Skip to main content

Advertisement

Log in

Amino Acid Transporters and Exchangers from the SLC1A Family: Structure, Mechanism and Roles in Physiology and Cancer

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The Solute Carrier 1A (SLC1A) family includes two major mammalian transport systems—the alanine serine cysteine transporters (ASCT1-2) and the human glutamate transporters otherwise known as the excitatory amino acid transporters (EAAT1-5). The EAATs play a critical role in maintaining low synaptic concentrations of the major excitatory neurotransmitter glutamate, and hence they have been widely researched over a number of years. More recently, the neutral amino acid exchanger, ASCT2 has garnered attention for its important role in cancer biology and potential as a molecular target for cancer therapy. The nature of this role is still being explored, and several classes of ASCT2 inhibitors have been developed. However none have reached sufficient potency or selectivity for clinical use. Despite their distinct functions in biology, the members of the SLC1A family display structural and functional similarity. Since 2004, available structures of the archaeal homologues GltPh and GltTk have elucidated mechanisms of transport and inhibition common to the family. The recent determination of EAAT1 and ASCT2 structures may be of assistance in future efforts to design efficacious ASCT2 inhibitors. This review will focus on ASCT2, the present state of knowledge on its roles in tumour biology, and how structural biology is being used to progress the development of inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ryan RM, Compton EL, Mindell JA (2009) Functional characterization of a Na+-dependent aspartate transporter from Pyrococcus horikoshii. J Biol Chem 284:17540–17548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Guskov A, Jensen S, Faustino I, Marrink SJ, Slotboom DJ (2016) Coupled binding mechanism of three sodium ions and aspartate in the glutamate transporter homologue GltTk. Nat Commun 7:13420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vandenberg RJ, Ryan RM (2013) Mechanisms of glutamate transport. Physiol Rev 93:1621–1657

    Article  CAS  PubMed  Google Scholar 

  4. Zerangue N, Kavanaugh MP (1996) Interaction of l-cysteine with a human excitatory amino acid transporter. J Physiol 493(Pt 2):419–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Christensen HN, Liang M, Archer EG (1967) A distinct Na+-requiring transport system for alanine, serine, cysteine, and similar amino acids. J Biol Chem 242:5237–5246

    CAS  PubMed  Google Scholar 

  6. Shafqat S, Tamarappoo BK, Kilberg MS, Puranam RS, McNamara JO, Guadaño-Ferraz A, Fremeau RT (1993) Cloning and expression of a novel Na (+)-dependent neutral amino acid transporter structurally related to mammalian Na+/glutamate cotransporters. J Biol Chem 268:15351–15355

    CAS  PubMed  Google Scholar 

  7. Utsunomiya-Tate N, Endou H, Kanai Y (1996) Cloning and functional characterization of a system ASC-like Na+-dependent neutral amino acid transporter. J Biol Chem 271:14883–14890

    Article  CAS  PubMed  Google Scholar 

  8. Scalise M, Pochini L, Pingitore P, Hedfalk K, Indiveri C (2015) Cysteine is not a substrate but a specific modulator of human ASCT2 (SLC1A5) transporter. FEBS Lett 589:3617–3623

    Article  CAS  PubMed  Google Scholar 

  9. Arriza JL, Kavanaugh MP, Fairman WA, Wu Y-N, Murdoch GH, North RA, Amara SG (1993) Cloning and expression of a human neutral amino acid transporter with structural similarity to the glutamate transporter gene family. J Biol Chem 268:15329–15332

    CAS  PubMed  Google Scholar 

  10. Scopelliti AJ, Font J, Vandenberg RJ, Boudker O, Ryan RM (2018) Structural characterisation reveals insights into substrate recognition by the glutamine transporter ASCT2/SLC1A5. Nat Commun 9:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Groeneveld M, Slotboom DJ (2010) Na(+): aspartate coupling stoichiometry in the glutamate transporter homologue Glt(Ph). Biochemistry 49:3511–3513

    Article  CAS  PubMed  Google Scholar 

  12. Owe SG, Marcaggi P, Attwell D (2006) The ionic stoichiometry of the GLAST glutamate transporter in salamander retinal glia. J Physiol 577:591–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zerangue N, Kavanaugh MP (1996) Flux coupling in a neuronal glutamate transporter. Nature 383:634–637

    Article  CAS  PubMed  Google Scholar 

  14. Levy LM, Warr O, Attwell D (1998) Stoichiometry of the glial glutamate transporter GLT-1 expressed inducibly in a Chinese hamster ovary cell line selected for low endogenous Na+-dependent glutamate uptake. J Neurosci 18:9620–9628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Broer A, Wagner C, Florian L, Broer S (2000) Neutral amino acid transporter ASCT2 displays substrate-induced Na+ exchange and a substrate-gated anion conductance. Biochem J 346:705–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zerangue N, Kavanaugh MP (1996) ASCT-1 is a neutral amino acid exchanger with chloride channel activity. J Biol Chem 271:27991–27994

    Article  CAS  PubMed  Google Scholar 

  17. Scopelliti AJ, Heinzelmann G, Kuyucak S, Ryan RM, Vandenberg RJ (2014) Na+ interactions with the neutral amino acid transporter ASCT1. J Biol Chem 289:17468–17479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Grewer C, Grabsch E (2004) New inhibitors for the neutral amino acid transporter ASCT2 reveal its Na+-dependent anion leak. J Physiol 557:747–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ryan RM, Mindell JA (2007) The uncoupled chloride conductance of a bacterial glutamate transporter homolog. Nat Struct Mol Biol 14:365–371

    Article  CAS  PubMed  Google Scholar 

  20. Wadiche JI, Amara SG, Kavanaugh MP (1995) Ion fluxes associated with excitatory amino acid transport. Neuron 15:721–728

    Article  CAS  PubMed  Google Scholar 

  21. Billups B, Rossi D, Attwell D (1996) Anion conductance behavior of the glutamate uptake carrier in salamander retinal glial cells. J Neurosci 16:6722–6731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fairman WA, Vandenberg RJ, Arriza JL, Kavanaugh MP, Amara SG (1995) An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 375:599–603

    Article  CAS  PubMed  Google Scholar 

  23. Vandenberg RJ, Arriza JL, Amara SG, Kavanaugh MP (1995) Constitutive ion fluxes and substrate binding domains of human glutamate transporters. J Biol Chem 270:17668–17671

    Article  CAS  PubMed  Google Scholar 

  24. Ryan RM, Vandenberg RJ (2002) Distinct conformational states mediate the transport and anion channel properties of the glutamate transporter EAAT-1. J Biol Chem 277:13494–13500

    Article  CAS  PubMed  Google Scholar 

  25. Borre L, Kavanaugh MP, Kanner BI (2002) Dynamic equilibrium between coupled and uncoupled modes of a neuronal glutamate transporter. J Biol Chem 277:13501–13507

    Article  CAS  PubMed  Google Scholar 

  26. Seal RP, Shigeri Y, Eliasof S, Leighton BH, Amara SG (2001) Sulfhydryl modification of V449C in the glutamate transporter EAAT1 abolishes substrate transport but not the substrate-gated anion conductance. Proc Natl Acad Sci USA 98:15324–15329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Grewer C, Balani P, Weidenfeller C, Bartusel T, Tao Z, Rauen T (2005) Individual subunits of the glutamate transporter EAAC1 homotrimer function independently of each other. Biochemistry 44:11913–11923

