Skip to main content

Advertisement

Log in

Refocusing the Brain: New Approaches in Neuroprotection Against Ischemic Injury

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

A new era for neuroprotective strategies is emerging in ischemia/reperfusion. This has forced to review the studies existing to date based in neuroprotection against oxidative stress, which have undoubtedly contributed to clarify the brain endogenous mechanisms, as well as to identify possible therapeutic targets or biomarkers in stroke and other neurological diseases. The efficacy of exogenous administration of neuroprotective compounds has been shown in different studies so far. However, something must be missing to get these treatments successfully applied in the clinical environment. Here, the mechanisms involved in neuronal protection against physiological level of ROS and the main neuroprotective signaling pathways induced by excitotoxic and ischemic stimuli are reviewed. Also, the endogenous ischemic tolerance in terms of brain self-protection mechanisms against subsequent cerebral ischemia is revisited to highlight how the preconditioning has emerged as a powerful tool to understand these phenomena. A better understanding of endogenous defense against exacerbated ROS and metabolism in nervous cells will therefore aid to design pharmacological antioxidants targeted specifically against oxidative damage induced by ischemic injury, but also might be very valuable for translational medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dalle-Donne I et al (2006) Protein carbonylation, cellular dysfunction, and disease progression. J Cell Mol Med 10(2):389–406

    Article  CAS  PubMed  Google Scholar 

  2. Nair U, Bartsch H, Nair J (2007) Lipid peroxidation-induced DNA damage in cancer-prone inflammatory diseases: a review of published adduct types and levels in humans. Free Radic Biol Med 43(8):1109–1120

    Article  CAS  PubMed  Google Scholar 

  3. Mergenthaler P et al (2013) Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci 36(10):587–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mattson MP, Liu D (2002) Energetics and oxidative stress in synaptic plasticity and neurodegenerative disorders. Neuromol Med 2(2):215–231

    Article  CAS  Google Scholar 

  5. Angelova PR, Abramov AY (2018) Role of mitochondrial ROS in the brain: from physiology to neurodegeneration. FEBS Lett 592(5):692–702

    Article  CAS  PubMed  Google Scholar 

  6. Holmstrom KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 15(6):411–421

    Article  CAS  PubMed  Google Scholar 

  7. Bolanos JP (2016) Bioenergetics and redox adaptations of astrocytes to neuronal activity. J Neurochem 139(Suppl 2):115–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Delgado-Esteban M et al (2007) Inhibition of PTEN by peroxynitrite activates the phosphoinositide-3-kinase/Akt neuroprotective signaling pathway. J Neurochem 102(1):194–205

    Article  CAS  PubMed  Google Scholar 

  9. Garcia-Nogales P, Almeida A, Bolanos JP (2003) Peroxynitrite protects neurons against nitric oxide-mediated apoptosis. A key role for glucose-6-phosphate dehydrogenase activity in neuroprotection. J Biol Chem 278(2):864–874

    Article  CAS  PubMed  Google Scholar 

  10. Vicente-Gutierrez C, Bonora N, Bobo-Jiménez V, Jimenez-Blasco D, Lopez-Fabuel I, Fernandez E, Josephine C, Bonvento G, Enriquez JA, Almeida A, Bolaños JP (2019) Astrocytic mitochondrial ROS modulate brain metabolism and mouse behaviour. Nat Metab 1:201–211

    Article  CAS  PubMed  Google Scholar 

  11. Fernandez-Fernandez S, Almeida A, Bolanos JP (2012) Antioxidant and bioenergetic coupling between neurons and astrocytes. Biochem J 443(1):3–11

    Article  CAS  PubMed  Google Scholar 

  12. Chamorro A et al (2016) Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol 15(8):869–881

    Article  CAS  PubMed  Google Scholar 

  13. Narayanan SV, Dave KR, Perez-Pinzon MA (2013) Ischemic preconditioning and clinical scenarios. Curr Opin Neurol 26(1):1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Keep RF et al (2010) Is there a place for cerebral preconditioning in the clinic? Transl Stroke Res 1(1):4–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stetler RA et al (2014) Preconditioning provides neuroprotection in models of CNS disease: paradigms and clinical significance. Prog Neurobiol 114:58–83

    Article  PubMed  Google Scholar 

  16. Vecino R et al (2018) The MDM2-p53 pathway is involved in preconditioning-induced neuronal tolerance to ischemia. Sci Rep 8(1):1610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Emberson J et al (2014) Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. Lancet 384(9958):1929–1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang WW et al (2017) Prior transient ischemic attacks may have a neuroprotective effect in patients with ischemic stroke. Arch Med Sci 13(5):1057–1061

