Skip to main content
Log in

Interactions in the Metabolism of Glutamate and the Branched-Chain Amino Acids and Ketoacids in the CNS

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glutamatergic neurotransmission entails a tonic loss of glutamate from nerve endings into the synapse. Replacement of neuronal glutamate is essential in order to avoid depletion of the internal pool. In brain this occurs primarily via the glutamate-glutamine cycle, which invokes astrocytic synthesis of glutamine and hydrolysis of this amino acid via neuronal phosphate-dependent glutaminase. This cycle maintains constancy of internal pools, but it does not provide a mechanism for inevitable losses of glutamate N from brain. Import of glutamine or glutamate from blood does not occur to any appreciable extent. However, the branched-chain amino acids (BCAA) cross the blood–brain barrier swiftly. The brain possesses abundant branched-chain amino acid transaminase activity which replenishes brain glutamate and also generates branched-chain ketoacids. It seems probable that the branched-chain amino acids and ketoacids participate in a “glutamate-BCAA cycle” which involves shuttling of branched-chain amino acids and ketoacids between astrocytes and neurons. This mechanism not only supports the synthesis of glutamate, it also may constitute a mechanism by which high (and potentially toxic) concentrations of glutamate can be avoided by the re-amination of branched-chain ketoacids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7(1):41–53

    Article  CAS  PubMed  Google Scholar 

  2. Albrecht J, Sonnewald U, Waagepetersen HS, Schousboe A (2007) Glutamine in the central nervous system: function and dysfunction. Front Biosci 12:332–343

    Article  CAS  PubMed  Google Scholar 

  3. Auestad N, Korsak RA, Morrow JW, Edmond J (1991) Fatty acid oxidation and ketogenesis by astrocytes in primary culture. J Neurochem 56:1376–1386

    Article  CAS  PubMed  Google Scholar 

  4. Bak LK, Johansen ML, Schousboe A, Waagepetersen (2012) Valine but not leucine or isoleucine supports neurotransmitter glutamate synthesis during synaptic activity in cultured cerebellar neurons. J Neurosci Res 90:1768–1775

    Article  CAS  PubMed  Google Scholar 

  5. Bak LK, Waagepetersen HS, Sørensen M, Ott P, Vilstrup H, Keiding S, Schousboe A (2013) Role of branched chain amino acids in cerebral ammonia homeostasis related to hepatic encephalopathy. Metab Brain Disabil 28:209–215

    Article  CAS  Google Scholar 

  6. Berl S, Takagaki G, Clarke DD, Waelsch H (1962) Metabolic compartments in vivo. Ammonia and glutamic acid metabolism in brain and liver. J BiolChem 237:2562–2569

    CAS  Google Scholar 

  7. Bixel MG, Hamprecht B (1994) Metabolism of branched-chain amino acids in astroglial-rich primary culture. J Neurochem 63:S62A

    Google Scholar 

  8. Bixel M, Hutson S, Hamprecht B (1997) Cellular distribution of branched chain amino acid aminotransferase isoenzymes among rat brain glial cells in culture. J Histochem Cytochem 45:685–694

    Article  CAS  PubMed  Google Scholar 

  9. Boneh A (2015) Signal transduction in inherited metabolic disorders: a model for a possible pathogenetic mechanism. J Inherit Metab Disabil 38:729–740

    Article  CAS  Google Scholar 

  10. Bonfils J, Faure M, Gibrat JF, Glomot F, Papet I (2000) Sheep cytosolic branched-chain amino acid aminotransferase: cDNA cloning, primary structure and molecular modelling and its unique expression in muscles. Biochim Biophys Acta 1494:129–136

    Article  CAS  PubMed  Google Scholar 

  11. Brand K (1981) Metabolism of 2-oxoacid analogues of leucine, valine and phenylalanine by heart muscle, brain and kidney of the rat. Biochim Biophys Acta 677:126–132

    Article  CAS  PubMed  Google Scholar 

  12. Brightman MW, Cheng-Tao J-H (1988) Cell membrane interactions between astrocytes and brain endothelium. In: Norenberg MD, Hertz L, Schousboe A (eds) The biochemical pathology of astrocytes. Alan R. Liss, Inc., New York, pp 21–39

  13. Broer S, Broer A, Hamprecht B (1994) Expression of Na+-independent isoleucine transport activity from rat brain in Xenopus laevis oocytes. Biochim Biophys Acta 1192:95–100

