawa Y, Tani Y, Taketani Y, Uchino H, Kim JY, Inatomi J, Okayasu I, Miyamoto K, Takeda E, Goya T, Endou H (2001) Human L-type amino acid transporter 1 (LAT1): characterization of function and expression in tumor cell lines. Biochim Biophys Acta 1514(2):291–302. https://doi.org/10.1016/s0005-2736(01)00384-4

    Article  CAS  PubMed  Google Scholar 

  135. Huttunen J, Peltokangas S, Gynther M, Natunen T, Hiltunen M, Auriola S, Ruponen M, Vellonen KS, Huttunen KM (2019) L-type Amino acid Transporter 1 (LAT1/Lat1)-utilizing prodrugs can improve the delivery of drugs into neurons, astrocytes and microglia. Sci Rep 9(1):12860. https://doi.org/10.1038/s41598-019-49009-z

    Article  PubMed  PubMed Central  Google Scholar 

  136. Wolosker H, Radzishevsky I (2013) The serine shuttle between glia and neurons: implications for neurotransmission and neurodegeneration. Biochem Soc Trans 41(6):1546–1550. https://doi.org/10.1042/BST20130220

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Baruch Kanner, who has guided our structural-functional studies of amino acid transporters over the last 30 years. Recent work in amino acid transporters in our lab has been supported by the Spanish Ministry of Science, Innovation and Universities (MSIU) (SAF2015-64869-R-FEDER, RTI2018-094211-B-I00) and the Fundació La Marató-TV3. We gratefully acknowledge institutional funding from MSIU to IRB Barcelona with the Centres of Excellence Severo Ochoa Award.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ekaitz Errasti-Murugarren or Manuel Palacín.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special Issue: In Honor of Prof. Baruch Kanner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Errasti-Murugarren, E., Palacín, M. Heteromeric Amino Acid Transporters in Brain: from Physiology to Pathology. Neurochem Res 47, 23–36 (2022). https://doi.org/10.1007/s11064-021-03261-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03261-w

Keywords

Navigation