    Article  PubMed  Google Scholar 

  19. Ramos-Araque ME et al (2019) The Neuronal Ischemic Tolerance Is Conditioned by the Tp53 Arg72Pro Polymorphism. Transl Stroke Res 10(2):204–215

    Article  CAS  PubMed  Google Scholar 

  20. Elgersma Y, Silva AJ (1999) Molecular mechanisms of synaptic plasticity and memory. Curr Opin Neurobiol 9(2):209–213

    Article  CAS  PubMed  Google Scholar 

  21. Hidalgo C, Arias-Cavieres A (2016) Calcium, reactive oxygen species, and synaptic plasticity. Physiology 31(3):201–215

    Article  CAS  PubMed  Google Scholar 

  22. Oswald MCW et al (2018) Regulation of neuronal development and function by ROS. FEBS Lett 592(5):679–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59(5):1609–1623

    Article  CAS  PubMed  Google Scholar 

  24. Lopez-Fabuel I et al (2016) Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes. Proc Natl Acad Sci USA 113(46):13063–13068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kausar S, Wang F, Cui H (2018) The role of mitochondria in reactive oxygen species generation and its implications for neurodegenerative diseases. Cells 7(12):274

    Article  CAS  PubMed Central  Google Scholar 

  26. Starkov AA, Chinopoulos C, Fiskum G (2004) Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury. Cell Calcium 36(3–4):257–264

    Article  CAS  PubMed  Google Scholar 

  27. Stauch KL, Purnell PR, Fox HS (2014) Quantitative proteomics of synaptic and nonsynaptic mitochondria: insights for synaptic mitochondrial vulnerability. J Proteome Res 13(5):2620–2636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Harris JJ, Jolivet R, Attwell D (2012) Synaptic energy use and supply. Neuron 75(5):762–777

    Article  CAS  PubMed  Google Scholar 

  29. Reczek CR, Chandel NS (2015) ROS-dependent signal transduction. Curr Opin Cell Biol 33:8–13

    Article  CAS  PubMed  Google Scholar 

  30. Scialo F, Fernandez-Ayala DJ, Sanz A (2017) Role of mitochondrial reverse electron transport in ROS signaling: potential roles in health and disease. Front Physiol 8:428

    Article  PubMed  PubMed Central  Google Scholar 

  31. Stefanatos R, Sanz A (2018) The role of mitochondrial ROS in the aging brain. FEBS Lett 592(5):743–758

    Article  CAS  PubMed  Google Scholar 

  32. Wanet A et al (2015) Connecting mitochondria, metabolism, and stem cell fate. Stem Cells Dev 24(17):1957–1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Agostini M et al (2016) Metabolic reprogramming during neuronal differentiation. Cell Death Differ 23(9):1502–1514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alper G et al (1999) MAO inhibitors and oxidant stress in aging brain tissue. Eur Neuropsychopharmacol 9(3):247–252

    Article  CAS  PubMed  Google Scholar 

  35. Griffith OW, Stuehr DJ (1995) Nitric oxide synthases: properties and catalytic mechanism. Annu Rev Physiol 57:707–736

    Article  CAS  PubMed  Google Scholar 

  36. Thomas DD (2015) Breathing new life into nitric oxide signaling: a brief overview of the interplay between oxygen and nitric oxide. Redox Biol 5:225–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Blaise GA et al (2005) Nitric oxide, cell signaling and cell death. Toxicology 208(2):177–192

    Article  CAS  PubMed  Google Scholar 

  38. Wang Y et al (2018) Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol 217(6):1915–1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Radi R et al (1991) Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem 266(7):4244–4250

    Article  CAS  PubMed  Google Scholar 

  40. Heinzel B et al (1992) Ca2+/calmodulin-dependent formation of hydrogen peroxide by brain nitric oxide synthase. Biochem J 281(Pt 3):627–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sattler R, Tymianski M (2000) Molecular mechanisms of calcium-dependent excitotoxicity. J Mol Med 78(1):3–13

    Article  CAS  PubMed  Google Scholar 

  42. Schuman EM, Madison DV (1991) A requirement for the intercellular messenger nitric oxide in long-term potentiation. Science 254(5037):1503–1506

