Skip to main content

Advertisement

Log in

Mitochondria in neurodegenerative disorders: regulation of the redox state and death signaling leading to neuronal death and survival

  • Basic Neurosciences, Genetics and Immunology - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

In Parkinson’s disease, impaired function of mitochondrial complex I is involved in selective degeneration of dopamine neurons in the substantia nigra. Mitochondria are now considered to play an active role in neuronal death process through activating “intrinsic” apoptotic signaling, in addition to production of reactive oxygen species. This paper presents our recent findings on new functions of mitochondria in regulation of their redox state and function through reversible “S-glutathionylation”, a mixed disulfide binding between sulfhydryl groups of GSH and protein cysteine in complex I subunits. Type A monoamine oxidase (MAO-A) localized at the mitochondrial outer membrane is a binding site of neurotoxins leading to apoptosis. Rasagiline and (−)deprenyl, type B MAO inhibitors of propagylamine-derivatives, bind to MAO-A to protect neuronal cells against apoptosis through induction of pro-survival Bcl-2 and neurotrophic factors. This review discusses the new role of mitochondria in regulation of neuronal cell death of neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AIF:

Apoptosis inducing factor

ANT:

Adenine nucleotide translocator

BDNF:

Brain-derived neurotrophic factor

BKK:

Bongkrekic acid

CNTF:

Ciliary neurotrophic factor

CyP-D:

Cyclophilin-D

CsA:

Cyclosporin A

Cyt-c :

Cytochrome c

DA:

Dopamine

DAM:

Dopamine-melanin

Δψm:

Mitochondrial membrane potential

E hc :

Half-cell reduction potential

GAPDH:

Glyceraldehydes-3-phosphate dehydrogenase

GDNF:

Glial cell-line derived neurotrophic factor

GFAP:

Glial fibrillary acidic protein

GFL:

GDNF family ligand

Grx:

Glutaredoxin

GSH-Px:

Glutathione peroxidase

MAC:

Mitochondrial apoptosis-induced channel

MAO-A and MAO-B:

Type A and B monoamine oxidase

MAP:

Mitogen-activated protein

MPT:

Mitochondrial permeability transition

NGF:

Nerve growth factor

NM:

Neuromelanin

NM(R)Sal:

N-methyl(R)salsolinol

NT-3:

Neurotrophic factor-3

OX-PHOS:

Oxidative phosphorylation

PD:

Parkinson’s disease

PTP:

Permeability transition pore

SOD:

Superoxide dismutase

TSPO:

18-kDa translocator protein

Trx:

Thioredoxin

UPS:

Ubiquitin–proteasome system

VDAC:

Voltage-dependent anion channel

References

  • Abou-Sleiman PM, Muqit MM, Wood NW (2006) Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nature Rev Neurosci 7:207–219

    Article  CAS  Google Scholar 

  • Adachi T, Schöneich C, Cohen RA (2005) S-Glutathiolation in redox-sensitive signaling. Drug Discov Today Dise Mechan 2:39–46

    Article  CAS  Google Scholar 

  • Akao Y, Maruyama W, Shimizu S, Yi H, Nakagawa Y, Shamoto-Nagai M, Youdim MBH, Tsujimoto Y, Naoi M (2002a) Mitochondrial permeability transition mediates apoptosis induced by N-methyl(R)salsolinol, an endogenous neurotoxin, and is inhibited by Bcl-2 and rasagiline, N-propargyl-1(R)-aminoindan. J Neurochem 82:913–923

    Article  CAS  PubMed  Google Scholar 

  • Akao Y, Maruyama W, Yi H, Shamoto-Nagai M, Youdim MBH, Naoi M (2002b) An anti-Parkinson’s disease drug, N-propargyl-1(R)-aminoindan (rasagiline), enhances expression of anti-apoptotic Bcl-2 in dopaminergic SH-SY5Y cells. Neurosci Lett 326:105–108

    Article  CAS  PubMed  Google Scholar 

  • Alonso M, Melani M, Converso D, Jaitovich A, Paz C, Carreras MC, Medina JH, Poderoso JJ (2004) Mitochondrial extracellular signal-regulated kinases 1/2 (ERK1/2) are modulated during brain development. J Neurochem 89:248–256