    Article  CAS  PubMed  Google Scholar 

  28. Leary GP, Stone EF, Holley DC, Kavanaugh MP (2007) The glutamate and chloride permeation pathways are colocalized in individual neuronal glutamate transporter subunits. J Neurosci 27:2938–2942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Koch HP, Brown RL, Larsson HP (2007) The glutamate-activated anion conductance in excitatory amino acid transporters is gated independently by the individual subunits. J Neurosci 27:2943–2947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Koch HP, Larsson HP (2005) Small-scale molecular motions accomplish glutamate uptake in human glutamate transporters. J Neurosci 25:1730–1736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Albers T, Marsiglia W, Thomas T, Gameiro A, Grewer C (2012) Defining substrate and blocker activity of alanine-serine-cysteine transporter 2 (ASCT2) Ligands with novel serine analogs. Mol Pharmacol 81:356–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yernool D, Boudker O, Jin Y, Gouaux E (2004) Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431:811–818

    Article  CAS  PubMed  Google Scholar 

  33. Scopelliti AJ, Ryan RM, Vandenberg RJ (2013) Molecular determinants for functional differences between alanine-serine-cysteine transporter 1 and other glutamate transporter family members. J Biol Chem 288:8250–8257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Garaeva AA, Oostergetel GT, Gati C, Guskov A, Paulino C, Slotboom DJ (2018) Cryo-EM structure of the human neutral amino acid transporter ASCT2. Nat Struct Mol Biol 25:515–521

    Article  CAS  PubMed  Google Scholar 

  35. Bendahan A, Armon A, Madani N, Kavanaugh MP, Kanner BI (2000) Arginine 447 plays a pivotal role in substrate interactions in a neuronal glutamate transporter. J Biol Chem 275:37436–37442

    Article  CAS  PubMed  Google Scholar 

  36. Boudker O, Ryan RM, Yernool D, Shimamoto K, Gouaux E (2007) Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature 445:387–393

    Article  CAS  PubMed  Google Scholar 

  37. Verdon G, Oh S, Serio RN, Boudker O (2014) Coupled ion binding and structural transitions along the transport cycle of glutamate transporters. Elife 3:e02283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Bastug T, Heinzelmann G, Kuyucak S, Salim M, Vandenberg RJ, Ryan RM (2012) Position of the third Na+ site in the aspartate transporter GltPh and the human glutamate transporter, EAAT1. PLoS ONE 7:e33058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Reyes N, Ginter C, Boudker O (2009) Transport mechanism of a bacterial homologue of glutamate transporters. Nature 462:880–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Verdon G, Boudker O (2012) Crystal structure of an asymmetric trimer of a bacterial glutamate transporter homolog. Nat Struct Mol Biol 19:355–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ryan RM, Vandenberg RJ (2016) Elevating the alternating-access model. Nat Struct Mol Biol 23:187–189

    Article  CAS  PubMed  Google Scholar 

  42. Erkens GB, Hanelt I, Goudsmits JM, Slotboom DJ, van Oijen AM (2013) Unsynchronised subunit motion in single trimeric sodium-coupled aspartate transporters. Nature 502:119–123

    Article  CAS  PubMed  Google Scholar 

  43. Ruan Y, Miyagi A, Wang X, Chami M, Boudker O, Scheuring S (2017) Direct visualization of glutamate transporter elevator mechanism by high-speed AFM. Proc Natl Acad Sci USA 114:1584–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Akyuz N, Altman RB, Blanchard SC, Boudker O (2013) Transport dynamics in a glutamate transporter homologue. Nature 502:114–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Canul-Tec JC, Assal R, Cirri E, Legrand P, Brier S, Chamot-Rooke J, Reyes N (2017) Structure and allosteric inhibition of excitatory amino acid transporter 1. Nature 544:446–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Console L, Scalise M, Tarmakova Z, Coe IR, Indiveri C (2015) N-linked glycosylation of human SLC1A5 (ASCT2) transporter is critical for trafficking to membrane. Biochim Biophys Acta 1853:1636–1645

    Article  CAS  PubMed  Google Scholar 

  47. Lavillette D, Marin M, Ruggieri A, Mallet F, Cosset FL, Kabat D (2002) The envelope glycoprotein of human endogenous retrovirus type W uses a divergent family of amino acid transporters/cell surface receptors. J Virol 76:6442–6452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Marin M, Lavillette D, Kelly SM, Kabat D (2003) N-linked glycosylation and sequence changes in a critical negative control region of the ASCT1 and ASCT2 neutral amino acid transporters determine their retroviral receptor functions. J Virol 77:2936–2945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Garaeva AA, Guskov A, Slotboom DJ, Paulino C (2019) A one-gate elevator mechanism for the human neutral amino acid transporter ASCT2. Nat Commun 10:3427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Zomot E, Bahar I (2013) Intracellular gating in an inward-facing state of aspartate transporter Glt(Ph) is regulated by the movements of the helical hairpin HP2. J Biol Chem 288:8231–8237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  CAS  PubMed  Google Scholar 

  52. Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276:1699–1702

    Article  CAS  PubMed  Google Scholar 

  53. Lehre KP, Danbolt NC (1998) The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J Neurosci 18:8751–8757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rauen T, Rothstein JD, Wassle H (1996) Differential expression of three glutamate transporter subtypes in the rat retina. Cell Tissue Res 286:325–336

    Article  CAS  PubMed  Google Scholar 

  55. Chen Z, Kujawa SG, Sewell WF (2010) Functional roles of high-affinity glutamate transporters in cochlear afferent synaptic transmission in the mouse. J Neurophysiol 103:2581–2586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Furness DN, Lehre KP (1997) Immunocytochemical localization of a high-affinity glutamate-aspartate transporter, GLAST, in the rat and guinea-pig cochlea. Eur J Neurosci 9:1961–1969

    Article  CAS  PubMed  Google Scholar 

  57. Berger UV, Hediger MA (2000) Distribution of the glutamate transporters GLAST and GLT-1 in rat circumventricular organs, meninges, and dorsal root ganglia. J Comp Neurol 421:385–399

    Article  CAS  PubMed  Google Scholar 

  58. Furuta A, Rothstein JD, Martin LJ (1997) Glutamate transporter protein subtypes are expressed differentially during rat CNS development. J Neurosci 17:8363–8375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen W, Mahadomrongkul V, Berger UV, Bassan M, DeSilva T, Tanaka K, Irwin N, Aoki C, Rosenberg PA (2004) The glutamate transporter GLT1a is expressed in excitatory axon terminals of mature hippocampal neurons. J Neurosci 24:1136–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Furness DN, Dehnes Y, Akhtar AQ, Rossi DJ, Hamann M, Grutle NJ, Gundersen V, Holmseth S, Lehre KP, Ullensvang K, Wojewodzic M, Zhou Y, Attwell D, Danbolt NC (2008) A quantitative assessment of glutamate uptake into hippocampal synaptic terminals and astrocytes: new insights into a neuronal role for excitatory amino acid transporter 2 (EAAT2). Neuroscience 157:80–94

    Article  CAS  PubMed  Google Scholar 

  61. Petr GT, Sun Y, Frederick NM, Zhou Y, Dhamne SC, Hameed MQ, Miranda C, Bedoya EA, Fischer KD, Armsen W, Wang J, Danbolt NC, Rotenberg A, Aoki CJ, Rosenberg PA (2015) Conditional deletion of the glutamate transporter GLT-1 reveals that astrocytic GLT-1 protects against fatal epilepsy while neuronal GLT-1 contributes significantly to glutamate uptake into synaptosomes. J Neurosci 35:5187–5201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Petr GT, Schultheis LA, Hussey KC, Sun Y, Dubinsky JM, Aoki C, Rosenberg PA (2013) Decreased expression of GLT-1 in the R6/2 model of Huntington's disease does not worsen disease progression. Eur J Neurosci 38:2477–2490