    Article  CAS  PubMed  Google Scholar 

  43. Zorumski CF, Izumi Y (1993) Nitric oxide and hippocampal synaptic plasticity. Biochem Pharmacol 46(5):777–785

    Article  CAS  PubMed  Google Scholar 

  44. Tejada-Simon MV et al (2005) Synaptic localization of a functional NADPH oxidase in the mouse hippocampus. Mol Cell Neurosci 29(1):97–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brechard S, Tschirhart EJ (2008) Regulation of superoxide production in neutrophils: role of calcium influx. J Leukoc Biol 84(5):1223–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Naoi M, Maruyama W (1993) Type B monoamine oxidase and neurotoxins. Eur Neurol 33(Suppl 1):31–37

    Article  PubMed  Google Scholar 

  47. Naoi M et al (2009) Mitochondria in neurodegenerative disorders: regulation of the redox state and death signaling leading to neuronal death and survival. J Neural Transm 116(11):1371–1381

    Article  CAS  PubMed  Google Scholar 

  48. Cobley JN, Fiorello ML, Bailey DM (2018) 13 reasons why the brain is susceptible to oxidative stress. Redox Biol 15:490–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mari M et al (2009) Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal 11(11):2685–2700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Saso L, Firuzi O (2014) Pharmacological applications of antioxidants: lights and shadows. Curr Drug Targets 15(13):1177–1199

    Article  CAS  PubMed  Google Scholar 

  51. Kohen R et al (2000) Quantification of the overall reactive oxygen species scavenging capacity of biological fluids and tissues. Free Radic Biol Med 28(6):871–879

    Article  CAS  PubMed  Google Scholar 

  52. Chance B et al (1979) Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals. J Biol Chem 254(11):4764–4771

    Article  CAS  PubMed  Google Scholar 

  53. Dringen R, Pawlowski PG, Hirrlinger J (2005) Peroxide detoxification by brain cells. J Neurosci Res 79(1–2):157–165

    Article  CAS  PubMed  Google Scholar 

  54. Jimenez-Blasco D et al (2015) Astrocyte NMDA receptors' activity sustains neuronal survival through a Cdk5-Nrf2 pathway. Cell Death Differ 22(11):1877–1889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vargas MR, Johnson JA (2009) The Nrf2-ARE cytoprotective pathway in astrocytes. Expert Rev Mol Med 11:e17

    Article  PubMed  PubMed Central  Google Scholar 

  56. Shih AY et al (2003) Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress. J Neurosci 23(8):3394–3406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bolanos JP et al (1995) Effect of peroxynitrite on the mitochondrial respiratory chain: differential susceptibility of neurones and astrocytes in primary culture. J Neurochem 64(5):1965–1972

    Article  CAS  PubMed  Google Scholar 

  58. Bolanos JP et al (1996) Nitric oxide-mediated mitochondrial damage: a potential neuroprotective role for glutathione. Free Radic Biol Med 21(7):995–1001

    Article  CAS  PubMed  Google Scholar 

  59. Almeida A et al (1998) Glutamate neurotoxicity is associated with nitric oxide-mediated mitochondrial dysfunction and glutathione depletion. Brain Res 790(1–2):209–216

    Article  CAS  PubMed  Google Scholar 

  60. Clementi E et al (1998) Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc Natl Acad Sci USA 95(13):7631–7636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Delgado-Esteban M, Almeida A, Bolanos JP (2000) D-Glucose prevents glutathione oxidation and mitochondrial damage after glutamate receptor stimulation in rat cortical primary neurons. J Neurochem 75(4):1618–1624

    Article  CAS  PubMed  Google Scholar 

  62. Gegg ME et al (2003) Differential effect of nitric oxide on glutathione metabolism and mitochondrial function in astrocytes and neurones: implications for neuroprotection/neurodegeneration? J Neurochem 86(1):228–237

    Article  CAS  PubMed  Google Scholar 

  63. Diaz-Hernandez JI et al (2005) Knockdown of glutamate-cysteine ligase by small hairpin RNA reveals that both catalytic and modulatory subunits are essential for the survival of primary neurons. J Biol Chem 280(47):38992–39001

    Article  CAS  PubMed  Google Scholar 

  64. Bolanos JP et al (2008) Regulation of glycolysis and pentose-phosphate pathway by nitric oxide: impact on neuronal survival. Biochim Biophys Acta 1777(7–8):789–793

    Article  CAS  PubMed  Google Scholar 

  65. Bolanos JP, Almeida A (2010) The pentose-phosphate pathway in neuronal survival against nitrosative stress. IUBMB Life 62(1):14–18