    Article  CAS  PubMed  Google Scholar 

  14. Brookes N (1992) Effect of intracellular glutamine on the uptake of large neutral amino acids in astrocyes: concentrative Na(+)-independent transport. J Neurochem 59:227–235

    Article  CAS  PubMed  Google Scholar 

  15. Brookes N (1993) Interaction between the glutamine cycle and the uptake of large neutral amino acids in astrocytes. J Neurochem 60:1923–1928

    Article  CAS  PubMed  Google Scholar 

  16. Burch HB, Cambon N, Lowry OH (1985) Branched-chain amino acid aminotransferase along the rabbit and rat nephron. Kidney Int 28:114–117

    Article  CAS  PubMed  Google Scholar 

  17. Burrage LC, Nagamani SC, Campeau PM, Lee BH (2014) Branched-chain amino acid metabolism: from rare Mendelian diseases to more common disorders. Hum Mol Genet 23:R1–R8

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cangiano C, Cardelli-Cangiano P, James J, Rossi Fanelli F, Patrizi MA, Brackett KA, Strom R, Fischer JE (1983) Brain microvessels take up large neutral amino acids in exchange for glutamine. J Biol Chem 258:8949–8954

    CAS  PubMed  Google Scholar 

  19. Cardona C, Sánchez-Mejías E, Dávila JC, Martín-Rufián M, Campos-Sandoval JA, Vitorica J, Alonso FJ, Matés JM, Segura JA, Norenberg MD, Rama Rao KV, Jayakumar AR, Gutiérrez A, Márquez J (2015) Expression of Gls and Gls2 glutaminase isoforms in astrocytes. Glia 63:365–382

    Article  PubMed  Google Scholar 

  20. Chaplin ER, Goldberg AL, Diamond I (1976) Leucine oxidation in brain slices and nerve endings. J Neurochem 26:701–707

    Article  CAS  PubMed  Google Scholar 

  21. Choi S, Disilvio B, Fernstrom MH, Fernstrom JD (2013) Oral branched-chain amino acid supplements that reduce brain serotonin during exercise in rats also lower brain catecholamines. Amino Acids 45:1133–1142

    Article  CAS  PubMed  Google Scholar 

  22. Cole JT, Mitala CM, Kundu S, Verma A, Elkind JA, Nissim I, Cohen AS (2010) Dietary branched chain amino acids ameliorate injury-induced cognitive impairment. Proc Natl Acad Sci USA 107:366–371

    Article  CAS  PubMed  Google Scholar 

  23. Cooper AJL, McDonald JM, Gelbard AS, Gledhill RF, Duffy TE (1979) The metabolic fate of 13N-labelled ammonia in rat brain. J Biol Chem 254:4982–4992

    CAS  PubMed  Google Scholar 

  24. Cooper AJL, Jeitner TM (2016) Central role of glutamate metabolism in the maintenance of nitrogen homeostasis in normal and hyperammonemic brain. Biomolecules. doi:10.3390/biom6020016

    PubMed  PubMed Central  Google Scholar 

  25. Curtis DR, Watkins JC (1960) The excitation and depression of spinal neurones by structurally related amino acids. J Neurochem 6:117–141

    Article  CAS  PubMed  Google Scholar 

  26. Daikhin Y, Yudkoff M (2000) Compartmentation of brain glutamate metabolism in neurons and glia. J Nutr 130:1026S–1031S

    CAS  PubMed  Google Scholar 

  27. Dam G, Ott P, Aagaard NK, Vilstrup H (2013) Branched-chain amino acids and muscle ammonia detoxification in cirrhosis. Metab Brain Disabil 28:217–220

    Article  CAS  Google Scholar 

  28. Davoodi J, Drown PM, Bledsoe RK, Wallin R, Reinhart GD, Hutson SM (1998) Overexpression and characterisation of the human mitochondrial and cytosolic branched-chain aminotransferases. J Biol Chem 273:4982–4989

    Article  CAS  PubMed  Google Scholar 

  29. Dienel GA (2012) Brain lactate metabolism: the discoveries and the controversies. J Cereb Blood Flow Metab 32:1107–1138

    Article  CAS  PubMed  Google Scholar 

  30. Dodd PR, Williams SH, Gundlach AL, Harper PA, Healy PJ, Dennis JA, Johnston GA (1992) Glutamate and gamma-aminobutyric acid neurotransmitter systems in the acute phase of maple syrup urine disease and citrullinemia encephalopathies in newborn calves. J Neurochem 59:582–590

