Skip to main content

Advertisement

Log in

Secondary Alterations of Sphingolipid Metabolism in Lysosomal Storage Diseases

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In several neurodegenerative diseases, sphingolipid metabolism is deeply deregulated, leading to the expression of abnormal membrane sphingolipid patterns and altered plasma membrane organization. In this paper, we review the potential importance of these alterations to the pathogenesis of these diseases and focus the reader’s attention on some secondary alterations of sphingolipid metabolism that have been sporadically reported in the literature. Moreover, we present a detailed analysis of the lipid composition of different central nervous system and extraneural tissues from the acid sphingomyelinase-deficient mouse, the animal model for Niemann-Pick disease type A, characterized by the accumulation of sphingomyelin. Our data show an unexpected, tissue specific selection of the accumulated molecular species of sphingomyelin, and an accumulation of GM3 and GM2 gangliosides in both neural and extraneural tissues, that cannot be solely explained by the lack of acid sphingomyelinase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ASMKO:

Acid sphingomyelinase knockout

CNS:

Central nervous system

ER:

Endoplamic reticulum

GD:

Gaucher disease

GlcCer:

Glucosylceramide

GSL:

Glycosphingolipids

HPTLC:

High performance thin layer chromatography

NPD:

Niemann-Pick disease

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

SL:

Sphingolipids

SM:

Sphingomyelin

WT:

Wild-type

References

  1. IUPAC-IUBMB JCoBN (1998) Nomenclature of glycolipids. Carbohydr Res 312:167–175

    Article  Google Scholar 

  2. Dreyfus H, Louis JC, Harth S et al (1980) Gangliosides in cultured neurons. Neuroscience 5:1647–1655

    Article  PubMed  CAS  Google Scholar 

  3. Ngamukote S, Yanagisawa M, Ariga T et al (2007) Developmental changes of glycosphingolipids and expression of glycogenes in mouse brains. J Neurochem 103:2327–2341

    Article  PubMed  CAS  Google Scholar 

  4. Svennerholm L, Bostrom K, Fredman P et al (1989) Human brain gangliosides: developmental changes from early fetal stage to advanced age. Biochim Biophys Acta 1005:109–117

    PubMed  CAS  Google Scholar 

  5. Yavin Z, Yavin E (1978) Immunofluorescent patterns of dissociated rat embryo cerebral cells during development in surface culture: distinctive reactions with neurite and perikaryon cell membranes. Dev Neurosci 1:31–40

    Article  PubMed  CAS  Google Scholar 

  6. Riboni L, Prinetti A, Pitto M et al (1990) Patterns of endogenous gangliosides and metabolic processing of exogenous gangliosides in cerebellar granule cells during differentiation in culture. Neurochem Res 15:1175–1183

    Article  PubMed  CAS  Google Scholar 

  7. Rosenberg A, Sauer A, Noble EP et al (1992) Developmental patterns of ganglioside sialosylation coincident with neuritogenesis in cultured embryonic chick brain neurons. J Biol Chem 267:10607–10612

    PubMed  CAS  Google Scholar 

  8. Prinetti A, Chigorno V, Prioni S et al (2001) Changes in the lipid turnover, composition, and organization, as sphingolipid-enriched membrane domains, in rat cerebellar granule cells developing in vitro. J Biol Chem 276:21136–21145

    Article  PubMed  CAS  Google Scholar 

  9. Prioni S, Loberto N, Prinetti A et al (2002) Sphingolipid metabolism and caveolin expression in gonadotropin-releasing hormone-expressing GN11 and gonadotropin-releasing hormone-secreting GT1–7 neuronal cells. Neurochem Res 27:831–840

    Article  PubMed  CAS  Google Scholar 

  10. Valsecchi M, Chigorno V, Nicolini M et al (1996) Changes of free long-chain bases in neuronal cells during differentiation and aging in culture. J Neurochem 67:1866–1871

    Article  PubMed  CAS  Google Scholar 

  11. Svennerholm L, Bostrom K, Jungbjer B et al (1994) Membrane lipids of adult human brain: lipid composition of frontal and temporal lobe in subjects of age 20 to 100 years. J Neurochem 63:1802–1811

    Article  PubMed  CAS  Google Scholar 

  12. Barrier L, Ingrand S, Damjanac M et al (2007) Genotype-related changes of ganglioside composition in brain regions of transgenic mouse models of Alzheimer’s disease. Neurobiol Aging 28:1863–1872