    Article  CAS  PubMed  Google Scholar 

  • Antonsson B, Conti F, Ciavatta A et al (1997) Inhibition of Bax channel-forming activity by Bcl-2. Science 277:370–372

    Article  CAS  PubMed  Google Scholar 

  • Applegate MA, Humphries KM, Szweda LI (2008) Reversible inhibition of alpha-ketoglutarate dehydrogenase by hydrogen peroxide: glutathionylation and protection of lipoic acid. Biochemistry 47:473–478

    Article  CAS  PubMed  Google Scholar 

  • Bar-Am O, Amit T, Youdim MBH (2007) Aminoindan and hydroxyaminoindan, metabolites of rasagiline and ladostignol, respectively, exert neuroprotective properties in vitro. J Neurochem 103:500–508

    Article  CAS  PubMed  Google Scholar 

  • Bauer M, Meyer M, Grimm L, Meitinger T, Zimmer J, Gasser T, Ueffing M, Widmer HR (2000) Nonviral glial cell-derived neurotrophic factor gene transfer enhances survival of cultured dopaminergic neurons and improves their function after transplantation in a rat model of Parkinson’s disease. Hum Gene Ther 11:1529–1541

    Article  CAS  PubMed  Google Scholar 

  • Ben-Shachar D, Zuk R, Gazawi H, Ljubuncic P (2004) Dopamine toxicity involves mitochondrial complex I inhibition: implications to dopamine-related neuropsychiatric disorders. Biochem Pharmacol 67:1965–1974

    Article  CAS  PubMed  Google Scholar 

  • Bespalov MM, Saarma M (2007) GDNF family receptor complexes are emerging drug targets. Trends Pharmacol Sci 28:68–74

    Article  CAS  PubMed  Google Scholar 

  • Blandini F, Armentero MT, Fancellu T, Blaugrund E, Nappi G (2004) Neuroprotective effect of rasagiline in a rodent model of Parkinson’s disease. Exp Neurol 187:455–459

    Article  CAS  PubMed  Google Scholar 

  • Bogaerts V, Theuns J, van Broeckhoven C (2008) Genetic findings in Parkinson’s disease and translation into treatment: a leading role for mitochondria? Genes Brain Behav 7:129–151

    Article  CAS  PubMed  Google Scholar 

  • Camandola S, Mattson MP (2007) NF-kB as a therapeutic target in neurodegenerative diseases. Expert Opin Ther Targets 11:123–132

    Article  CAS  PubMed  Google Scholar 

  • Carrillo MC, Minami C, Kitani K, Maruyama W, Ohashi K, Yamamoto T, Naoi M, Kanai K, Youdim MBH (2000) Enhancing effect of rasagiline on superoxide dismutase and catalase activities in the dopaminergic system in the rat. Life Sci 67:577–585

    Article  CAS  PubMed  Google Scholar 

  • Chen CL, Zhang L, Yeh A, Chen CA, Green-Church KB, Zweier JL, Chen YR (2007) Site-specific S-glutathiolation of mitochondrial NADH ubiquinone reductase. Biochemistry 46:5754–5765

    Article  CAS  PubMed  Google Scholar 

  • Choi J, Rees HD, Weintraub ST, Levey AI, Chin LS, Li L (2005) Oxidative modifications and aggregation of Cu, Zn-superoxide dismutase associated with Alzheimer and Parkinson diseases. J Biol Chem 280:11648–11655

    Article  CAS  PubMed  Google Scholar 

  • Cross JV, Templeton DJ (2004) Thiol oxidation of cell signaling proteins: controlling an apoptotic equilibrium. J Cell Biochem 93:104–111

    Article  CAS  PubMed  Google Scholar 

  • Dawson TM, Dawson VL (2002) Neuroprotective and neurorestorative strategies for Parkinson’s disease. Nature Neurosci Supp 5:1058–1061

    Article  CAS  Google Scholar 

  • Dodson MW, Guo M (2008) Pink1, Parkin, DJ-1 and mitochondrial dysfunction in Parkinson’s disease. Curr Opin Neurobiol 17:1–7