    Article  CAS  PubMed  Google Scholar 

  31. Drgonova J, Jacobsson JA, Han JC, Yanovski JA, Fredriksson R, Marcus C, Schiöth HB, Uhl GR (2013) Involvement of the neutral amino acid transporter SLC6A15 and leucine in obesity-related phenotypes. PLoS One 8:e68245. doi:10.1371/journal.pone.0068245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Erecinska M, Nelson D, Wilson DF, Silver IA (1984) Neurotransmitter amino acids in the CNS. I. Regional changes in amino acid levels in rat brain during ischemia and reperfusion. Brain Res 304:9–22

    Article  CAS  PubMed  Google Scholar 

  33. Erecińska M, Nelson D, Daikhin Y, Yudkoff M (1996) Regulation of GABA level in rat brain synaptosomes: fluxes through enzymes of the GABA shunt and effects of glutamate, calcium, and ketone bodies. J Neurochem 67:2325–2334

    Article  PubMed  Google Scholar 

  34. Evangeliou A, Spilioti M, Doulioglou V, Kalaidopoulou P, Ilias A, Skarpalezou A, Katsanika I, Kalamitsou S, Vasilaki K, Chatziioanidis I, Garganis K, Pavlou E, Varlamis S, Nikolaidis N (2009) Branched chain amino acids as adjunctive therapy to ketogenic diet in epilepsy: pilot study and hypothesis. J Child Neurol 24:1268–1272

    Article  PubMed  Google Scholar 

  35. Felig P (1975) Amino acid metabolism in man. Annu Rev Biochem 44:933–955

    Article  CAS  PubMed  Google Scholar 

  36. García-Espinosa MA, Wallin R, Hutson SM, Sweatt AJ (2007) Widespread neuronal expression of branched-chain aminotransferase in the CNS: implications for leucine/glutamate metabolism and for signaling by amino acids. J Neurochem 100:1458–1468

    PubMed  Google Scholar 

  37. Gluud LL, Dam G, Borre M, Les I, Cordoba J, Marchesini G, Aagaard NK, Risum N, Vilstrup H (2013) Oral branched-chain amino acids have a beneficial effect on manifestations of hepatic encephalopathy in a systematic review with meta-analyses of randomized controlled trials. J Nutr 143:1263–1268

    Article  CAS  PubMed  Google Scholar 

  38. Grill V, Björkhem M, Gutniak M, Lindqvist M (1992) Brain uptake and release of amino acids in nondiabetic and insulin-dependent diabetic subjects: important role of glutamine release for nitrogen balance. Metabolism 41:28–32

    Article  CAS  PubMed  Google Scholar 

  39. Hädel S, Wirth C, Rapp M, Gallinat J, Schubert F (2013) Effects of age and sex on the concentrations of glutamate and glutamine in the human brain. J Magn Res Imaging 38:1480–1487

    Article  Google Scholar 

  40. Hall TR, Wallin R, Reinhart GD, Hutson SM (1993) Branched chain aminotransferase isoenzymes. Purification and characterization of the rat brain isoenzyme. J Biol Chem 268:3092–3098

    CAS  PubMed  Google Scholar 

  41. Hamprecht B, Schmoll D, Cesar M, Bixel B, Vogel R, Kurz G, Wiesinger H (1995) Metabolism of glucogenic and ketogenic amino acids and energy metabolism in astroglial cells. J Neurochem 64:S110A

    Google Scholar 

  42. Harper AE, Miller RH, Block KP (1984) Branched-chain amino acid metabolism. Ann Rev Nutr 4:409–454

    Article  CAS  Google Scholar 

  43. Harris RA, Kobayashi R, Murakami T, Shimomura Y (2001) Regulation of branched-chain alpha-keto acid dehydrogenase kinase expression in rat liver. J Nutr 131:841S–845S

    CAS  PubMed  Google Scholar 

  44. Hayashi T (1952) A physiological study of epileptic seizures following cortical stimulation in animals and its application to human clinics. Jpn J Physiol 3:46–64

    Article  CAS  PubMed  Google Scholar 

  45. Haymond MW, Ben-Galim E, Strobel KE (1978) Glucose and alanine metabolism in children with maple syrup urine disease. J Clin Invest 78:398–405

    Article  Google Scholar 

  46. Hull J, Hindy ME, Kehoe PG, Chalmers K, Love S, Conway ME (2012) Distribution of the branched chain aminotransferase proteins in the human brain and their role in glutamate regulation. J Neurochem 123:997–1009