    Article  PubMed  CAS  Google Scholar 

  13. Mansson JE, Vanier MT, Svennerholm L (1978) Changes in the fatty acid and sphingosine composition of the major gangliosides of human brain with age. J Neurochem 30:273–275

    Article  PubMed  CAS  Google Scholar 

  14. Ando S, Yu RK (1984) Fatty acid and long-chain base composition of gangliosides isolated from adult human brain. J Neurosci Res 12:205–211

    Article  PubMed  CAS  Google Scholar 

  15. Palestini P, Masserini M, Sonnino S et al (1990) Changes in the ceramide composition of rat forebrain gangliosides with age. J Neurochem 54:230–235

    Article  PubMed  CAS  Google Scholar 

  16. Palestini P, Sonnino S, Tettamanti G (1991) Lack of the ganglioside molecular species containing the C20-long-chain bases in human, rat, mouse, rabbit, cat, dog, and chicken brains during prenatal life. J Neurochem 56:2048–2050

    Article  PubMed  CAS  Google Scholar 

  17. Suzuki K (1965) The pattern of mammalian brain gangliosides. II. Evaluation of the extraction procedures, postmortem changes and the effect of formalin preservation. J Neurochem 12:629–638

    Article  PubMed  CAS  Google Scholar 

  18. Valsecchi M, Palestini P, Chigorno V et al (1996) Age-related changes of the ganglioside long-chain base composition in rat cerebellum. Neurochem Int 28:183–187

    Article  PubMed  CAS  Google Scholar 

  19. Valsecchi M, Palestini P, Chigorno V et al (1993) Changes in the ganglioside long-chain base composition of rat cerebellar granule cells during differentiation and aging in culture. J Neurochem 60(1):193–196

    Article  PubMed  CAS  Google Scholar 

  20. Heipertz R, Pilz H, Scholz W (1977) The fatty acid composition of sphingomyelin from adult human cerebral white matter and changes in childhood, senium and unspecific brain damage. J Neurol 216:57–65

    Article  PubMed  CAS  Google Scholar 

  21. Goebel HH, Heipertz R, Scholz W et al (1978) Juvenile Huntington chorea: clinical, ultrastructural, and biochemical studies. Neurology 28:23–31

    PubMed  CAS  Google Scholar 

  22. Yamashita T, Wada R, Sasaki T et al (1999) A vital role for glycosphingolipid synthesis during development and differentiation. Proc Natl Acad Sci USA 96:9142–9147

    Article  PubMed  CAS  Google Scholar 

  23. Jennemann R, Sandhoff R, Wang S et al (2005) Cell-specific deletion of glucosylceramide synthase in brain leads to severe neural defects after birth. Proc Natl Acad Sci USA 102:12459–12464

    Article  PubMed  CAS  Google Scholar 

  24. Harel R, Futerman AH (1993) Inhibition of sphingolipid synthesis affects axonal outgrowth in cultured hippocampal neurons. J Biol Chem 268:14476–14481

    PubMed  CAS  Google Scholar 

  25. Inokuchi J, Mizutani A, Jimbo M et al (1997) Up-regulation of ganglioside biosynthesis, functional synapse formation, and memory retention by a synthetic ceramide analog (L-PDMP). Biochem Biophys Res Commun 237:595–600

    Article  PubMed  CAS  Google Scholar 

  26. Schwarz A, Rapaport E, Hirschberg K et al (1995) A regulatory role for sphingolipids in neuronal growth. Inhibition of sphingolipid synthesis and degradation have opposite effects on axonal branching. J Biol Chem 270:10990–10998

    Article  PubMed  CAS  Google Scholar 

  27. Usuki S, Hamanoue M, Kohsaka S et al (1996) Induction of ganglioside biosynthesis and neurite outgrowth of primary cultured neurons by L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol. J Neurochem 67:1821–1830

    Article  PubMed  CAS  Google Scholar 

  28. Mutoh T, Rudkin BB, Koizumi S et al (1988) Nerve growth factor, a differentiating agent, and epidermal growth factor, a mitogen, increase the activities of different S6 kinases in PC12 cells. J Biol Chem 263:15853–15856

    PubMed  CAS  Google Scholar 

  29. Rosner H (1998) Significance of gangliosides in neuronal differentiation of neuroblastoma cells and neurite growth in tissue culture. Ann N Y Acad Sci 845:200–214