    CAS  PubMed  Google Scholar 

  66. Rodriguez-Rodriguez P et al (2012) Excitotoxic stimulus stabilizes PFKFB3 causing pentose-phosphate pathway to glycolysis switch and neurodegeneration. Cell Death Differ 19(10):1582–1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gupta K, Chandran S, Hardingham GE (2013) Human stem cell-derived astrocytes and their application to studying Nrf2-mediated neuroprotective pathways and therapeutics in neurodegeneration. Br J Clin Pharmacol 75(4):907–918

    Article  CAS  PubMed  Google Scholar 

  68. Bell KF, Hardingham GE (2011) CNS peroxiredoxins and their regulation in health and disease. Antioxid Redox Signal 14(8):1467–1477

    Article  CAS  PubMed  Google Scholar 

  69. Herrero-Mendez A et al (2009) The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat Cell Biol 11(6):747–752

    Article  CAS  PubMed  Google Scholar 

  70. Burmistrova O et al (2019) Targeting PFKFB3 alleviates cerebral ischemia-reperfusion injury in mice. Sci Rep 9(1):11670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Lee JM et al (2000) Brain tissue responses to ischemia. J Clin Investig 106(6):723–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22(9):391–397

    Article  CAS  PubMed  Google Scholar 

  73. Goldberg MP, Choi DW (1993) Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury. J Neurosci 13(8):3510–3524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Almeida A et al (2002) Oxygen and glucose deprivation induces mitochondrial dysfunction and oxidative stress in neurones but not in astrocytes in primary culture. J Neurochem 81(2):207–217

    Article  CAS  PubMed  Google Scholar 

  75. Gomez-Sanchez JC et al (2011) The human Tp53 Arg72Pro polymorphism explains different functional prognosis in stroke. J Exp Med 208(3):429–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Defazio RA et al (2012) Albumin therapy enhances collateral perfusion after laser-induced middle cerebral artery branch occlusion: a laser speckle contrast flow study. J Cereb Blood Flow Metab 32(11):2012–2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Eady TN et al (2014) Docosahexaenoic acid complexed to albumin provides neuroprotection after experimental stroke in aged rats. Neurobiol Dis 62:1–7

    Article  CAS  PubMed  Google Scholar 

  78. Martire A et al (2019) Neuroprotective potential of adenosine A1 receptor partial agonists in experimental models of cerebral ischemia. J Neurochem 149(2):211–230

    Article  CAS  PubMed  Google Scholar 

  79. Llull L, Amaro S, Chamorro A (2016) Administration of uric acid in the emergency treatment of acute ischemic stroke. Curr Neurol Neurosci Rep 16(1):4

    Article  PubMed  CAS  Google Scholar 

  80. Duong TT et al (2014) Pre-treatment with the synthetic antioxidant T-butyl bisphenol protects cerebral tissues from experimental ischemia reperfusion injury. J Neurochem 130(6):733–747

    Article  CAS  PubMed  Google Scholar 

  81. Chen S et al (2019) Neuroprotection of hydroxysafflor yellow A in experimental cerebral ischemia/reperfusion injury via metabolic inhibition of phenylalanine and mitochondrial biogenesis. Mol Med Rep 19(4):3009–3020

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Estevez AY et al (2011) Neuroprotective mechanisms of cerium oxide nanoparticles in a mouse hippocampal brain slice model of ischemia. Free Radic Biol Med 51(6):1155–1163

    Article  CAS  PubMed  Google Scholar 

  83. Choi DW (1987) Ionic dependence of glutamate neurotoxicity. J Neurosci 7(2):369–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mayor D, Tymianski M (2018) Neurotransmitters in the mediation of cerebral ischemic injury. Neuropharmacology 134(Pt B):178–188

    Article  CAS  PubMed  Google Scholar 

  85. Almeida A et al (1995) Effect of reperfusion following cerebral ischaemia on the activity of the mitochondrial respiratory chain in the gerbil brain. J Neurochem 65(4):1698–1703

    Article  CAS  PubMed  Google Scholar 

  86. Almeida A, Bolanos JP (2001) A transient inhibition of mitochondrial ATP synthesis by nitric oxide synthase activation triggered apoptosis in primary cortical neurons. J Neurochem 77(2):676–690

    Article  CAS  PubMed  Google Scholar 

  87. Arundine M, Tymianski M (2003) Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium 34(4–5):325–337

    Article  CAS  PubMed  Google Scholar 

  88. Kristian T, Siesjo BK (1998) Calcium in ischemic cell death. Stroke 29(3):705–718

    Article  CAS  PubMed  Google Scholar 

  89. Moro MA et al (2005) Mitochondrial respiratory chain and free radical generation in stroke. Free Radic Biol Med 39(10):1291–1304