    Article  CAS  PubMed  Google Scholar 

  47. Hutson SM (1988) Subcellular distribution of branched-chain aminotransferase activity in rat tissues. J Nutr 118:1475–1481

    CAS  PubMed  Google Scholar 

  48. Hutson SM, Wallin R, Hall TR (1992) Identification of mitochondrial branched chain aminotransferase and its isoforms in rat tissues. J Biol Chem 267:15681–15686

    CAS  PubMed  Google Scholar 

  49. Hutson SM, Berkich D, Drown P, Xu B, Aschner M, LaNoue KF (1998) Role of branched-chain aminotransferase isoenzymes and gabapentin in neurotransmitter metabolism. J Neurochem 71:863–874

    Article  CAS  PubMed  Google Scholar 

  50. Hutson SM, Lieth E, LaNoue KF (2001) Function of leucine in excitatory neurotransmitter metabolism in the central nervous system. J Nutr 131:846S–850S

    CAS  PubMed  Google Scholar 

  51. James JH, Escourrou J, Fischer JE (1978) Blood brain neutral amino acid transport activity is increased after portacaval anastomosis. Science 200(1395):1397

    Google Scholar 

  52. Jan W, Zimmerman RA, Wang ZJ, Berry GT, Kaplan PB, Kaye EM (2003) MR diffusion imaging and MR spectroscopy of maple syrup urine disease during acute metabolic decompensation. Neuroradiology 45:393–399

    Article  PubMed  Google Scholar 

  53. Jenstad M, Chaudhry FA (2013) The amino acid transporters of the glutamate/GABA-glutamine cycle and their impact on insulin and glucagon secretion. Front Endocrinol. doi:10.3389/fendo.2013.00199

    Google Scholar 

  54. Jewell JL, Russell RC, Guan KL (2013) Amino acid signalling upstream of mTOR. Nat Rev Mol Cell Biol 14:133–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kanamori K, Ross BD, Kondrat RW (1998) Rate of glutamate synthesis from leucine in rat brain measured in vivo by 15N NMR. J Neurochem 70(3):1304–1315

    Article  CAS  PubMed  Google Scholar 

  56. Kvamme E, Svenneby G, Hertz L, Schousboe A (1982) Properties of phosphate activated glutaminase in astrocytes cultured from mouse brain. Neurochem Res 7:761–770

    Article  CAS  PubMed  Google Scholar 

  57. Lee WJ, Hawkins RA, Viña JR, Peterson DR (1998) Glutamine transport by the blood–brain barrier: a possible mechanism for nitrogen removal. Am J Physiol 274:C1101–C1107

    CAS  PubMed  Google Scholar 

  58. Li F, Yin Y, Tan B, Kong X, Wu G (2011) Leucine nutrition in animals and humans: mTOR signaling and beyond. Amino Acids 41:1185–1193

    Article  CAS  PubMed  Google Scholar 

  59. Lieth E, LaNoue KF, Berkich DA, Xu B, Ratz M, Taylor C, Hutson SM (2001) Nitrogen shuttling between neurons and glial cells during glutamate synthesis. J Neurochem 76:1712–1723

    Article  CAS  PubMed  Google Scholar 

  60. Llorente-Folch I, Rueda CB, Amigo I, del Arco A, Saheki T, Pardo B, Satrústegui J (2013) Calcium-regulation of mitochondrial respiration maintains ATP homeostasis and requires ARALAR/AGC1-malate aspartate shuttle in intact cortical neurons. J Neurosci 33:13957–13971

    Article  CAS  PubMed  Google Scholar 

  61. Mac M, Nehlig A, Nałecz MJ, Nałecz KA (2000) Transport of alpha-ketoisocaproate in rat cerebral cortical neurons. Arch Biochem Biophys 376:347–353

    Article  CAS  PubMed  Google Scholar 

  62. Manchester KL (1965) Oxidation of amino acids by isolated rat diaphragm and the influence of insulin. Biochim Biophys Acta 100:295–298

    Article  CAS  PubMed  Google Scholar 

  63. Martinez-Hernandez A, Bell KP, Norenberg MD (1977) Glutamine synthetase: glial localization in brain. Science 195:1356–1358

    Article  CAS  PubMed  Google Scholar 

  64. McKenna MC (1996) Introduction: metabolic trafficking comes of age in the decade of the brain. Dev Neurosci 18:333–335

    Article  CAS  PubMed  Google Scholar 

  65. McKenna MC (2007) The glutamate-glutamine cycle is not stoichiometric: fates of glutamate in brain. J Neurosci Res 85:3347–3358