    Article  PubMed  CAS  Google Scholar 

  30. Yu RK, Macala LJ, Taki T et al (1988) Developmental changes in ganglioside composition and synthesis in embryonic rat brain. J Neurochem 50:1825–1829

    Article  PubMed  CAS  Google Scholar 

  31. Yu RK, Nakatani Y, Yanagisawa M (2009) The role of glycosphingolipid metabolism in the developing brain. J Lipid Res 50 Suppl: S440–445

    Google Scholar 

  32. Boldin SA, Futerman AH (2000) Up-regulation of glucosylceramide synthesis upon stimulation of axonal growth by basic fibroblast growth factor. Evidence for post-translational modification of glucosylceramide synthase. J Biol Chem 275:9905–9909

    Article  PubMed  CAS  Google Scholar 

  33. Kanda T, Ariga T, Yamawaki M et al (1995) Effect of nerve growth factor and forskolin on glycosyltransferase activities and expression of a globo-series glycosphingolipid in PC12D pheochromocytoma cells. J Neurochem 64:810–817

    Article  PubMed  CAS  Google Scholar 

  34. Aureli M, Loberto N, Lanteri P et al (2010) Cell surface sphingolipid glycohydrolases in neuronal differentiation and aging in culture. J Neurochem (in press)

  35. Kojima N, Kurosawa N, Nishi T et al (1994) Induction of cholinergic differentiation with neurite sprouting by de novo biosynthesis and expression of GD3 and b-series gangliosides in Neuro2a cells. J Biol Chem 269:30451–30456

    PubMed  CAS  Google Scholar 

  36. Proshin S, Yamaguchi K, Wada T et al (2002) Modulation of neuritogenesis by ganglioside-specific sialidase (Neu 3) in human neuroblastoma NB-1 cells. Neurochem Res 27:841–846

    Article  PubMed  CAS  Google Scholar 

  37. Da Silva JS, Hasegawa T, Miyagi T et al (2005) Asymmetric membrane ganglioside sialidase activity specifies axonal fate. Nat Neurosci 8:606–615

    Article  PubMed  CAS  Google Scholar 

  38. Hasegawa T, Yamaguchi K, Wada T et al (2000) Molecular cloning of mouse ganglioside sialidase and its increased expression in neuro2a cell differentiation. J Biol Chem 275:14778

    PubMed  CAS  Google Scholar 

  39. Kopitz J, Muhl C, Ehemann V et al (1997) Effects of cell surface ganglioside sialidase inhibition on growth control and differentiation of human neuroblastoma cells. Eur J Cell Biol 73:1–9

    Article  PubMed  CAS  Google Scholar 

  40. von Reitzenstein C, Kopitz J, Schuhmann V et al (2001) Differential functional relevance of a plasma membrane ganglioside sialidase in cholinergic and adrenergic neuroblastoma cell lines. Eur J Biochem 268:326–333

    Article  Google Scholar 

  41. Rodriguez JA, Piddini E, Hasegawa T et al (2001) Plasma membrane ganglioside sialidase regulates axonal growth and regeneration in hippocampal neurons in culture. J Neurosci 21:8387–8395

    PubMed  CAS  Google Scholar 

  42. Facci L, Leon A, Toffano G et al (1984) Promotion of neuritogenesis in mouse neuroblastoma cells by exogenous gangliosides. Relationship between the effect and the cell association of ganglioside GM1. J Neurochem 42:299–305

    Article  PubMed  CAS  Google Scholar 

  43. Byrne MC, Ledeen RW, Roisen FJ et al (1983) Ganglioside-induced neuritogenesis: verification that gangliosides are the active agents, and comparison of molecular species. J Neurochem 41:1214–1222

    Article  PubMed  CAS  Google Scholar 

  44. Tettamanti G, Riboni L (1994) Gangliosides turnover and neural cells function: a new perspective. Prog Brain Res 101:77–100

    Article  PubMed  CAS  Google Scholar 

  45. Tsuji S, Yamashita T, Tanaka M et al (1988) Synthetic sialyl compounds as well as natural gangliosides induce neuritogenesis in a mouse neuroblastoma cell line (Neuro2a). J Neurochem 50:414–423

    Article  PubMed  CAS  Google Scholar 

  46. Kadowaki H, Evans JE, Rys-Sikora KE et al (1990) Effect of differentiation and cell density on glycosphingolipid class and molecular species composition of mouse neuroblastoma NB2a cells. J Neurochem 54:2125–2137