    Article  PubMed  PubMed Central  Google Scholar 

  63. Melone M, Bellesi M, Conti F (2009) Synaptic localization of GLT-1a in the rat somatic sensory cortex. Glia 57:108–117

    Article  PubMed  Google Scholar 

  64. Melone M, Bellesi M, Ducati A, Iacoangeli M, Conti F (2011) Cellular and synaptic localization of EAAT2a in human cerebral cortex. Front Neuroanat 4:151

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bar-Peled O, Ben-Hur H, Biegon A, Groner Y, Dewhurst S, Furuta A, Rothstein JD (1997) Distribution of glutamate transporter subtypes during human brain development. J Neurochem 69:2571–2580

    Article  CAS  PubMed  Google Scholar 

  66. Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D, Nash N, Kuncl RW (1994) Localization of neuronal and glial glutamate transporters. Neuron 13:713–725

    Article  CAS  PubMed  Google Scholar 

  67. Shashidharan P, Huntley GW, Murray JM, Buku A, Moran T, Walsh MJ, Morrison JH, Plaitakis A (1997) Immunohistochemical localization of the neuron-specific glutamate transporter EAAC1 (EAAT3) in rat brain and spinal cord revealed by a novel monoclonal antibody. Brain Res 773:139–148

    Article  CAS  PubMed  Google Scholar 

  68. Holmseth S, Dehnes Y, Huang YH, Follin-Arbelet VV, Grutle NJ, Mylonakou MN, Plachez C, Zhou Y, Furness DN, Bergles DE, Lehre KP, Danbolt NC (2012) The density of EAAC1 (EAAT3) glutamate transporters expressed by neurons in the mammalian CNS. J Neurosci 32:6000–6013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bjorn-Yoshimoto WE, Underhill SM (2016) The importance of the excitatory amino acid transporter 3 (EAAT3). Neurochem Int 98:4–18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Dehnes Y, Chaudhry FA, Ullensvang K, Lehre KP, Storm-Mathisen J, Danbolt NC (1998) The glutamate transporter EAAT4 in rat cerebellar Purkinje cells: a glutamate-gated chloride channel concentrated near the synapse in parts of the dendritic membrane facing astroglia. J Neurosci 18:3606–3619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Arriza JL, Eliasof S, Kavanaugh MP, Amara SG (1997) Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci USA 94:4155–4160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pow DV, Barnett NL (2000) Developmental expression of excitatory amino acid transporter 5: a photoreceptor and bipolar cell glutamate transporter in rat retina. Neurosci Lett 280:21–24

    Article  CAS  PubMed  Google Scholar 

  73. Wersinger E, Schwab Y, Sahel JA, Rendon A, Pow DV, Picaud S, Roux MJ (2006) The glutamate transporter EAAT5 works as a presynaptic receptor in mouse rod bipolar cells. J Physiol 577:221–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. King N, Lin H, McGivan JD, Suleiman MS (2004) Aspartate transporter expression and activity in hypertrophic rat heart and ischaemia-reperfusion injury. J Physiol 556:849–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Martinov V, Dehnes Y, Holmseth S, Shimamoto K, Danbolt NC, Valen G (2014) A novel glutamate transporter blocker, LL-TBOA, attenuates ischaemic injury in the isolated, perfused rat heart despite low transporter levels. Eur J Cardiothorac Surg 45:710–716

    Article  PubMed  Google Scholar 

  76. Hediger MA (1999) Glutamate transporters in kidney and brain. Am J Physiol 277:F487–492

    CAS  PubMed  Google Scholar 

  77. Hu QX, Ottestad-Hansen S, Holmseth S, Hassel B, Danbolt NC, Zhou Y (2018) Expression of glutamate transporters in mouse liver, kidney, and intestine. J Histochem Cytochem 66:189–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Burckhardt BC, Burckhardt G (2017) Interaction of excitatory amino acid transporters 1–3 (EAAT1, EAAT2, EAAT3) with N-carbamoylglutamate and N-acetylglutamate. Cell Physiol Biochem 43:1907–1916

    Article  CAS  PubMed  Google Scholar 

  79. Matthews JC, Beveridge MJ, Malandro MS, Rothstein JD, Campbell-Thompson M, Verlander JW, Kilberg MS, Novak DA (1998) Activity and protein localization of multiple glutamate transporters in gestation day 14 vs. day 20 rat placenta. Am J Physiol 274:C603–614

    Article  CAS  PubMed  Google Scholar 

  80. Noorlander CW, de Graan PN, Nikkels PG, Schrama LH, Visser GH (2004) Distribution of glutamate transporters in the human placenta. Placenta 25:489–495

    Article  CAS  PubMed  Google Scholar 

  81. Bailey CG, Ryan RM, Thoeng AD, Ng C, King K, Vanslambrouck JM, Auray-Blais C, Vandenberg RJ, Broer S, Rasko JE (2011) Loss-of-function mutations in the glutamate transporter SLC1A1 cause human dicarboxylic aminoaciduria. J Clin Invest 121:446–453

    Article  CAS  PubMed  Google Scholar 

  82. Peghini P, Janzen J, Stoffel W (1997) Glutamate transporter EAAC-1-deficient mice develop dicarboxylic aminoaciduria and behavioral abnormalities but no neurodegeneration. Embo J 16:3822–3832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Brakspear KS, Mason DJ (2012) Glutamate signaling in bone. Front Endocrinol 3:97

    Google Scholar 

  84. Huggett J, Vaughan-Thomas A, Mason D (2000) The open reading frame of the Na(+)-dependent glutamate transporter GLAST-1 is expressed in bone and a splice variant of this molecule is expressed in bone and brain. FEBS Lett 485:13–18

    Article  CAS  PubMed  Google Scholar 

  85. Martinez-Lopez I, Garcia C, Barber T, Vina JR, Miralles VJ (1998) The l-glutamate transporters GLAST (EAAT1) and GLT-1 (EAAT2): expression and regulation in rat lactating mammary gland. Mol Membr Biol 15:237–242

    Article  CAS  PubMed  Google Scholar 

  86. Najimi M, Stephenne X, Sempoux C, Sokal E (2014) Regulation of hepatic EAAT-2 glutamate transporter expression in human liver cholestasis. World J Gastroenterol 20:1554–1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lee A, Anderson AR, Stevens M, Beasley S, Barnett NL, Pow DV (2013) Excitatory amino acid transporter 5 is widely expressed in peripheral tissues. Eur J Histochem 57:e11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hashimoto Y, Sadamoto Y, Konno A, Kon Y, Iwanaga T (2004) Distribution of neutral amino acid transporter ASCT 1 in the non-neuronal tissues of mice. Jpn J Vet Res 52:113–124