    Article  CAS  PubMed  Google Scholar 

  66. McKenna MC, Tildon JT, Stevenson JH, Boatright R, Huang S. (1993) Regulation of energy metabolism in synaptic terminals and cultured rat brain astrocytes: differences revealed using aminooxyacetate. Dev Neurosci 15:320–329

    Article  CAS  PubMed  Google Scholar 

  67. Meldrum BS (2000) Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr 130:1007S–1015S

    CAS  PubMed  Google Scholar 

  68. Miller LL (1961) The role of the liver and nonhepatic tissue in the regulation of free amino acid levels in the blood. In: Holden JT (ed) Amino acid pools. Elsevier, Amsterdam, pp 708–721

  69. Muelly ER, Moore GJ, Bunce SC, Mack J, Bigler DC, Morton DH, Strauss KA (2013) Biochemical correlates of neuropsychiatric illness in maple syrup urine disease. J Clin Invest 123:1809–1820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Murín R, Hamprecht B (2008) Metabolic and regulatory roles of leucine in neural cells. Neurochem Res 33:279–284

    Article  PubMed  Google Scholar 

  71. Newsholme EA, Blomstrand E (2006) Branched-chain amino acids and central fatigue. J Nutr 136:274S–276S

    CAS  PubMed  Google Scholar 

  72. Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161:303–310

    Article  CAS  PubMed  Google Scholar 

  73. Oldendorf WH (1971) Brain uptake of radiolabeled amino acids, amines and hexoses after arterial injection. Am J Physiol 221:1629–1635

    CAS  PubMed  Google Scholar 

  74. Petzold GC, Murthy VN (2011) Role of astrocytes in neurovascular coupling. Neuron 71:782–797

    Article  CAS  PubMed  Google Scholar 

  75. Prensky AL, Moser HW (1966) Brain lipids, proteolipids, and free amino acids in maple syrup urine disease. J Neurochem 13:863–874

    Article  CAS  PubMed  Google Scholar 

  76. Rao KVR, Murthy CRK (1994) High affinity transport systems for essential amino acids in rat brain cortex. Neurosci Lett 175:103–106

  77. Rao KVR, Vemuri MC, Murthy CRK (1995) Synaptosomal transport of branched chain amino acids in young, adult and aged rat brain cortex. Neurosci Lett 184:137–140

  78. Riviello JJ Jr, Rezvani I et al (1991) Cerebral edema causing death in children with maple syrup urine disease. J Pediatr 119:42–45

    Article  PubMed  Google Scholar 

  79. Robinson MB, Jackson JG (2016) Astroglial glutamate transporters coordinate excitatory signaling and brain energetics. Neurochem Int 98:56–71

    Article  CAS  PubMed  Google Scholar 

  80. Rothman DL, DeFeyter HM, Maciejewski PK, Behar KL (2012) Is there in vivo evidence for amino acid shuttles carrying ammonia from neurons to astrocytes?. Neurochem Res 37:2597–2612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schwartz GJ (2013) Central leucine sensing in the control of energy homeostasis. Endocrinol Metab Clin North Am 42:81–87

    Article  CAS  PubMed  Google Scholar 

  82. Shambaugh GE III, Koehler RA (1981) Fetal fuels. IV. Regulation of branched-chain amino and keto acid metabolism in fetal brain. Am J Physiol 241:E200–E207

    CAS  PubMed  Google Scholar 

  83. Shambaugh GE, Koehler RA (1983) Fetal fuels VI. Metabolism of a-ketoisocaproic acid in fetal rat brain. Metabolism 32:421–427

    Article  CAS  PubMed  Google Scholar 

  84. Shen J (2013) Modeling the glutamate–glutamine neurotransmitter cycle. Front Neuroenerget 5:1. doi:10.3389/fnene.2013.00001 (eCollection 2013)

    Article  CAS  Google Scholar 

  85. Shulman RG, Hyder F, Rothman DL (2001) Lactate efflux and the neuroenergetic basis of brain function. NMR Biomed 14:389–396

    Article  CAS  PubMed  Google Scholar 

  86. Siesjö BK (1978) Brain energy metabolism. Wiley, New York

    Google Scholar 

  87. Smith QR, Momma S, Aoyagi M, Rapoport SI (1987) Kinetics of neutral amino acid transport across the blood-brain barrier. J Neurochem 49:1651–1658

    Article  CAS  PubMed  Google Scholar 

  88. Snell K, Duff DA (1981) In: Walser M, Williamson JR (eds) Metabolism and clinical implications of branched chain amino and ketoacids. Elsevier/North-Holland, New York, pp 251–256