    Article  PubMed  CAS  Google Scholar 

  47. Prinetti A, Iwabuchi K, Hakomori S (1999) Glycosphingolipid-enriched signaling domain in mouse neuroblastoma Neuro2a cells. Mechanism of ganglioside-dependent neuritogenesis. J Biol Chem 274:20916–20924

    Article  PubMed  CAS  Google Scholar 

  48. Lam RS, Shaw AR, Duszyk M (2004) Membrane cholesterol content modulates activation of BK channels in colonic epithelia. Biochim Biophys Acta 1667:241–248

    Article  PubMed  CAS  Google Scholar 

  49. Naslavsky N, Shmeeda H, Friedlander G et al (1999) Sphingolipid depletion increases formation of the scrapie prion protein in neuroblastoma cells infected with prions. J Biol Chem 274:20763–20771

    Article  PubMed  CAS  Google Scholar 

  50. Kasahara K, Watanabe K, Takeuchi K et al (2000) Involvement of gangliosides in glycosylphosphatidylinositol-anchored neuronal cell adhesion molecule TAG-1 signaling in lipid rafts. J Biol Chem 275:34701–34709

    Article  PubMed  CAS  Google Scholar 

  51. Ledesma MD, Simons K, Dotti CG (1998) Neuronal polarity: essential role of protein-lipid complexes in axonal sorting. Proc Natl Acad Sci U S A 95:3966–3971

    Article  PubMed  CAS  Google Scholar 

  52. Kilkus J, Goswami R, Testai FD et al (2003) Ceramide in rafts (detergent-insoluble fraction) mediates cell death in neurotumor cell lines. J Neurosci Res 72:65–75

    Article  PubMed  CAS  Google Scholar 

  53. Decker L, ffrench-Constant C (2004) Lipid rafts and integrin activation regulate oligodendrocyte survival. J Neurosci 24:3816–3825

    Article  PubMed  CAS  Google Scholar 

  54. Chang MC, Wisco D, Ewers H et al (2006) Inhibition of sphingolipid synthesis affects kinetics but not fidelity of L1/NgCAM transport along direct but not transcytotic axonal pathways. Mol Cell Neurosci 31:525–538

    Article  PubMed  CAS  Google Scholar 

  55. Paratcha G, Ibanez CF (2002) Lipid rafts and the control of neurotrophic factor signaling in the nervous system: variations on a theme. Curr Opin Neurobiol 12:542–549

    Article  PubMed  CAS  Google Scholar 

  56. Tsui-Pierchala BA, Encinas M, Milbrandt J et al (2002) Lipid rafts in neuronal signaling and function. Trends Neurosci 25:412–417

    Article  PubMed  CAS  Google Scholar 

  57. Nagappan G, Lu B (2005) Activity-dependent modulation of the BDNF receptor TrkB: mechanisms and implications. Trends Neurosci 28:464–471

    Article  PubMed  CAS  Google Scholar 

  58. Saarma M (2001) GDNF recruits the signaling crew into lipid rafts. Trends Neurosci 24:427–429

    Article  PubMed  CAS  Google Scholar 

  59. Decker L, Baron W, Ffrench-Constant C (2004) Lipid rafts: microenvironments for integrin-growth factor interactions in neural development. Biochem Soc Trans 32:426–430

    Article  PubMed  CAS  Google Scholar 

  60. Santuccione A, Sytnyk V, Leshchyns’ka I et al (2005) Prion protein recruits its neuronal receptor NCAM to lipid rafts to activate p59fyn and to enhance neurite outgrowth. J Cell Biol 169:341–354

    Article  PubMed  CAS  Google Scholar 

  61. Tooze SA, Martens GJ, Huttner WB (2001) Secretory granule biogenesis: rafting to the SNARE. Trends Cell Biol 11:116–122

    Article  PubMed  CAS  Google Scholar 

  62. McKerracher L (2002) Ganglioside rafts as MAG receptors that mediate blockade of axon growth. Proc Natl Acad Sci U S A 99:7811–7813

    Article  PubMed  CAS  Google Scholar 

  63. Vyas AA, Patel HV, Fromholt SE et al (2002) Gangliosides are functional nerve cell ligands for myelin-associated glycoprotein (MAG), an inhibitor of nerve regeneration. Proc Natl Acad Sci U S A 99:8412–8417