    PubMed  Google Scholar 

  89. Broer S, Fairweather SJ (2018) Amino acid transport across the mammalian intestine. Compr Physiol 9:343–373

    Article  PubMed  Google Scholar 

  90. Masle-Farquhar E, Broer A, Yabas M, Enders A, Broer S (2017) ASCT2 (SLC1A5)-Deficient mice have normal B-cell development, proliferation, and antibody production. Front Immunol 8:549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Nakaya M, Xiao Y, Zhou X, Chang JH, Chang M, Cheng X, Blonska M, Lin X, Sun SC (2014) Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40:692–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ni F, Yu W-M, Li Z, Graham DK, Jin L, Kang S, Rossi MR, Li S, Broxmeyer HE, Qu C-K (2019) Critical role of ASCT2-mediated amino acid metabolism in promoting leukaemia development and progression. Nat Metab 1:390–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Oburoglu L, Tardito S, Fritz V, de Barros SC, Merida P, Craveiro M, Mamede J, Cretenet G, Mongellaz C, An X, Klysz D, Touhami J, Boyer-Clavel M, Battini JL, Dardalhon V, Zimmermann VS, Mohandas N, Gottlieb E, Sitbon M, Kinet S, Taylor N (2014) Glucose and glutamine metabolism regulate human hematopoietic stem cell lineage specification. Cell Stem Cell 15:169–184

    Article  CAS  PubMed  Google Scholar 

  94. Kaplan E, Zubedat S, Radzishevsky I, Valenta AC, Rechnitz O, Sason H, Sajrawi C, Bodner O, Konno K, Esaki K, Derdikman D, Yoshikawa T, Watanabe M, Kennedy RT, Billard JM, Avital A, Wolosker H (2018) ASCT1 (Slc1a4) transporter is a physiologic regulator of brain d-serine and neurodevelopment. Proc Natl Acad Sci USA 115:9628–9633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nalecz KA (2016) Solute carriers in the blood-brain barier: safety in abundance. Neurochem Res 42:795–809

    Article  PubMed  CAS  Google Scholar 

  96. Sakai K, Shimizu H, Koike T, Furuya S, Watanabe M (2003) Neutral amino acid transporter ASCT1 is preferentially expressed in l-Ser-synthetic/storing glial cells in the mouse brain with transient expression in developing capillaries. J Neurosci 23:550–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tetsuka K, Takanaga H, Ohtsuki S, Hosoya K, Terasaki T (2003) The l-isomer-selective transport of aspartic acid is mediated by ASCT2 at the blood-brain barrier. J Neurochem 87:891–901

    Article  CAS  PubMed  Google Scholar 

  98. Weiss MD, Derazi S, Kilberg MS, Anderson KJ (2001) Ontogeny and localization of the neutral amino acid transporter ASCT1 in rat brain. Brain Res Dev Brain Res 130:183–190

    Article  CAS  PubMed  Google Scholar 

  99. Broer A, Brookes N, Ganapathy V, Dimmer KS, Wagner CA, Lang F, Broer S (1999) The astroglial ASCT2 amino acid transporter as a mediator of glutamine efflux. J Neurochem 73:2184–2194

    CAS  PubMed  Google Scholar 

  100. Dolinska M, Zablocka B, Sonnewald U, Albrecht J (2004) Glutamine uptake and expression of mRNA's of glutamine transporting proteins in mouse cerebellar and cerebral cortical astrocytes and neurons. Neurochem Int 44:75–81

    Article  CAS  PubMed  Google Scholar 

  101. Dun Y, Mysona B, Itagaki S, Martin-Studdard A, Ganapathy V, Smith SB (2007) Functional and molecular analysis of d-serine transport in retinal Muller cells. Exp Eye Res 84:191–199

    Article  CAS  PubMed  Google Scholar 

  102. Gliddon CM, Shao Z, LeMaistre JL, Anderson CM (2009) Cellular distribution of the neutral amino acid transporter subtype ASCT2 in mouse brain. J Neurochem 108:372–383

    Article  CAS  PubMed  Google Scholar 

  103. Shen J (2013) Modeling the glutamate-glutamine neurotransmitter cycle. Front Neuroenergetics 5:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Deitmer JW, Broer A, Broer S (2003) Glutamine efflux from astrocytes is mediated by multiple pathways. J Neurochem 87:127–135

    Article  CAS  PubMed  Google Scholar 

  105. Foster AC, Farnsworth J, Lind GE, Li YX, Yang JY, Dang V, Penjwini M, Viswanath V, Staubli U, Kavanaugh MP (2016) d-Serine is a substrate for neutral amino acid transporters ASCT1/SLC1A4 and ASCT2/SLC1A5, and is transported by both subtypes in rat hippocampal astrocyte cultures. PLoS ONE 11:e0156551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Rosenberg D, Artoul S, Segal AC, Kolodney G, Radzishevsky I, Dikopoltsev E, Foltyn VN, Inoue R, Mori H, Billard JM, Wolosker H (2013) Neuronal d-serine and glycine release via the Asc-1 transporter regulates NMDA receptor-dependent synaptic activity. J Neurosci 33:3533–3544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Martineau M, Parpura V, Mothet JP (2014) Cell-type specific mechanisms of d-serine uptake and release in the brain. Front Synaptic Neurosci 6:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. El-Hattab AW (2016) Serine biosynthesis and transport defects. Mol Genet Metab 118:153–159

    Article  CAS  PubMed  Google Scholar 

  109. Conroy J, Allen NM, Gorman K, O'Halloran E, Shahwan A, Lynch B, Lynch SA, Ennis S, King MD (2016) Novel European SLC1A4 variant: infantile spasms and population ancestry analysis. J Hum Genet 61:761–764

    Article  CAS  PubMed  Google Scholar 

  110. Damseh N, Simonin A, Jalas C, Picoraro JA, Shaag A, Cho MT, Yaacov B, Neidich J, Al-Ashhab M, Juusola J, Bale S, Telegrafi A, Retterer K, Pappas JG, Moran E, Cappell J, Anyane Yeboa K, Abu-Libdeh B, Hediger MA, Chung WK, Elpeleg O, Edvardson S (2015) Mutations in SLC1A4, encoding the brain serine transporter, are associated with developmental delay, microcephaly and hypomyelination. J Med Genet 52:541–547

    Article  CAS  PubMed  Google Scholar 

  111. Jeon GS, Choi DH, Lee HN, Kim DW, Chung CK, Cho SS (2009) Expression of l-serine biosynthetic enzyme 3-phosphoglycerate dehydrogenase (Phgdh) and neutral amino acid transporter ASCT1 following an excitotoxic lesion in the mouse hippocampus. Neurochem Res 34:827–834

    Article  CAS  PubMed  Google Scholar 

  112. Wang J, Zhang K, Chen X, Liu X, Teng H, Zhao M, Sun Z (2017) Epigenetic activation of ASCT2 in the hippocampus contributes to depression-like behavior by regulating d-serine in mice. Front Mol Neurosci 10:139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Seyer P, Vandermoere F, Cassier E, Bockaert J, Marin P (2016) Physical and functional interactions between the serotonin transporter and the neutral amino acid transporter ASCT2. Biochem J 473:1953–1965

    Article  CAS  PubMed  Google Scholar 

  114. Li YX, Yang JY, Alcantara M, Abelian G, Kulkarni A, Staubli U, Foster AC (2018) Inhibitors of the neutral amino acid transporters ASCT1 and ASCT2 are effective in in vivo models of schizophrenia and visual dysfunction. J Pharmacol Exp Ther 367:292–301

    Article  CAS  PubMed  Google Scholar 

  115. Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686

    Article  CAS  PubMed  Google Scholar 

  116. Robert SM, Sontheimer H (2014) Glutamate transporters in the biology of malignant gliomas. Cell Mol Life Sci 71:1839–1854