    Google Scholar 

  • Double KL, Ben-Shachar D, Youdim MB, Zecca L, Riederer P, Gerlach M (2002) Influence of neuromelanin on oxidative pathways within the human substantia nigra. Neurotoxicol Teratol 24:621–628

    Article  CAS  PubMed  Google Scholar 

  • Dyall SD, Brown MT, Johnson PJ (2004) Ancient invasions: from endosymbionts to organelles. Science 304:253–257

    Article  CAS  PubMed  Google Scholar 

  • Edmondson DE, Mattevi A, Binda C, Li M, Hubalek F (2004) Structure and mechanism of monoamine oxidase. Curr Med Chem 11:1983–1993

    CAS  PubMed  Google Scholar 

  • Esposito E, Di Matteo V, Di Giovanni G (2007) Death in the substantia nigra: a motor tragedy. Expert Rev Neurother 7:677–697

    Article  CAS  PubMed  Google Scholar 

  • Fadeel B, Orrenius S (2005) Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J Int Med 258:479–517

    Article  CAS  Google Scholar 

  • Gill SS, Patel NK, Hotton GR, O’Sullivan K, McCarter R, Bunnage M, Brooks DJ, Svendsen CN, Heywood P (2003) Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 9:589–595

    Article  CAS  PubMed  Google Scholar 

  • Han D, Canali R, Garcia J, Aguilera R, Gallaher TK, Cadenas E (2005) Sites and mechanisms of aconitase inactivation by peroxynitrite: modulation by citrate and glutathione. Biochemistry 44:11986–11996

    Article  CAS  PubMed  Google Scholar 

  • Henchcliffe C, Beal MF (2008) Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol 4:600–609

    Article  CAS  PubMed  Google Scholar 

  • Henn IH, Bouman L, Schlehe JS et al (2007) Parkin mediates neuroprotection through activation of IκB kinase/nuclear factor-κB signaling. J Neurosci 27:1868–1878

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann A, Leung TH, Baltimore S (2003) Genetic analysis of NF-κB/Rel transcription factors defines functional specificities. EMBO J 22:5530–5539

    Article  CAS  PubMed  Google Scholar 

  • Hong M, Mukhida K, Medez I (2008) GDNF therapy for Parkinson’s disease. Expert Rev Neurother 8:1125–1139

    Article  CAS  PubMed  Google Scholar 

  • Jacotot E, Ferri KF, El Hamel C et al (2001) Control of mitochondrial membrane permeabilization by adenine nucleotide translocator interacting with HIV-1 viral protein R and Bcl-2. J Exp Med 193:509–519

    Article  CAS  PubMed  Google Scholar 

  • Jang JH, Surh YJ (2004) Bcl-2 attenuation of oxidative cell death is associated with up-regulation of gamma-glutamylcysteine ligase via constitutive NF-κB activation. J Biol Chem 279:38779–38786

    Article  CAS  PubMed  Google Scholar 

  • Kastner A, Hirsch EC, Lejeune O, Javoy-Agid F, Rascol O, Agid Y (1992) Is the vulnerability of neurons in the substantia nigra of patients with Parkinson’s disease related to their neuromelanin content? J Neurochem 59:1080–1089

    Article  CAS  PubMed  Google Scholar 

  • Kearns CM, Gash DM (1995) GDNF protects nigral dopamine neurons against 6-hydroxydopamine in vivo. Brain Res 672:104–111

    Article  CAS  PubMed  Google Scholar 

  • Keeney PM, Xie J, Capaldi RA, Benett JP Jr (2006) Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci 26:5256–5264

    Article  CAS  PubMed  Google Scholar 

  • Kinnally KW, Antonsson B (2007) A tale of two mitochondrial channels, MAC and PTP, in apoptosis. Apoptosis 12:857–868

    Article  CAS  PubMed  Google Scholar 

  • Kitani K, Minami C, Maruyama W, Kanai S, Ivy GO, Carrillo MC (2000) Common properties for propargylamines of enhancing superoxide dismutase and catalase activities in the dopaminergic system in the rat: implications for the life prolonging effect of (−)deprenyl. J Neural Transm Suppl 60:139–156

    PubMed  Google Scholar 

  • Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    Article  CAS  PubMed  Google Scholar 