    Article  PubMed  CAS  Google Scholar 

  64. Boggs JM, Wang H, Gao W et al (2004) A glycosynapse in myelin? Glycoconj J 21:97–110

    Article  PubMed  CAS  Google Scholar 

  65. Prinetti A, Chigorno V, Mauri L et al (2007) Modulation of cell functions by glycosphingolipid metabolic remodeling in the plasma membrane. J Neurochem 103(Suppl 1):113–125

    Article  PubMed  CAS  Google Scholar 

  66. Prinetti A, Loberto N, Chigorno V et al (2009) Glycosphingolipid behaviour in complex membranes. Biochim Biophys Acta 1788:184–193

    Article  PubMed  CAS  Google Scholar 

  67. Sonnino S, Mauri L, Chigorno V et al (2006) Gangliosides as components of lipid membrane domains. Glycobiology 17:1R–13R

    Article  PubMed  Google Scholar 

  68. Prinetti A, Chigorno V, Tettamanti G et al (2000) Sphingolipid-enriched membrane domains from rat cerebellar granule cells differentiated in culture. A compositional study. J Biol Chem 275:11658–11665

    Article  PubMed  CAS  Google Scholar 

  69. Prinetti A, Marano N, Prioni S et al (2000) Association of Src-family protein tyrosine kinases with sphingolipids in rat cerebellar granule cells differentiated in culture. Glycoconj J 17:223–232

    Article  PubMed  CAS  Google Scholar 

  70. Kasahara K, Watanabe Y, Yamamoto T et al (1997) Association of Src family tyrosine kinase Lyn with ganglioside GD3 in rat brain. Possible regulation of Lyn by glycosphingolipid in caveolae-like domains. J Biol Chem 272:29947–29953

    Article  PubMed  CAS  Google Scholar 

  71. Wu C, Butz S, Ying Y et al (1997) Tyrosine kinase receptors concentrated in caveolae-like domains from neuronal plasma membrane. J Biol Chem 272:3554–3559

    Article  PubMed  CAS  Google Scholar 

  72. Chini B, Parenti M (2004) G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there? J Mol Endocrinol 32:325–338

    Article  PubMed  CAS  Google Scholar 

  73. Prinetti A, Prioni S, Chigorno V et al (2001) Immunoseparation of sphingolipid-enriched membrane domains enriched in Src family protein tyrosine kinases and in the neuronal adhesion molecule TAG-1 by anti-GD3 ganglioside monoclonal antibody. J Neurochem 78:1162–1167

    Article  PubMed  CAS  Google Scholar 

  74. Piccinini M, Scandroglio F, Prioni S et al (2010) Deregulated sphingolipid metabolism and membrane organization in neurodegenerative disorders. Mol Neurobiol 41:314–340

    Article  PubMed  CAS  Google Scholar 

  75. Futerman AH, van Meer G (2004) The cell biology of lysosomal storage disorders. Nat Rev Mol Cell Biol 5:554–565

    Article  PubMed  CAS  Google Scholar 

  76. Simpson MA, Cross H, Proukakis C et al (2004) Infantile-onset symptomatic epilepsy syndrome caused by a homozygous loss-of-function mutation of GM3 synthase. Nat Genet 36:1225–1229

    Article  PubMed  CAS  Google Scholar 

  77. He X, Huang Y, Li B et al (2010) Deregulation of sphingolipid metabolism in Alzheimer’s disease. Neurobiol Aging 31:398–408

    Article  PubMed  CAS  Google Scholar 

  78. Kolter T, Sandhoff K (2006) Sphingolipid metabolism diseases. Biochim Biophys Acta 1758:2057–2079

    Article  PubMed  CAS  Google Scholar 

  79. Desnick RJ, Schuchman EH (2002) Enzyme replacement and enhancement therapies: lessons from lysosomal disorders. Nat Rev Genet 3:954–966

    Article  PubMed  CAS  Google Scholar 

  80. Grabowski GA, Hopkin RJ (2003) Enzyme therapy for lysosomal storage disease: principles, practice, and prospects. Annu Rev Genomics Hum Genet 4:403–436

    Article  PubMed  CAS  Google Scholar 

  81. Bengtsson BA, Johansson JO, Hollak C et al (2003) Enzyme replacement in Anderson-Fabry disease. Lancet 361:352

    Article  PubMed  Google Scholar 

  82. Dhami R, Schuchman EH (2004) Mannose 6-phosphate receptor-mediated uptake is defective in acid sphingomyelinase-deficient macrophages: implications for Niemann-Pick disease enzyme replacement therapy. J Biol Chem 279:1526–1532