    Article  CAS  PubMed  Google Scholar 

  117. de Groot JF, Liu TJ, Fuller G, Yung WK (2005) The excitatory amino acid transporter-2 induces apoptosis and decreases glioma growth in vitro and in vivo. Cancer Res 65:1934–1940

    Article  PubMed  Google Scholar 

  118. Ye ZC, Rothstein JD, Sontheimer H (1999) Compromised glutamate transport in human glioma cells: reduction-mislocalization of sodium-dependent glutamate transporters and enhanced activity of cystine-glutamate exchange. J Neurosci 19:10767–10777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Dunlop J, Lou Z, McIlvain HB (1999) Properties of excitatory amino acid transport in the human U373 astrocytoma cell line. Brain Res 839:235–242

    Article  CAS  PubMed  Google Scholar 

  120. Palos TP, Ramachandran B, Boado R, Howard BD (1996) Rat C6 and human astrocytic tumor cells express a neuronal type of glutamate transporter. Brain Res Mol Brain Res 37:297–303

    Article  CAS  PubMed  Google Scholar 

  121. Jimenez AL, Chou AH, Khadadadi O, Palos TP, Howard BD (2003) Wnt-1 has multiple effects on the expression of glutamate transporters. Neurochem Int 42:345–351

    Article  CAS  PubMed  Google Scholar 

  122. Varini K, Benzaria A, Taieb N, Di Scala C, Azmi A, Graoudi S, Maresca M (2012) Mislocalization of the exitatory amino-acid transporters (EAATs) in human astrocytoma and non-astrocytoma cancer cells: effect of the cell confluence. J Biomed Sci 19:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lee SG, Kim K, Kegelman TP, Dash R, Das SK, Choi JK, Emdad L, Howlett EL, Jeon HY, Su ZZ, Yoo BK, Sarkar D, Kim SH, Kang DC, Fisher PB (2011) Oncogene AEG-1 promotes glioma-induced neurodegeneration by increasing glutamate excitotoxicity. Cancer Res 71:6514–6523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Jacobs VL, De Leo JA (2013) Increased glutamate uptake in astrocytes via propentofylline results in increased tumor cell apoptosis using the CNS-1 glioma model. J Neurooncol 114:33–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Beschorner R, Pantazis G, Jeibmann A, Boy J, Meyermann R, Mittelbronn M, Schittenhelm J (2009) Expression of EAAT-1 distinguishes choroid plexus tumors from normal and reactive choroid plexus epithelium. Acta Neuropathol 117:667–675

    Article  CAS  PubMed  Google Scholar 

  126. Schittenhelm J, Roser F, Tatagiba M, Beschorner R (2012) Diagnostic value of EAAT-1 and Kir7.1 for distinguishing endolymphatic sac tumors from choroid plexus tumors. Am J Clin Pathol 138:85–89

    Article  PubMed  Google Scholar 

  127. Bacci M, Lorito N, Ippolito L, Ramazzotti M, Luti S, Romagnoli S, Parri M, Bianchini F, Cappellesso F, Virga F, Gao Q, Simoes BM, Marangoni E, Martin LA, Comito G, Ferracin M, Giannoni E, Mazzone M, Chiarugi P, Morandi A (2019) Reprogramming of amino acid transporters to support aspartate and glutamate dependency sustains endocrine resistance in breast cancer. Cell Rep 28:104–118.e108

    Article  CAS  Google Scholar 

  128. Tao J, Deng NT, Ramnarayanan K, Huang B, Oh HK, Leong SH, Lim SS, Tan IB, Ooi CH, Wu J, Lee M, Zhang S, Rha SY, Chung HC, Smoot DT, Ashktorab H, Kon OL, Cacheux V, Yap C, Palanisamy N, Tan P (2011) CD44-SLC1A2 gene fusions in gastric cancer. Sci Transl Med 3:77ra30

    Article  PubMed  CAS  Google Scholar 

  129. Giacomini CP, Sun S, Varma S, Shain AH, Giacomini MM, Balagtas J, Sweeney RT, Lai E, Del Vecchio CA, Forster AD, Clarke N, Montgomery KD, Zhu S, Wong AJ, van de Rijn M, West RB, Pollack JR (2013) Breakpoint analysis of transcriptional and genomic profiles uncovers novel gene fusions spanning multiple human cancer types. PLoS Genet 9:e1003464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Garcia-Bermudez J, Baudrier L, La K, Zhu XG, Fidelin J, Sviderskiy VO, Papagiannakopoulos T, Molina H, Snuderl M, Lewis CA, Possemato RL, Birsoy K (2018) Aspartate is a limiting metabolite for cancer cell proliferation under hypoxia and in tumours. Nat Cell Biol 20:775–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tajan M, Hock AK, Blagih J, Robertson NA, Labuschagne CF, Kruiswijk F, Humpton TJ, Adams PD, Vousden KH (2018) A role for p53 in the adaptation to glutamine starvation through the expression of SLC1A3. Cell Metab 28:721–736.e726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Pedraz-Cuesta E, Christensen S, Jensen AA, Jensen NF, Bunch L, Romer MU, Brunner N, Stenvang J, Pedersen SF (2015) The glutamate transport inhibitor DL-Threo-beta-Benzyloxyaspartic acid (DL-TBOA) differentially affects SN38- and oxaliplatin-induced death of drug-resistant colorectal cancer cells. BMC Cancer 15:411

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Watase K, Hashimoto K, Kano M, Yamada K, Watanabe M, Inoue Y, Okuyama S, Sakagawa T, Ogawa S, Kawashima N, Hori S, Takimoto M, Wada K, Tanaka K (1998) Motor discoordination and increased susceptibility to cerebellar injury in GLAST mutant mice. Eur J Neurosci 10:976–988

    Article  CAS  PubMed  Google Scholar 

  134. Liu Y, Zhao T, Li Z, Wang L, Yuan S, Sun L (2018) The role of ASCT2 in cancer: A review. Eur J Pharmacol 837:81–87

    Article  CAS  PubMed  Google Scholar 

  135. Wahi K, Holst J (2019) ASCT2: a potential cancer drug target. Expert Opin Ther Targets 23:555–558

    Article  CAS  PubMed  Google Scholar 

  136. Scalise M, Pochini L, Console L, Losso MA, Indiveri C (2018) The human SLC1A5 (ASCT2) Amino acid transporter: from function to structure and role in cell biology. Front Cell Dev Biol 6:96

    Article  PubMed  PubMed Central  Google Scholar 

  137. Bernhardt S, Bayerlova M, Vetter M, Wachter A, Mitra D, Hanf V, Lantzsch T, Uleer C, Peschel S, John J, Buchmann J, Weigert E, Burrig KF, Thomssen C, Korf U, Beissbarth T, Wiemann S, Kantelhardt EJ (2017) Proteomic profiling of breast cancer metabolism identifies SHMT2 and ASCT2 as prognostic factors. Breast Cancer Res 19:112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Kaira K, Sunose Y, Arakawa K, Sunaga N, Shimizu K, Tominaga H, Oriuchi N, Nagamori S, Kanai Y, Oyama T, Takeyoshi I (2015) Clinicopathological significance of ASC amino acid transporter-2 expression in pancreatic ductal carcinoma. Histopathology 66:234–243

    Article  PubMed  Google Scholar 

  139. Ren P, Yue M, Xiao D, Xiu R, Gan L, Liu H, Qing G (2015) ATF4 and N-Myc coordinate glutamine metabolism in MYCN-amplified neuroblastoma cells through ASCT2 activation. J Pathol 235:90–100