  89. Sonnewald U (2014) Glutamate synthesis has to be matched by its degradation-where do all the carbons go?. J Neurochem 131:399–406

    Article  CAS  PubMed  Google Scholar 

  90. Sweatt A, Garcia-Espinosa M, Wallin R, Hutson S (2004a) Branched-chain amino acids and neurotransmitter metabolism: expression of cytosolic brainched chain aminotransferase (BCATc) in the cerebellum and hippocampus. J Compar Neurol 477:360–370

  91. Sweatt A, Wood M, Suryawan A, Wallin R, Willingham M, Hutson S (2004b) Branched-chain amino acid catabolism: unique segregation of pathway enzymes in organ systems and peripheral nerves. Am J Phys Endocr Metab 286:E64–E76

  92. Tan CH, Leong MK, Ng FH, Thiyagarajah P (1987) Sodium-independent synaptosomal uptake of leucine. Biochem Int 14:161–166

  93. Tan CH, Leong MK, Ng FG (1988) A novel sodium-dependent uptake system for L-leucine in rat brain synaptosomes. Neurochem Int 12:91–95

  94. Westergaard N, Sonnewald U, Schousboe A (1995) Metabolic trafficking between neurons and astrocytes: the glutamate/glutamine cycle revisited. Dev Neurosci 17:203–211

    Article  CAS  PubMed  Google Scholar 

  95. Walls AB, Waagepetersen HS, Bak LK, Schousboe A, Sonnewald U (2015) The glutamine-glutamate/GABA cycle: function, regional differences in glutamate and GABA production and effects of interference with GABA metabolism. Neurochem Res 40(2):402–409

    Article  CAS  PubMed  Google Scholar 

  96. Yudkoff M, Nissim I, Kim SU, Pleasure D, Hummeler K, Segal S (1983) [15N] Leucine as a source of [15N] glutamate in organotypic cerebellar explants. Biochem Biophys Res Commun 115:l74–l79

    Article  Google Scholar 

  97. Yudkoff M, Nissim I, Hertz L (1990) Precursors of glutamic acid nitrogen in primary neuronal cultures: studies with 15N. Neurochem Res 15:1191–1196

    Article  CAS  PubMed  Google Scholar 

  98. Yudkoff M, Daikhin Y, Lin Z-P, Nissim I, Stern J, Pleasure D, Nissim I (1994a) Inter-relationships of leucine and glutamate metabolism in cultured astrocytes. J Neurochem 62:1192–1202

  99. Yudkoff M, Daikhin Y, Nelson D, Nissim I, Erecińska M (1996) Neuronal metabolism of branched-chain amino acids: flux through the aminotransferase pathway in synaptosomes. J Neurochem 66:2136–2145

    Article  CAS  PubMed  Google Scholar 

  100. Yudkoff M, Daikhin Y, Nissim I, Horyn O, Luhovyy B, Lazarow A, Nissim I (2005) Brain amino acid requirements and toxicity: the example of leucine. J Nutr 135:1531S–1538S

    CAS  PubMed  Google Scholar 

  101. Zielke HR, Tildon JT, Zielke CL, Baab PJ, Landry ME (1989) Functional intracellular glutaminase activity in intact astrocytes. Neurochem Res 14:327–332

    Article  CAS  PubMed  Google Scholar 

  102. Zielke HR, Huang Y, Zielke CL, Baab PJ, Tildon JT (1995) a-Ketoisocaproate and leucine infusion into the brain alters the amino acid levels in the interstitital space. J Neurochem 64:S56A

    Google Scholar 

  103. Zielke HR, Huang Y, Baab PJ, Collins RM Jr, Zielke CL, Tildon JT (1998) Effect of alpha-ketoisocaproate and leucine on the in vivo oxidation of glutamate and glutamine in the rat brain. Neurochem Res 22:1159–1164

    Article  Google Scholar 

  104. Zinnanti WJ, Lazovic J (2012) Interrupting the mechanisms of brain injury in a model of maple syrup urine disease encephalopathy. J Inherit Metab Dis 35:71–79

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Supported by NICHD Grant U54HD086984.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Yudkoff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yudkoff, M. Interactions in the Metabolism of Glutamate and the Branched-Chain Amino Acids and Ketoacids in the CNS. Neurochem Res 42, 10–18 (2017). https://doi.org/10.1007/s11064-016-2057-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-2057-z

Keywords

Navigation