    Article  CAS  PubMed  Google Scholar 

  90. Adam-Vizi V (2005) Production of reactive oxygen species in brain mitochondria: contribution by electron transport chain and non-electron transport chain sources. Antioxid Redox Signal 7(9–10):1140–1149

    Article  CAS  PubMed  Google Scholar 

  91. Rodriguez-Rodriguez P, Almeida A, Bolanos JP (2013) Brain energy metabolism in glutamate-receptor activation and excitotoxicity: role for APC/C-Cdh1 in the balance glycolysis/pentose phosphate pathway. Neurochem Int 62(5):750–756

    Article  CAS  PubMed  Google Scholar 

  92. Zhou M, Baudry M (2006) Developmental changes in NMDA neurotoxicity reflect developmental changes in subunit composition of NMDA receptors. J Neurosci 26(11):2956–2963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bolanos JP et al (1997) Nitric oxide-mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases. J Neurochem 68(6):2227–2240

    Article  CAS  PubMed  Google Scholar 

  94. Bolanos JP, Almeida A (1999) Roles of nitric oxide in brain hypoxia-ischemia. Biochim Biophys Acta 1411(2–3):415–436

    Article  CAS  PubMed  Google Scholar 

  95. Heales SJ et al (1999) Nitric oxide, mitochondria and neurological disease. Biochim Biophys Acta 1410(2):215–228

    Article  CAS  PubMed  Google Scholar 

  96. Parathath SR, Gravanis I, Tsirka SE (2007) Nitric oxide synthase isoforms undertake unique roles during excitotoxicity. Stroke 38(6):1938–1945

    Article  CAS  PubMed  Google Scholar 

  97. Raingeaud J et al (1995) Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem 270(13):7420–7426

    Article  CAS  PubMed  Google Scholar 

  98. Araujo IM et al (2010) Calpains and delayed calcium deregulation in excitotoxicity. Neurochem Res 35(12):1966–1969

    Article  CAS  PubMed  Google Scholar 

  99. Maestre C et al (2008) Cdk5 phosphorylates Cdh1 and modulates cyclin B1 stability in excitotoxicity. EMBO J 27(20):2736–2745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Veas-Perez de Tudela M et al (2015) Cdk5-mediated inhibition of APC/C-Cdh1 switches on the cyclin D1-Cdk4-pRb pathway causing aberrant S-phase entry of postmitotic neurons. Sci Rep 5:18180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Veas-Perez de Tudela M et al (2015) Regulation of Bcl-xL-ATP synthase interaction by mitochondrial cyclin B1-cyclin-dependent kinase-1 determines neuronal survival. J Neurosci 35(25):9287–9301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kunz A, Iadecola C (2009) Cerebral vascular dysregulation in the ischemic brain. Handb Clin Neurol 92:283–305

    Article  PubMed  PubMed Central  Google Scholar 

  103. Cao W et al (1988) Oxygen free radical involvement in ischemia and reperfusion injury to brain. Neurosci Lett 88(2):233–238

    Article  CAS  PubMed  Google Scholar 

  104. Kontos CD et al (1992) Cytochemical detection of superoxide in cerebral inflammation and ischemia in vivo. Am J Physiol 263(4 Pt 2):H1234–H1242

    CAS  PubMed  Google Scholar 

  105. Granger DN, Hollwarth ME, Parks DA (1986) Ischemia-reperfusion injury: role of oxygen-derived free radicals. Acta Physiol Scand Suppl 548:47–63

    CAS  PubMed  Google Scholar 

  106. Lalkovicova M, Danielisova V (2016) Neuroprotection and antioxidants. Neural Regen Res 11(6):865–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Raps SP et al (1989) Glutathione is present in high concentrations in cultured astrocytes but not in cultured neurons. Brain Res 493(2):398–401

    Article  CAS  PubMed  Google Scholar 

  108. Almeida A et al (2001) Different responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protection. Proc Natl Acad Sci USA 98(26):15294–15299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bolanos JP, Almeida A, Moncada S (2010) Glycolysis: a bioenergetic or a survival pathway? Trends Biochem Sci 35(3):145–149

    Article  CAS  PubMed  Google Scholar 

  110. Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21(1):2–14

    Article  CAS  PubMed  Google Scholar 

  111. Bolanos JP, Garcia-Nogales P, Almeida A (2004) Provoking neuroprotection by peroxynitrite. Curr Pharm Des 10(8):867–877