    Article  PubMed  CAS  Google Scholar 

  83. D’Azzo A (2003) Gene transfer strategies for correction of lysosomal storage disorders. Acta Haematol 110:71–85

    Article  PubMed  CAS  Google Scholar 

  84. Cheng SH, Smith AE (2003) Gene therapy progress and prospects: gene therapy of lysosomal storage disorders. Gene Ther 10:1275–1281

    Article  PubMed  CAS  Google Scholar 

  85. Cachon-Gonzalez MB, Wang SZ, Lynch A et al (2006) Effective gene therapy in an authentic model of Tay-Sachs-related diseases. Proc Natl Acad Sci U S A 103:10373–10378

    Article  PubMed  CAS  Google Scholar 

  86. Arfi A, Bourgoin C, Basso L et al (2005) Bicistronic lentiviral vector corrects beta-hexosaminidase deficiency in transduced and cross-corrected human Sandhoff fibroblasts. Neurobiol Dis 20:583–593

    Article  PubMed  CAS  Google Scholar 

  87. Villani GR, Follenzi A, Vanacore B et al (2002) Correction of mucopolysaccharidosis type IIIb fibroblasts by lentiviral vector-mediated gene transfer. Biochem J 364:747–753

    Article  PubMed  CAS  Google Scholar 

  88. Futerman AH, Sussman JL, Horowitz M et al (2004) New directions in the treatment of Gaucher disease. Trends Pharmacol Sci 25:147–151

    Article  PubMed  CAS  Google Scholar 

  89. Cox T, Lachmann R, Hollak C et al (2000) Novel oral treatment of Gaucher’s disease with N-butyldeoxynojirimycin (OGT 918) to decrease substrate biosynthesis. Lancet 355:1481–1485

    Article  PubMed  CAS  Google Scholar 

  90. Lachmann RH (2003) Miglustat. Oxford GlycoSciences/Actelion. Curr Opin Investig Drugs 4:472–479

    PubMed  CAS  Google Scholar 

  91. Weinreb NJ, Barranger JA, Charrow J et al (2005) Guidance on the use of miglustat for treating patients with type 1 Gaucher disease. Am J Hematol 80:223–229

    Article  PubMed  CAS  Google Scholar 

  92. Patterson MC, Vecchio D, Prady H et al (2007) Miglustat for treatment of Niemann-Pick C disease: a randomised controlled study. Lancet Neurol 6:765–772

    Article  PubMed  CAS  Google Scholar 

  93. Platt FM, Neises GR, Reinkensmeier G et al (1997) Prevention of lysosomal storage in Tay-Sachs mice treated with N-butyldeoxynojirimycin. Science 276:428–431

    Article  PubMed  CAS  Google Scholar 

  94. Jeyakumar M, Butters TD, Cortina-Borja M et al (1999) Delayed symptom onset and increased life expectancy in Sandhoff disease mice treated with N-butyldeoxynojirimycin. Proc Natl Acad Sci U S A 96:6388–6393

    Article  PubMed  CAS  Google Scholar 

  95. Tessitore A, del P Martin M, Sano R et al (2004) GM1-ganglioside-mediated activation of the unfolded protein response causes neuronal death in a neurodegenerative gangliosidosis. Mol Cell 15:753–766

  96. Sano R, Annunziata I, Patterson A et al (2009) GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER stress to Ca(2 +)-dependent mitochondrial apoptosis. Mol Cell 36:500–511

    Article  PubMed  CAS  Google Scholar 

  97. Imgrund S, Hartmann D, Farwanah H et al (2009) Adult ceramide synthase 2 (CERS2)-deficient mice exhibit myelin sheath defects, cerebellar degeneration, and hepatocarcinomas. J Biol Chem 284:33549–33560

    Article  PubMed  CAS  Google Scholar 

  98. Pewzner-Jung Y, Park H, Laviad EL et al (2010) A critical role for ceramide synthase 2 in liver homeostasis: I. alterations in lipid metabolic pathways. J Biol Chem 285:10902–10910

    Article  PubMed  CAS  Google Scholar 

  99. Walkley SU (2004) Secondary accumulation of gangliosides in lysosomal storage disorders. Semin Cell Dev Biol 15:433–444