  • Kupsch A, Sautter J, Gotz ME et al (2001) Monoamine oxidase-inhibition and MPTP-induced neurotoxicity in the non-human primate: comparison of rasagiline (TVP 1012) with selegiline. J Neural Transm 108:985–1009

    Article  CAS  PubMed  Google Scholar 

  • Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Yamada N, Maruyama W, Osawa T (2008) Formation of dopamine adducts derived from brain polyunsaturated fatty acids. Mechanism for Parkinson’s disease. J Biol Chem 283:34887–34895

    Article  CAS  PubMed  Google Scholar 

  • Maher P (2006) Redox control of neural function: Background, mechanisms, and significance. Antioxidants Redox Signal 8:1941–1970

    Article  CAS  Google Scholar 

  • Mandel S, Grünblatt E, Riederer P, Gerlach M, Levites Y, Youdim MB (2003) Neuroprotective strategies in Parkinson’s disease: an update on progress. CNS Drugs 17:729–762

    Article  CAS  PubMed  Google Scholar 

  • Mandel S, Weinreb O, Amit T, Youdim MB (2005) Mechanism of neuroprotective action of the anti-Parkinson drug rasagiline and its derivatives. Brain Res Brain Res Rev 48:379–387

    Article  CAS  PubMed  Google Scholar 

  • Mandemakers W, Morais VA, De Strooper B (2007) A cell biological perspective on mitochondrial dysfunction in Parkinson disease and other neurodegenerative diseases. J Cell Sci 120:1707–1716

    Article  CAS  PubMed  Google Scholar 

  • Maruyama W, Boulton AA, Davis BA, Dostert P, Naoi M (2001a) Enantio-specific induction of apoptosis by an endogenous neurotoxin, N-methyl(R)salsolinol, in dopaminergic SH-SY5Y cells: suppression of apoptosis by N-(2-heptyl)-N-methylpropargylamine. J Neural Transm 108:11–24

    Article  CAS  PubMed  Google Scholar 

  • Maruyama W, Youdim MB, Naoi M (2001b) Antiapoptotic properties of rasagiline, N-propargylamine-1(R)-aminoindan, and its optical (S)-isomer, TV1022. Ann NY Acad Sci 939:320–329

    CAS  PubMed  Google Scholar 

  • Maruyama W, Akao Y, Youdim MB, Davis BA, Naoi M (2001c) Transfection- enforced Bcl-2 overexpression and an anti-Parkinson drug, rasagiline, prevent nuclear accumulation of glyceraldehyde-3-phosphate dehydrogenase induced by an endogenous dopaminergic neurotoxin, N-methyl(R)salsolinol. J Neurochem 78:727–735

    Article  CAS  PubMed  Google Scholar 

  • Maruyama W, Akao Y, Carrillo MC, Kitani K, Youdim MB, Naoi M (2002a) Neuroprotection by propargylamines in Parkinson’s disease. Suppression of apoptosis and induction of prosurvival genes. Neurotoxicol Teratol 24:675–682

    Article  CAS  PubMed  Google Scholar 

  • Maruyama W, Takahashi T, Youdim M, Naoi M (2002b) The anti-Parkinson drug, rasagiline, prevents apoptotic DNA damage induced by peroxynitrite in human dopaminergic neuroblastoma SH-SY5Y cells. J Neural Transm 109:467–481

    Article  CAS  PubMed  Google Scholar 

  • Maruyama W, Weinstock M, Youdim MB, Nagai M, Naoi M (2003) Anti-apoptotic action of anti-Alzheimer drug, TV3326 [(N-propargyl)-(3R)-aminoindan-5-yl]-ethyl methyl carbamate, a novel cholinesterase-monoamine oxidase inhibitor. Neurosci Lett 341:233–236

    Article  CAS  PubMed  Google Scholar 

  • Maruyama W, Nitta A, Shamoto-Nagai M, Hirata Y, Akao Y, Youdim M, Furukawa S, Nabeshima T, Naoi M (2004) N-Propargyl-1(R)-aminoindan, rasagiline, increases glial cell line-derived neurotrophic factor (GDNF) in neuroblastoma SH-SY5Y cells through activation of NF-kB transcription factor. Neurochem Int 44:393–400