    Article  CAS  PubMed  Google Scholar 

  112. Kruyt ND et al (2010) Hyperglycemia in acute ischemic stroke: pathophysiology and clinical management. Nat Rev Neurol 6(3):145–155

    Article  CAS  PubMed  Google Scholar 

  113. Almeida A, Moncada S, Bolanos JP (2004) Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. Nat Cell Biol 6(1):45–51

    Article  CAS  PubMed  Google Scholar 

  114. Barnes K et al (2002) Activation of GLUT1 by metabolic and osmotic stress: potential involvement of AMP-activated protein kinase (AMPK). J Cell Sci 115(Pt 11):2433–2442

    Article  CAS  PubMed  Google Scholar 

  115. Cidad P, Almeida A, Bolanos JP (2004) Inhibition of mitochondrial respiration by nitric oxide rapidly stimulates cytoprotective GLUT3-mediated glucose uptake through 5'-AMP-activated protein kinase. Biochem J 384(Pt 3):629–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lefer DJ et al (1997) Peroxynitrite inhibits leukocyte-endothelial cell interactions and protects against ischemia-reperfusion injury in rats. J Clin Invest 99(4):684–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Iadecola C, Anrather J (2011) Stroke research at a crossroad: asking the brain for directions. Nat Neurosci 14(11):1363–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Dirnagl U, Simon RP, Hallenbeck JM (2003) Ischemic tolerance and endogenous neuroprotection. Trends Neurosci 26(5):248–254

    Article  CAS  PubMed  Google Scholar 

  119. Gidday JM (2006) Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci 7(6):437–448

    Article  CAS  PubMed  Google Scholar 

  120. Khoury N et al (2019) Resveratrol preconditioning induces genomic and metabolic adaptations within the long-term window of cerebral ischemic tolerance leading to bioenergetic efficiency. Mol Neurobiol 56(6):4549–4565

    Article  CAS  PubMed  Google Scholar 

  121. Chen L et al (2018) Neuroprotective effects of cerebral ischemic preconditioning in a rat middle cerebral artery occlusion model: the role of the notch signaling pathway. Biomed Res Int 2018:8168720

    PubMed  PubMed Central  Google Scholar 

  122. Dirnagl U, Becker K, Meisel A (2009) Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol 8(4):398–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Khoury N, Koronowski KB, Perez-Pinzon MA (2016) Long-term window of ischemic tolerance: an evolutionarily conserved form of metabolic plasticity regulated by epigenetic modifications? J Neurol Neuromed 1(2):6–12

    Article  Google Scholar 

  124. Takahata Y, Shimoji K (1986) Brain injury improves survival of mice following brain ischemia. Brain Res 381(2):368–371

    Article  CAS  PubMed  Google Scholar 

  125. Kitagawa K et al (1990) 'Ischemic tolerance' phenomenon found in the brain. Brain Res 528(1):21–24

    Article  CAS  PubMed  Google Scholar 

  126. Kirino T, Tsujita Y, Tamura A (1991) Induced tolerance to ischemia in gerbil hippocampal neurons. J Cereb Blood Flow Metab 11(2):299–307

    Article  CAS  PubMed  Google Scholar 

  127. Perez-Pinzon MA (2004) Neuroprotective effects of ischemic preconditioning in brain mitochondria following cerebral ischemia. J Bioenerg Biomembr 36(4):323–327

    Article  CAS  PubMed  Google Scholar 

  128. Durukan A, Tatlisumak T (2010) Preconditioning-induced ischemic tolerance: a window into endogenous gearing for cerebroprotection. Exp Transl Stroke Med 2(1):2

    Article  PubMed  PubMed Central  Google Scholar 

  129. Sisalli MJ, Annunziato L, Scorziello A (2015) Novel cellular mechanisms for neuroprotection in ischemic preconditioning: a view from inside organelles. Front Neurol 6:115

    Article  PubMed  PubMed Central  Google Scholar 

  130. Stenzel-Poore MP et al (2003) Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states. Lancet 362(9389):1028–1037

    Article  CAS  PubMed  Google Scholar 

  131. Kirino T (2002) Ischemic tolerance. J Cereb Blood Flow Metab 22(11):1283–1296

    Article  PubMed  Google Scholar 

  132. Stenzel-Poore MP, Stevens SL, Simon RP (2004) Genomics of preconditioning. Stroke 35(11 Suppl 1):2683–2686

    Article  CAS  PubMed  Google Scholar 

  133. Centeno JM et al (1999) Nitric oxide is involved in anoxic preconditioning neuroprotection in rat hippocampal slices. Brain Res 836(1–2):62–69