    Article  CAS  PubMed  Google Scholar 

  140. van Geldermalsen M, Wang Q, Nagarajah R, Marshall AD, Thoeng A, Gao D, Ritchie W, Feng Y, Bailey CG, Deng N, Harvey K, Beith JM, Selinger CI, O'Toole SA, Rasko JE, Holst J (2016) ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer. Oncogene 35:3201–3208

    Article  PubMed  CAS  Google Scholar 

  141. Kim S, Kim DH, Jung W-H, Koo JS (2013) Expression of glutamine metabolism-related proteins according to molecular subtype of breast cancer. Endocr Relat Cancer 20:339–348

    Article  CAS  PubMed  Google Scholar 

  142. Wang Q, Hardie RA, Hoy AJ, van Geldermalsen M, Gao D, Fazli L, Sadowski MC, Balaban S, Schreuder M, Nagarajah R, Wong JJ, Metierre C, Pinello N, Otte NJ, Lehman ML, Gleave M, Nelson CC, Bailey CG, Ritchie W, Rasko JE, Holst J (2015) Targeting ASCT2-mediated glutamine uptake blocks prostate cancer growth and tumour development. J Pathol 236:278–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Marshall A, Van Geldermalsen M, Otte N, Lum T, Vellozzi M, Thoeng A, Pang A, Nagarajah R, Zhang B, Wang Q (2017) ASCT2 regulates glutamine uptake and cell growth in endometrial carcinoma. Oncogenesis 6:e367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lu J, Chen M, Tao Z, Gao S, Li Y, Cao Y, Lu C, Zou X (2017) Effects of targeting SLC1A5 on inhibiting gastric cancer growth and tumor development in vitro and in vivo. Oncotarget 8:76458–76467

    Article  PubMed  PubMed Central  Google Scholar 

  145. Lin J, Yang T, Peng Z, Xiao H, Jiang N, Zhang L, Ca D, Wu P, Pan Q (2018) SLC1A5 silencing inhibits esophageal cancer growth via cell cycle arrest and apoptosis. Cell Physiol Biochem 48:397

    Article  CAS  PubMed  Google Scholar 

  146. Ono M, Oka S, Okudaira H, Nakanishi T, Mizokami A, Kobayashi M, Schuster DM, Goodman MM, Shirakami Y, Kawai K (2015) [(14)C]Fluciclovine (alias anti-[(14)C]FACBC) uptake and ASCT2 expression in castration-resistant prostate cancer cells. Nucl Med Biol 42:887–892

    Article  CAS  PubMed  Google Scholar 

  147. Okudaira H, Shikano N, Nishii R, Miyagi T, Yoshimoto M, Kobayashi M, Ohe K, Nakanishi T, Tamai I, Namiki M, Kawai K (2011) Putative transport mechanism and intracellular fate of trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid in human prostate cancer. J Nucl Med 52:822–829

    Article  CAS  PubMed  Google Scholar 

  148. Wang Q, Beaumont KA, Otte NJ, Font J, Bailey CG, van Geldermalsen M, Sharp DM, Tiffen JC, Ryan RM, Jormakka M, Haass NK, Rasko JE, Holst J (2014) Targeting glutamine transport to suppress melanoma cell growth. Int J Cancer 135:1060–1071

    Article  CAS  PubMed  Google Scholar 

  149. Willems L, Jacque N, Jacquel A, Neveux N, Maciel TT, Lambert M, Schmitt A, Poulain L, Green AS, Uzunov M, Kosmider O, Radford-Weiss I, Moura IC, Auberger P, Ifrah N, Bardet V, Chapuis N, Lacombe C, Mayeux P, Tamburini J, Bouscary D (2013) Inhibiting glutamine uptake represents an attractive new strategy for treating acute myeloid leukemia. Blood 122:3521–3532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Cormerais Y, Massard PA, Vucetic M, Giuliano S, Tambutte E, Durivault J, Vial V, Endou H, Wempe MF, Parks SK, Pouyssegur J (2018) The glutamine transporter ASCT2 (SLC1A5) promotes tumor growth independently of the amino acid transporter LAT1 (SLC7A5). J Biol Chem 293:2877–2887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Broer A, Gauthier-Coles G, Rahimi F, van Geldermalsen M, Dorsch D, Wegener A, Holst J, Broer S (2019) Ablation of the ASCT2 (SLC1A5) gene encoding a neutral amino acid transporter reveals transporter plasticity and redundancy in cancer cells. J Biol Chem 294:4012–4026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Bolzoni M, Chiu M, Accardi F, Vescovini R, Airoldi I, Storti P, Todoerti K, Agnelli L, Missale G, Andreoli R, Bianchi MG, Allegri M, Barilli A, Nicolini F, Cavalli A, Costa F, Marchica V, Toscani D, Mancini C, Martella E, Dall'Asta V, Donofrio G, Aversa F, Bussolati O, Giuliani N (2016) Dependence on glutamine uptake and glutamine addiction characterize myeloma cells: a new attractive target. Blood 128:667–679

    Article  CAS  PubMed  Google Scholar 

  153. Ackermann T, Tardito S (2019) Cell culture medium formulation and its implications in cancer metabolism. Trends Cancer 5:329–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Broer A, Fairweather S, Broer S (2018) Disruption of amino acid homeostasis by novel ASCT2 inhibitors involves multiple targets. Front Pharmacol 9:785

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Wang C, Wu J, Wang Z, Yang Z, Li Z, Deng H, Li L, Peng X, Feng M (2018) Glutamine addiction activates polyglutamine-based nanocarriers delivering therapeutic siRNAs to orthotopic lung tumor mediated by glutamine transporter SLC1A5. Biomaterials 183:77–92

    Article  CAS  PubMed  Google Scholar 

  156. Jin L, Alesi GN, Kang S (2016) Glutaminolysis as a target for cancer therapy. Oncogene 35:3619–3625

    Article  CAS  PubMed  Google Scholar 

  157. Bungard CI, McGivan JD (2004) Glutamine availability up-regulates expression of the amino acid transporter protein ASCT2 in HepG2 cells and stimulates the ASCT2 promoter. Biochem J 382:27–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Dolinska M, Dybel A, Hilgier W, Zielinska M, Zablocka B, Buzanska L, Albrecht J (2001) Glutamine transport in C6 glioma cells: substrate specificity and modulation in a glutamine deprived culture medium. J Neurosci Res 66:959–966

    Article  CAS  PubMed  Google Scholar 

  159. Liberti MV, Locasale JW (2016) The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41:211–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Warburg O (1925) The metabolism of carcinoma cells. J Cancer Res 9:148–163

    Article  CAS  Google Scholar 

  161. Daye D, Wellen KE (2012) Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis. Semin Cell Dev Biol 23:362–369

    Article  CAS  PubMed  Google Scholar 

  162. Chen L, Cui H (2015) Targeting glutamine induces apoptosis: a cancer therapy approach. Int J Mol Sci 16:22830–22855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Fuchs BC, Bode BP (2005) Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime? Semin Cancer Biol 15:254–266

    Article  CAS  PubMed  Google Scholar 

  164. Kim LC, Cook RS, Chen J (2017) mTORC1 and mTORC2 in cancer and the tumor microenvironment. Oncogene 36:2191–2201

    Article  CAS  PubMed  Google Scholar 

  165. Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson C, Myer VE, MacKeigan JP, Porter JA, Wang YK, Cantley LC, Finan PM, Murphy LO (2009) Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136:521–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Hassanein M, Hoeksema MD, Shiota M, Qian J, Harris BK, Chen H, Clark JE, Alborn WE, Eisenberg R, Massion PP (2013) SLC1A5 mediates glutamine transport required for lung cancer cell growth and survival. Clin Cancer Res 19:560–570