    Article  CAS  PubMed  Google Scholar 

  • McStay GP, Clarke SJ, Halestrap AP (2002) Role of critical thiol groups on the matrix surface of the adenine nucleotide translocase in the mechanism of the mitochondrial permeability transition pore. Biochem J 367:541–548

    Article  CAS  PubMed  Google Scholar 

  • Meister A (1995) Mitochondrial changes associated with glutathione deficiency. Biochim Biophys Acta 1271:35–42

    PubMed  Google Scholar 

  • Mizuta I, Ohta N, Ohta K, Nishimura M, Mizuta E, Hayashi K, Kuno S (2000) Selegiline and desmethylselegiline stimulate NGF, BDNF, and GDNF synthesis in cultured mouse astrocytes. Biochem Biophys Res Commun 279:751–755

    Article  CAS  PubMed  Google Scholar 

  • Naoi M, Maruyama W (2009) Functional mechanism of neuroprotection by inhibitors of type B monoamine oxidase in Parkinson’s disease. Expert Rev Neurother 9:1233–1250

    Article  CAS  PubMed  Google Scholar 

  • Naoi M, Maruyama W, Akao Y, Yi H (2002a) Dopamine-derived endogenous N-methyl-(R)-salsolinol. Its role in Parkinson’s disease. Neurotoxicol Teratol 24:579–591

    Article  CAS  PubMed  Google Scholar 

  • Naoi M, Maruyama W, Akao Y, Yi H (2002b) Mitochondria determine the survival and death in apoptosis by an endogenous neurotoxin, N-methyl(R)salsolinol, and neuroprotection by propargylamines. J Neural Transm 109:607–621

    Article  CAS  PubMed  Google Scholar 

  • Naoi M, Maruyama W, Akao Y, Yi H, Yamaoka Y (2006) Involvement of type A monoamine oxidase in neurodegeneration: regulation of mitochondrial signaling leading to cell death or neuroprotection. J Neural Transm Suppl 71:67–77

    Article  CAS  PubMed  Google Scholar 

  • Naoi M, Maruyama W, Yi H, Akao Y, Yamaoka Y, Shamoto-Nagai M (2007) Neuroprotection by propargylamines in Parkinson’s disease: intracellular mechanism underlying the anti-apoptotic function and search for clinical markers. J Neural Transm Supp 72:121–131

    Article  CAS  Google Scholar 

  • Naoi M, Maruyama W, Yi H et al (2008) Neuromelanin selectively induces apoptosis in dopaminergic SH-SY5Y cells by deglutathionylation in mitochondria: involvement of protein and melanin component. J Neurochem 105:2489–2500

    Article  CAS  PubMed  Google Scholar 

  • Ou XM, Lu D, Johnson C, Chen K, Youdim MBH, Rajkowska G, Shih JC (2009) Glycerldehyde-3-phosphate dehydrogenase-monoamine oxidase B-mediated cell death-induced by ethanol is prevented by rasagiline and 1-R-aminoindan. Neurotoxicol Res 16:148–159

    Article  CAS  Google Scholar 

  • Panov A, Dikalov S, Shalbuyeva N, Taylor G, Shererr T, Greenamyre JT (2005) Rotenone model of Parkinson’s disease: multiple brain mitochondria dysfunctions after short term systemic rotenone intoxication. J Biol Chem 280:42026–42035

    Article  CAS  PubMed  Google Scholar 

  • Paz MA, Flückinger R, Boak A, Kagan M, Gallop PM (1991) Specific detection of quinoproteins by redox-cycling staining. J Biol Chem 266:689–692

    CAS  PubMed  Google Scholar 

  • Perier C, Bove J, Wu DC et al (2007) Two molecular pathways initiate mitochondria-dependent dopaminergic neurodegeneration in experimental Parkinson’s disease. Proc Natl Acad Sci USA 104:8161–8166

    Article  CAS  PubMed  Google Scholar 

  • Perkins ND (2007) Integrating cell-signalling pathways with NF-κB and IKK function. Nat Rev Mol Cell Biol 8:49–62

    Article  CAS  PubMed  Google Scholar 

  • Przedborski S, Tieu K, Perier C, Vila N (2004) MPTP as a mitochondrial neurotoxic model of Parkinson’s disease. J Bioenerg Biomembr 36:375–379