    Article  CAS  PubMed  Google Scholar 

  134. Kawahara K et al (2004) Nitric oxide produced during ischemia is toxic but crucial to preconditioning-induced ischemic tolerance of neurons in culture. Neurochem Res 29(4):797–804

    Article  CAS  PubMed  Google Scholar 

  135. Lee SH et al (2019) Role of reactive oxygen species at reperfusion stage in isoflurane preconditioning-induced neuroprotection. Brain Res 1723:146405

    Article  CAS  PubMed  Google Scholar 

  136. Ohtsuki T et al (1996) Interleukin-1 mediates induction of tolerance to global ischemia in gerbil hippocampal CA1 neurons. J Cereb Blood Flow Metab 16(6):1137–1142

    Article  CAS  PubMed  Google Scholar 

  137. Hirayama Y, Koizumi S (2018) Astrocytes and ischemic tolerance. Neurosci Res 126:53–59

    Article  CAS  PubMed  Google Scholar 

  138. Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4(7):552–565

    Article  CAS  PubMed  Google Scholar 

  139. Grabb MC, Choi DW (1999) Ischemic tolerance in murine cortical cell culture: critical role for NMDA receptors. J Neurosci 19(5):1657–1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Soriano FX et al (2006) Preconditioning doses of NMDA promote neuroprotection by enhancing neuronal excitability. J Neurosci 26(17):4509–4518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Chen M et al (2008) Differential roles of NMDA receptor subtypes in ischemic neuronal cell death and ischemic tolerance. Stroke 39(11):3042–3048

    Article  CAS  PubMed  Google Scholar 

  142. Severino PC et al (2011) Cell signaling in NMDA preconditioning and neuroprotection in convulsions induced by quinolinic acid. Life Sci 89(15–16):570–576

    Article  CAS  PubMed  Google Scholar 

  143. Li S et al (2017) Preconditioning in neuroprotection: From hypoxia to ischemia. Prog Neurobiol 157:79–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Liu XQ, Sheng R, Qin ZH (2009) The neuroprotective mechanism of brain ischemic preconditioning. Acta Pharmacol Sin 30(8):1071–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Correia SC, Moreira PI (2010) Hypoxia-inducible factor 1: a new hope to counteract neurodegeneration? J Neurochem 112(1):1–12

    Article  CAS  PubMed  Google Scholar 

  146. Nakajima T et al (2004) Preconditioning prevents ischemia-induced neuronal death through persistent Akt activation in the penumbra region of the rat brain. J Vet Med Sci 66(5):521–527

    Article  CAS  PubMed  Google Scholar 

  147. Rodriguez C et al (2018) Single-nucleotide polymorphism 309T%3eG in the MDM2 promoter determines functional outcome after stroke. Stroke 49(10):2437–2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Cui C et al (2015) Proteomic analysis of the mouse brain after repetitive exposure to hypoxia. Chem Biol Interact 236:57–66

    Article  CAS  PubMed  Google Scholar 

  149. Pugliese AM et al (2003) Brief, repeated, oxygen-glucose deprivation episodes protect neurotransmission from a longer ischemic episode in the in vitro hippocampus: role of adenosine receptors. Br J Pharmacol 140(2):305–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Perez-Pinzon MA (2007) Mechanisms of neuroprotection during ischemic preconditioning: lessons from anoxic tolerance. Comp Biochem Physiol A Mol Integr Physiol 147(2):291–299

    Article  PubMed  CAS  Google Scholar 

  151. Obrenovitch TP (2008) Molecular physiology of preconditioning-induced brain tolerance to ischemia. Physiol Rev 88(1):211–247

    Article  CAS  PubMed  Google Scholar 

  152. Geng J et al (2019) Metabolomic profiling reveals that reprogramming of cerebral glucose metabolism is involved in ischemic preconditioning-induced neuroprotection in a rodent model of ischemic stroke. J Proteome Res 18(1):57–68

    CAS  PubMed  Google Scholar 

  153. Becerra-Calixto A, Posada-Duque R, Cardona-Gomez GP (2018) Recovery of neurovascular unit integrity by CDK5-KD astrocyte transplantation in a global cerebral ischemia model. Mol Neurobiol 55(11):8563–8585

    Article  CAS  PubMed  Google Scholar 

  154. Easton JD et al (2009) Definition and evaluation of transient ischemic attack: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association Stroke Council; Council on Cardiovascular Surgery and Anesthesia; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular Nursing; and the Interdisciplinary Council on Peripheral Vascular Disease. The American Academy of Neurology affirms the value of this statement as an educational tool for neurologists. Stroke 40(6):2276–2293