    Article  PubMed  CAS  Google Scholar 

  100. Zervas M, Dobrenis K, Walkley SU (2001) Neurons in Niemann-Pick disease type C accumulate gangliosides as well as unesterified cholesterol and undergo dendritic and axonal alterations. J Neuropathol Exp Neurol 60:49–64

    PubMed  CAS  Google Scholar 

  101. Rodriguez-Lafrasse C, Vanier MT (1999) Sphingosylphosphorylcholine in Niemann-Pick disease brain: accumulation in type A but not in type B. Neurochem Res 24:199–205

    Article  PubMed  CAS  Google Scholar 

  102. Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50

    Article  PubMed  CAS  Google Scholar 

  103. Brady RO, Kanfer JN, Mock MB et al (1966) The metabolism of sphingomyelin. II. Evidence of an enzymatic deficiency in Niemann-Pick disease. Proc Natl Acad Sci U S A 55:366–369

    Article  PubMed  CAS  Google Scholar 

  104. Schneider PB, Kennedy EP (1967) Sphingomyelinase in normal human spleens and in spleens from subjects with Niemann-Pick disease. J Lipid Res 8:202–209

    PubMed  CAS  Google Scholar 

  105. Kanfer JN, Young OM, Shapiro D et al (1966) The metabolism of sphingomyelin. I. Purification and properties of a sphingomyelin-cleaving enzyme from rat liver tissue. J Biol Chem 241:1081–1084

    PubMed  CAS  Google Scholar 

  106. Schuchman EH (2010) Acid sphingomyelinase, cell membranes and human disease: lessons from Niemann-Pick disease. FEBS Lett 584:1895–1900

    Article  PubMed  CAS  Google Scholar 

  107. Schuchman EH (2007) The pathogenesis and treatment of acid sphingomyelinase-deficient Niemann-Pick disease. J Inherit Metab Dis 30:654–663

    Article  PubMed  CAS  Google Scholar 

  108. Graber D, Salvayre R, Levade T (1994) Accurate differentiation of neuronopathic and nonneuronopathic forms of Niemann-Pick disease by evaluation of the effective residual lysosomal sphingomyelinase activity in intact cells. J Neurochem 63:1060–1068

    Article  PubMed  CAS  Google Scholar 

  109. Horinouchi K, Erlich S, Perl DP et al (1995) Acid sphingomyelinase deficient mice: a model of types A and B Niemann-Pick disease. Nat Genet 10:288–293

    Article  PubMed  CAS  Google Scholar 

  110. Otterbach B, Stoffel W (1995) Acid sphingomyelinase-deficient mice mimic the neurovisceral form of human lysosomal storage disease (Niemann-Pick disease). Cell 81:1053–1061

    Article  PubMed  CAS  Google Scholar 

  111. Scandroglio F, Venkata JK, Loberto N et al (2008) Lipid content of brain, brain membrane lipid domains, and neurons from acid sphingomyelinase deficient mice. J Neurochem 107:329–338

    Article  PubMed  CAS  Google Scholar 

  112. Buccinna B, Piccinini M, Prinetti A et al (2009) Alterations of myelin-specific proteins and sphingolipids characterize the brains of acid sphingomyelinase-deficient mice, an animal model of Niemann-Pick disease type A. J Neurochem 109:105–115

    Article  PubMed  CAS  Google Scholar 

  113. Valsecchi M, Mauri L, Casellato R et al (2007) Ceramide and sphingomyelin species of fibroblasts and neurons in culture. J Lipid Res 48:417–424

    Article  PubMed  CAS  Google Scholar 

  114. Dunbar GL, Sandstrom MI, Rossignol J et al (2006) Neurotrophic enhancers as therapy for behavioral deficits in rodent models of Huntington’s disease: use of gangliosides, substituted pyrimidines, and mesenchymal stem cells. Behav Cogn Neurosci Rev 5:63–79

    Article  PubMed  Google Scholar 

  115. Hein LK, Duplock S, Hopwood JJ et al (2008) Lipid composition of microdomains is altered in a cell model of Gaucher disease. J Lipid Res 49:1725–1734

    Article  PubMed  CAS  Google Scholar 

  116. White AB, Givogri MI, Lopez-Rosas A et al (2009) Psychosine accumulates in membrane microdomains in the brain of krabbe patients, disrupting the raft architecture. J Neurosci 29:6068–6077