    Article  CAS  PubMed  Google Scholar 

  • Qanungo S, Starke DW, Pai HV, Mieyal JJ, Nieminen A-L (2007) Glutathione supplementation potentiates hypoxic apoptosis by S-glutathionylation of p65-NFκB. J Biol Chem 282:18427–18436

    Article  CAS  PubMed  Google Scholar 

  • Raddatz R, Parini A, Lanier SM (1995) Imidazoline/guanidinium binding domains on monoamine oxidases. J Biol Chem 270:27961–27968

    Article  CAS  PubMed  Google Scholar 

  • Reynaert NL, van der Viliet A, Guala AS et al (2006) Dynamic redox control of NF-κB through glutaredoxin-regulated S-glutathionylation of inhibitory κB kinase β. Proc Natl Acad Sci USA 13:13086–13091

    Article  CAS  Google Scholar 

  • Riederer PF (2004) Views on neurodegeneration as a basis for neuroprotective strategies. Med Sci Monit 10:RA287–RA290

    CAS  Google Scholar 

  • Riederer P, Sofic E, Rausch W-D, Schmidt B, Reynolds GP, Jellinger K, Youdim MB (1989) Transition metals, ferritin, glutathione, and ascorbic acid in Parkinsonian brains. J Neurochem 52:515–520

    Article  CAS  PubMed  Google Scholar 

  • Sagi Y, Mandel S, Amit T, Youdim MB (2007) Activation of tyrosine kinase receptor signaling pathway by rasagiline facilitates neurorescue and restoration of nigrostriatal dopamine neurons in post-MPTP induced parkinsonism. Neurobiol Dis 25:35–44

    Article  CAS  PubMed  Google Scholar 

  • Schafer FQ, Beutner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Rad Biol Med 30:1191–1212

    Article  CAS  PubMed  Google Scholar 

  • Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54:823–827

    Article  CAS  PubMed  Google Scholar 

  • Schwartz PS, Hockenbery DM (2006) Bcl-2-related survival proteins. Cell Death Differ 13:1250–1255

    Article  CAS  PubMed  Google Scholar 

  • Semkova I, Woilz P, Schilling M, Krieglstein J (1996) Selegiline enhances NGF synthesis and protects central nervous system neurons from excitotoxic and ischemic damage. Eur J Pharmacol 315:19–30

    Article  CAS  PubMed  Google Scholar 

  • Seniuk NA, Henderson JT, Tatton WG, Roder JC (1994) Increased CNTF gene expression in process-bearing astrocytes following injury is augmented by R(−)-deprenyl. J Neurosci Res 37:278–286

    Article  CAS  PubMed  Google Scholar 

  • Shacka JJ, Roth KA (2005) Regulation of neuronal cell death and neurodegeneration by members of the Bcl-2 family: therapeutic implications. Curr Drug Targets CNS Neurol Dis 4:25–39

    Article  CAS  Google Scholar 

  • Shamoto-Nagai M, Maruyama W et al (2004) Neuromelanin inhibits enzymatic activity of 26S proteasome in human dopaminergic SH-SY5Y cells. J Neural Transm 111:1253–1265

    Article  CAS  PubMed  Google Scholar 

  • Shamoto-Nagai M, Maruyama W, Yi H, Akao Y, Tribl F, Gerlach M, Osawa T, Riederer P, Naoi M (2006) Neuromelanin induces oxidative stress in mitochondria through release of iron: mechanism behind the inhibition of 26S proteasome. J Neural Transm 113:633–644

    Article  CAS  PubMed  Google Scholar 

  • Soane L, Fiskum G (2005) Inhibition of mitochondrial neural cell death pathways by protein transduction of Bcl-2 family protein. J Bioerg Biomembr 37:179–190

    Article  CAS  Google Scholar 

  • Tang YP, Ma YL, Chao CC, Chen KY, Lee EHY (1998) Enhanced glial cell line-derived neurotrophic factor mRNA expression upon (−)-deprenyl and melatonin treatments. J Neurosci Res 53:593–604