    Article  PubMed  Google Scholar 

  155. Castillo J et al (2003) The release of tumor necrosis factor-alpha is associated with ischemic tolerance in human stroke. Ann Neurol 54(6):811–819

    Article  CAS  PubMed  Google Scholar 

  156. Moncayo J et al (2000) Do transient ischemic attacks have a neuroprotective effect? Neurology 54(11):2089–2094

    Article  CAS  PubMed  Google Scholar 

  157. Schaller BJ (2007) Influence of age on stroke and preconditioning-induced ischemic tolerance in the brain. Exp Neurol 205(1):9–19

    Article  CAS  PubMed  Google Scholar 

  158. Sandu N et al (2009) Ischemic tolerance in stroke treatment. Expert Rev Cardiovasc Ther 7(10):1255–1261

    Article  PubMed  PubMed Central  Google Scholar 

  159. Koch S et al (2014) Biomarkers for ischemic preconditioning: finding the responders. J Cereb Blood Flow Metab 34(6):933–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Almeida A (2013) Genetic determinants of neuronal vulnerability to apoptosis. Cell Mol Life Sci 70(1):71–88

    Article  CAS  PubMed  Google Scholar 

  161. Rodriguez C et al (2017) Neovascularization and functional recovery after intracerebral hemorrhage is conditioned by the Tp53 Arg72Pro single-nucleotide polymorphism. Cell Death Differ 24(1):144–154

    Article  CAS  PubMed  Google Scholar 

  162. Nagy Z, Nardai S (2017) Cerebral ischemia/repefusion injury: from bench space to bedside. Brain Res Bull 134:30–37

    Article  CAS  PubMed  Google Scholar 

  163. Prass K, Dirnagl U (1998) Glutamate antagonists in therapy of stroke. Restor Neurol Neurosci 13(1–2):3–10

    CAS  PubMed  Google Scholar 

  164. Brouns R, De Deyn PP (2009) The complexity of neurobiological processes in acute ischemic stroke. Clin Neurol Neurosurg 111(6):483–495

    Article  CAS  PubMed  Google Scholar 

  165. Fisher M, Saver JL (2015) Future directions of acute ischaemic stroke therapy. Lancet Neurol 14(7):758–767

    Article  PubMed  Google Scholar 

  166. Jover-Mengual T et al (2017) Molecular mechanisms mediating the neuroprotective role of the selective estrogen receptor modulator, bazedoxifene, in acute ischemic stroke: a comparative study with 17beta-estradiol. J Steroid Biochem Mol Biol 171:296–304

    Article  CAS  PubMed  Google Scholar 

  167. Seydyousefi M et al (2019) Exogenous adenosine facilitates neuroprotection and functional recovery following cerebral ischemia in rats. Brain Res Bull 153:250–256

    Article  CAS  PubMed  Google Scholar 

  168. Minnerup J et al (2012) Neuroprotection for stroke: current status and future perspectives. Int J Mol Sci 13(9):11753–11772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Della-Morte D et al (2009) Resveratrol pretreatment protects rat brain from cerebral ischemic damage via a sirtuin 1-uncoupling protein 2 pathway. Neuroscience 159(3):993–1002

    Article  CAS  PubMed  Google Scholar 

  170. Wegener S et al (2004) Transient ischemic attacks before ischemic stroke: preconditioning the human brain? A multicenter magnetic resonance imaging study. Stroke 35(3):616–621

    Article  PubMed  Google Scholar 

  171. Weih M et al (1999) Attenuated stroke severity after prodromal TIA: a role for ischemic tolerance in the brain? Stroke 30(9):1851–1854

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Bolaños for transmitting his enthusiasm for research; for his constant help in our professional development. We also thank A. Almeida for her commendable support. This publication was made possible by funding from the Instituto de Salud Carlos III (PI18/00103 and RD16/0019/0018); European Regional Development Fund (FEDER); Junta de Castilla y León (IES007P17; Escalera de Excelencia CLU-2017-03 Cofinanciado por el P.O. FEDER de Castilla y León 14-20); and HypoxiaNet (SAF2017-90794-REDT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Delgado-Esteban.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special Issue: In honor of Prof Juan Bolanos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez, C., Agulla, J. & Delgado-Esteban, M. Refocusing the Brain: New Approaches in Neuroprotection Against Ischemic Injury. Neurochem Res 46, 51–63 (2021). https://doi.org/10.1007/s11064-020-03016-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03016-z

Keywords

Navigation