    Article  CAS  PubMed  Google Scholar 

  167. Nikkuni O, Kaira K, Toyoda M, Shino M, Sakakura K, Takahashi K, Tominaga H, Oriuchi N, Suzuki M, Iijima M, Asao T, Nishiyama M, Nagamori S, Kanai Y, Oyama T, Chikamatsu K (2015) Expression of amino acid transporters (LAT1 and ASCT2) in patients with stage III/IV laryngeal squamous cell carcinoma. Pathol Oncol Res 21:1175–1181

    Article  CAS  PubMed  Google Scholar 

  168. Toyoda M, Kaira K, Ohshima Y, Ishioka NS, Shino M, Sakakura K, Takayasu Y, Takahashi K, Tominaga H, Oriuchi N, Nagamori S, Kanai Y, Oyama T, Chikamatsu K (2014) Prognostic significance of amino-acid transporter expression (LAT1, ASCT2, and xCT) in surgically resected tongue cancer. Br J Cancer 110:2506–2513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. El-Ansari R, Craze ML, Alfarsi L, Soria D, Diez-Rodriguez M, Nolan CC, Ellis IO, Rakha EA, Green AR (2019) The combined expression of solute carriers is associated with a poor prognosis in highly proliferative ER+ breast cancer. Breast Cancer Res Treat 175:27–38

    Article  CAS  PubMed  Google Scholar 

  170. Cacace A, Sboarina M, Vazeille T, Sonveaux P (2017) Glutamine activates STAT3 to control cancer cell proliferation independently of glutamine metabolism. Oncogene 36:2074–2084

    Article  CAS  PubMed  Google Scholar 

  171. Sousa CM, Biancur DE, Wang X, Halbrook CJ, Sherman MH, Zhang L, Kremer D, Hwang RF, Witkiewicz AK, Ying H, Asara JM, Evans RM, Cantley LC, Lyssiotis CA, Kimmelman AC (2016) Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536:479–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Choi BH, Coloff JL (2019) The diverse functions of non-essential amino acids in cancer. Cancers (Basel) 11:675

    Article  CAS  Google Scholar 

  173. Cramer SL, Saha A, Liu J, Tadi S, Tiziani S, Yan W, Triplett K, Lamb C, Alters SE, Rowlinson S, Zhang YJ, Keating MJ, Huang P, DiGiovanni J, Georgiou G, Stone E (2017) Systemic depletion of l-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nat Med 23:120–127

    Article  CAS  PubMed  Google Scholar 

  174. Yang M, Vousden KH (2016) Serine and one-carbon metabolism in cancer. Nat Rev Cancer 16:650–662

    Article  CAS  PubMed  Google Scholar 

  175. Krall AS, Xu S, Graeber TG, Braas D, Christofk HR (2016) Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor. Nat Commun 7:11457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Demian WL, Persaud A, Jiang C, Coyaud E, Liu S, Kapus A, Kafri R, Raught B, Rotin D (2019) The ion transporter NKCC1 links cell volume to cell mass regulation by suppressing mTORC1. Cell Rep 27:1886–1896.e1886

    Article  CAS  PubMed  Google Scholar 

  177. Lu H, Li X, Lu Y, Qiu S, Fan Z (2016) ASCT2 (SLC1A5) is an EGFR-associated protein that can be co-targeted by cetuximab to sensitize cancer cells to ROS-induced apoptosis. Cancer Lett 381:23–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Ma H, Wu Z, Peng J, Li Y, Huang H, Liao Y, Zhou M, Sun L, Huang N, Shi M, Bin J, Liao Y, Rao J, Wang L, Liao W (2018) Inhibition of SLC1A5 sensitizes colorectal cancer to cetuximab. Int J Cancer 142:2578–2588

    Article  CAS  PubMed  Google Scholar 

  179. Rasko JE, Battini JL, Gottschalk RJ, Mazo I, Miller AD (1999) The RD114/simian type D retrovirus receptor is a neutral amino acid transporter. Proc Natl Acad Sci USA 96:2129–2134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Bjerregaard B, Holck S, Christensen IJ, Larsson LI (2006) Syncytin is involved in breast cancer-endothelial cell fusions. Cell Mol Life Sci 63:1906–1911

    Article  CAS  PubMed  Google Scholar 

  181. Yan TL, Wang M, Xu Z, Huang CM, Zhou XC, Jiang EH, Zhao XP, Song Y, Song K, Shao Z, Liu K, Shang ZJ (2017) Up-regulation of syncytin-1 contributes to TNF-alpha-enhanced fusion between OSCC and HUVECs partly via Wnt/beta-catenin-dependent pathway. Sci Rep 7:40983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Younes M, Pathak M, Finnie D, Sifers RN, Liu Y, Schwartz MR (2000) Expression of the neutral amino acids transporter ASCT1 in esophageal carcinomas. Anticancer Res 20:3775–3779

    CAS  PubMed  Google Scholar 

  183. Nosaka K, Makishima K, Sakabe T, Yurugi Y, Wakahara M, Kubouchi Y, Horie Y, Umekita Y (2019) Upregulation of glucose and amino acid transporters in micropapillary carcinoma. Histol Histopathol 34:1009–1014

    PubMed  Google Scholar 

  184. Stanam A, Love-Homan L, Joseph TS, Espinosa-Cotton M, Simons AL (2015) Upregulated interleukin-6 expression contributes to erlotinib resistance in head and neck squamous cell carcinoma. Mol Oncol 9:1371–1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Morozova O, Vojvodic M, Grinshtein N, Hansford LM, Blakely KM, Maslova A, Hirst M, Cezard T, Morin RD, Moore R, Smith KM, Miller F, Taylor P, Thiessen N, Varhol R, Zhao Y, Jones S, Moffat J, Kislinger T, Moran MF, Kaplan DR, Marra MA (2010) System-level analysis of neuroblastoma tumor-initiating cells implicates AURKB as a novel drug target for neuroblastoma. Clin Cancer Res 16:4572–4582

    Article  CAS  PubMed  Google Scholar 

  186. Wang Q, Tiffen J, Bailey CG, Lehman ML, Ritchie W, Fazli L, Metierre C, Feng YJ, Li E, Gleave M, Buchanan G, Nelson CC, Rasko JE, Holst J (2013) Targeting amino acid transport in metastatic castration-resistant prostate cancer: effects on cell cycle, cell growth, and tumor development. J Natl Cancer Inst 105:1463–1473

    Article  CAS  PubMed  Google Scholar 

  187. van Geldermalsen M, Quek LE, Turner N, Freidman N, Pang A, Guan YF, Krycer JR, Ryan R, Wang Q, Holst J (2018) Benzylserine inhibits breast cancer cell growth by disrupting intracellular amino acid homeostasis and triggering amino acid response pathways. BMC Cancer 18:689

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Foster AC, Rangel-Diaz N, Staubli U, Yang JY, Penjwini M, Viswanath V, Li YX (2017) Phenylglycine analogs are inhibitors of the neutral amino acid transporters ASCT1 and ASCT2 and enhance NMDA receptor-mediated LTP in rat visual cortex slices. Neuropharmacology 126:70–83