    Article  CAS  PubMed  Google Scholar 

  • Tatton WG, Ju WYL, Holland DP, Tai C, Kwan M (1994) (−)-Deprenyl reduces PC12 cell apoptosis by inducing new protein synthesis. J Neurochem 63:1572–1575

    Article  CAS  PubMed  Google Scholar 

  • Tatton WG, Chalmers-Redman RM, Ju WJH, Mammen M, Carlile GW, Pong AW, Tatton NA (2002) Propargylamines induce antiapoptotic new protein synthesis in serum- and nerve growth factor (NGF)-withdrawn, NGF-differentiated PC-12 cells. J Pharmacol Exp Ther 301:753–764

    Article  CAS  PubMed  Google Scholar 

  • Taylor ER, Hurrell F, Shannon RJ, Lin TK, Hirst J, Murphy MP (2003) Reversible glutathionylation of complex I increases mitochondrial superoxide formation. J Biol Chem 278:19603–19610

    Article  CAS  PubMed  Google Scholar 

  • Townsend DM (2007) S-Glutathionylation Indicator of cell stress and regulator of the unfolded protein response. Mol Interv 7:313–324

    Article  CAS  PubMed  Google Scholar 

  • Vila M, Przedborski S (2004) Genetic clues to the pathogenesis of Parkinson’s disease. Nat Med 10:S58–S62

    Article  PubMed  CAS  Google Scholar 

  • Vila M, Ramonet D, Perier C (2008) Mitochondrial alterations in Parkinson’s disease: new clues. J Neurochem 107:317–328

    Article  CAS  PubMed  Google Scholar 

  • Weinreb O, Bar-Am O, Amit T, Chillag-Talmor O, Youdim MB (2004) Neuroprotection via pro-survival protein kinase C isoforms associated with Bcl-2 family members. FASEB J 18:1471–1473

    CAS  PubMed  Google Scholar 

  • Wenzel P, Hink U, Oelze M et al (2007) Role of reduced lipoic acid in the redox regulation of mitochondrial aldehyde dehydrogenase (ALDH-2) activity. Implications for mitochondrial oxidative stress and nitrate tolerance. J Biol Chem 282:792–799

    Article  CAS  PubMed  Google Scholar 

  • Yi H, Akao Y, Maruyama W, Chen K, Shih J, Naoi M (2006a) Type A monoamine oxidase is the target of an endogenous dopaminergic neurotoxin, N-methyl-(R)salsolinol, leading to apoptosis in SH-SY5Y cells. J Neurochem 96:541–549

    Article  CAS  PubMed  Google Scholar 

  • Yi H, Maruyama W, Akao Y, Takahashi T, Iwasa K, Youdim MBH, Naoi M (2006b) N-Propargylamine protects SH-SY5Y cells from apoptosis induced by an endogenous neurotoxin, N-methyl(R)salsolinol, through stabilization of mitochondrial membrane and induction of anti-apoptotic Bcl-2. J Neural Transm 113:21–32

    Article  CAS  PubMed  Google Scholar 

  • Youdim MB, Amit T, Falach-Vogev M, Am OB, Maruyama W, Naoi M (2003) The essentiality of Bcl-2, PKC and proteasome-ubiquitin complex activations in the neuroprotective-antiapoptotic action of the anti-Parkinson drug, rasagiline. Biochem Pharmacol 66:1635–1641

    Article  CAS  PubMed  Google Scholar 

  • Youdim MBH, Edmondson D, Tipton KF (2006) The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosi 7:295–309

    Article  CAS  Google Scholar 

  • Zecca L, Wilms H, Geick S et al (2008) Human neuromelanin induces neuroinflammation and neurodegeneration in the rat substantia nigra; implications for Parkinson’s disease. Acta Neuropathol 116:47–55

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Comprehensive Research on Aging and Health from the Ministry of Health, Labor and Welfare (W. M. and M. N.), the Promotion of Fundamental Studies in Health Sciences of National Institute of Biomedical Innovation (W. M.), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Naoi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naoi, M., Maruyama, W., Yi, H. et al. Mitochondria in neurodegenerative disorders: regulation of the redox state and death signaling leading to neuronal death and survival. J Neural Transm 116, 1371–1381 (2009). https://doi.org/10.1007/s00702-009-0309-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-009-0309-7

Keywords

Navigation