    Article  CAS  PubMed  Google Scholar 

  189. Esslinger CS, Cybulski KA, Rhoderick JF (2005) Ngamma-aryl glutamine analogues as probes of the ASCT2 neutral amino acid transporter binding site. Bioorg Med Chem 13:1111–1118

    Article  CAS  PubMed  Google Scholar 

  190. Schulte ML, Dawson ES, Saleh SA, Cuthbertson ML, Manning HC (2015) 2-Substituted Nγ-glutamylanilides as novel probes of ASCT2 with improved potency. Bioorg Med Chem Lett 25:113–116

    Article  CAS  PubMed  Google Scholar 

  191. Schulte ML, Khodadadi AB, Cuthbertson ML, Smith JA, Manning HC (2016) 2-Amino-4-bis(aryloxybenzyl)aminobutanoic acids: a novel scaffold for inhibition of ASCT2-mediated glutamine transport. Bioorg Med Chem Lett 26:1044–1047

    Article  CAS  PubMed  Google Scholar 

  192. Schulte ML, Fu A, Zhao P, Li J, Geng L, Smith ST, Kondo J, Coffey RJ, Johnson MO, Rathmell JC, Sharick JT, Skala MC, Smith JA, Berlin J, Washington MK, Nickels ML, Manning HC (2018) Pharmacological blockade of ASCT2-dependent glutamine transport leads to antitumor efficacy in preclinical models. Nat Med 24:194–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Broer A, Rahimi F, Broer S (2016) Deletion of amino acid transporter ASCT2 (SLC1A5) reveals an essential role for transporters SNAT1 (SLC38A1) and SNAT2 (SLC38A2) to sustain glutaminolysis in cancer cells. J Biol Chem 291:13194–13205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Hassanein M, Qian J, Hoeksema MD, Wang J, Jacobovitz M, Ji X, Harris FT, Harris BK, Boyd KL, Chen H (2015) Targeting SLC1a5-mediated glutamine dependence in non-small cell lung cancer. Int J Cancer 137:1587–1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Wang L, Liu Y, Zhao TL, Li ZZ, He JY, Zhang BJ, Du HZ, Jiang JW, Yuan ST, Sun L (2019) Topotecan induces apoptosis via ASCT2 mediated oxidative stress in gastric cancer. Phytomedicine 57:117–128

    Article  CAS  PubMed  Google Scholar 

  196. Szasz G (1969) A kinetic photometric method for serum gamma-glutamyl transpeptidase. Clin Chem 15:124–136

    Article  CAS  PubMed  Google Scholar 

  197. Colas C, Grewer C, Otte NJ, Gameiro A, Albers T, Singh K, Shere H, Bonomi M, Holst J, Schlessinger A (2015) Ligand discovery for the Alanine-Serine-Cysteine Transporter (ASCT2, SLC1A5) from homology modeling and virtual screening. PLoS Comput Biol 11:e1004477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Singh K, Tanui R, Gameiro A, Eisenberg G, Colas C, Schlessinger A, Grewer C (2017) Structure activity relationships of benzylproline-derived inhibitors of the glutamine transporter ASCT2. Bioorg Med Chem Lett 27:398–402

    Article  CAS  PubMed  Google Scholar 

  199. Garibsingh RA, Otte NJ, Ndaru E, Colas C, Grewer C, Holst J, Schlessinger A (2018) Homology modeling informs ligand discovery for the glutamine transporter ASCT2. Front Chem 6:279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Ndaru E, Garibsingh RA, Shi Y, Wallace E, Zakrepine P, Wang J, Schlessinger A, Grewer C (2019) Novel alanine serine cysteine transporter 2 (ASCT2) inhibitors based on sulfonamide and sulfonic acid ester scaffolds. J Gen Physiol 151:357–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Suzuki M, Toki H, Furuya A, Ando H (2017) Establishment of monoclonal antibodies against cell surface domains of ASCT2/SLC1A5 and their inhibition of glutamine-dependent tumor cell growth. Biochem Biophys Res Commun 482:651–657

    Article  CAS  PubMed  Google Scholar 

  202. Kasai N, Sasakawa A, Hosomi K, Poh TW, Chua BL, Yong WP, So J, Chan SL, Soong R, Kono K, Ishii T, Yamano K (2017) Anti-tumor efficacy evaluation of a novel monoclonal antibody targeting neutral amino acid transporter ASCT2 using patient-derived xenograft mouse models of gastric cancer. Am J Transl Res 9:3399–3410

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Osanai-Sasakawa A, Hosomi K, Sumitomo Y, Takizawa T, Tomura-Suruki S, Imaizumi M, Kasai N, Poh TW, Yamano K, Yong WP, Kono K, Nakamura S, Ishii T, Nakai R (2018) An anti-ASCT2 monoclonal antibody suppresses gastric cancer growth by inducing oxidative stress and antibody dependent cellular toxicity in preclinical models. Am J Cancer Res 8:1499–1513

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Pore N, Schifferli KP, Monks NR, Tammali R, Borrok M, Hurt E, Flynn M, Rebelatto M, Townsley DM, Hinrichs MJ, Dixit R, Coats S, Herbst R, Tice D (2018) Discovery and development of MEDI7247, a novel pyrrolobenzodiazepine (PBD)-based antibody drug conjugate targeting ASCT2, for treating hematological cancers. Blood 132:4071–4071

    Article  Google Scholar 

  205. Cater RJ, Vandenberg RJ, Ryan RM (2014) The domain interface of the human glutamate transporter EAAT1 mediates chloride permeation. Biophys J 107:621–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Cater RJ, Vandenberg RJ, Ryan RM (2016) Tuning the ion selectivity of glutamate transporter-associated uncoupled conductances. J Gen Physiol 148:13–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Hotzy J, Schneider N, Kovermann P, Fahlke C (2013) Mutating a conserved proline residue within the trimerization domain modifies Na+ binding to excitatory amino acid transporters and associated conformational changes. J Biol Chem 288:36492–36501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Huang S, Vandenberg RJ (2007) Mutations in transmembrane domains 5 and 7 of the human excitatory amino acid transporter 1 affect the substrate-activated anion channel. Biochemistry 46:9685–9692

    Article  CAS  PubMed  Google Scholar 

  209. Kovermann P, Machtens JP, Ewers D, Fahlke C (2010) A conserved aspartate determines pore properties of anion channels associated with excitatory amino acid transporter 4 (EAAT4). J Biol Chem 285:23676–23686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Li J, Shaikh SA, Enkavi G, Wen PC, Huang Z, Tajkhorshid E (2013) Transient formation of water-conducting states in membrane transporters. Proc Natl Acad Sci USA 110:7696–7701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Ryan RM, Mitrovic AD, Vandenberg RJ (2004) The chloride permeation pathway of a glutamate transporter and its proximity to the glutamate translocation pathway. J Biol Chem 279:20742–20751

    Article  CAS  PubMed  Google Scholar 

  212. Schrödinger L (2019) The PyMOL Molecular Graphics System Version 2.3.2

Download references

Acknowledgements

This work was supported by the Australian National Health and Medical Research Council Project Grant APP1164494 and Research Training Program Scholarships to NF and IC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renae Ryan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special Issue: In Honor of Prof. Michael Robinson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freidman, N., Chen, I., Wu, Q. et al. Amino Acid Transporters and Exchangers from the SLC1A Family: Structure, Mechanism and Roles in Physiology and Cancer. Neurochem Res 45, 1268–1286 (2020). https://doi.org/10.1007/s11064-019-02934-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02934-x

Keywords

Navigation