    Article  PubMed  CAS  Google Scholar 

  117. Ledesma MD, Prinetti A, Sonnino S et al (2010) Brain pathology in Niemann Pick disease type A: insights from the acid sphingomyelinase knockout mice. J Neurochem (in press)

  118. Sonnino S, Prinetti A, Mauri L et al (2006) Dynamic and structural properties of sphingolipids as driving forces for the formation of membrane domains. Chem Rev 106:2111–2125

    Article  PubMed  CAS  Google Scholar 

  119. Pewzner-Jung Y, Ben-Dor S, Futerman AH (2006) When do Lasses (longevity assurance genes) become CerS (ceramide synthases)? Insights into the regulation of ceramide synthesis. J Biol Chem 281:25001–25005

    Article  PubMed  CAS  Google Scholar 

  120. Bartke N, Hannun YA (2009) Bioactive sphingolipids: metabolism and function. J Lipid Res 50 Suppl: S91–96

    Google Scholar 

  121. Quinn PJ (2010) A lipid matrix model of membrane raft structure. Prog Lipid Res 49:390–406

    Article  PubMed  CAS  Google Scholar 

  122. Iwabuchi K, Prinetti A, Sonnino S et al (2008) Involvement of very long fatty acid-containing lactosylceramide in lactosylceramide-mediated superoxide generation and migration in neutrophils. Glycoconj J 25:357–374

    Article  PubMed  CAS  Google Scholar 

  123. Yoshizaki F, Nakayama H, Iwahara C et al (2008) Role of glycosphingolipid-enriched microdomains in innate immunity: microdomain-dependent phagocytic cell functions. Biochim Biophys Acta 1780:383–392

    PubMed  CAS  Google Scholar 

  124. Tettamanti G, Bonali F, Marchesini S et al (1973) A new procedure for the extraction, purification and fractionation of brain gangliosides. Biochim Biophys Acta 296(291):160–270

    PubMed  CAS  Google Scholar 

  125. Acquotti D, Sonnino S (2000) Use of nuclear magnetic resonance spectroscopy in evaluation of ganglioside structure, conformation, and dynamics. Methods Enzymol 312:247–272

    Article  PubMed  CAS  Google Scholar 

  126. Prinetti A, Basso L, Appierto V et al (2003) Altered Sphingolipid Metabolism in N-(4-Hydroxyphenyl)- retinamide-resistant A2780 Human Ovarian Carcinoma Cells. J Biol Chem 278:5574–5583

    Article  PubMed  CAS  Google Scholar 

  127. Svennerholm L (1957) Quantitative estimation of sialic acids. II. A colorimetric resorcinol-hydrochloric acid method. Biochim Biophys Acta 24:604–611

    Article  PubMed  CAS  Google Scholar 

  128. Bartlett GR (1959) Phosphorus assay in column chromatography. J Biol Chem 234:466–468

    PubMed  CAS  Google Scholar 

  129. Vaskovsky VE, Kostetsky EY (1968) Modified spray for the detection of phospholipids on thin-layer chromatograms. J Lipid Res 9:396

    PubMed  CAS  Google Scholar 

  130. Partridge SM (1948) Filter-paper partition chromatography of sugars: 1. General description and application to the qualitative analysis of sugars in apple juice, egg white and foetal blood of sheep. with a note by R. G. Westall. Biochem J 42:238–250

    CAS  Google Scholar 

Download references

Acknowledgments

This paper has been supported by University of Milan Grant 2006-08 to S.S., Fondazione Cariplo Grant 2006 to S.S, and by Mizutani Foundation for Glycosciences Grant 2007 to A.P. E.H.S. is the recipient of grants from the National Institutes of Health (DK54830 and HD28750).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Prinetti.

Additional information

Special Issue: In Honor of Dr. Abel Lajtha.

Simona Prioni and Elena Chiricozzi are equally contributed to the work.

Appendix: Experimental Procedures

Appendix: Experimental Procedures

Materials

Commercial chemicals were of the highest purity available, common solvents were distilled before use and water was doubly distillated in a glass apparatus. Lipids to be used as standard were extracted from rat brain, purified [124], and structurally characterized [125]. HPTLC plates were from Merck (Darmstadt, Germany). RC DC™ protein assay kit was from Bio-Rad (Hercules,CA,USA). Bovin serum albumin was from Sigma–Aldrich (St. Louis, MO).

Animals

The ASMKO mouse model [109] was backcrossed onto the C57BL/6 N strain at the Charles River Laboratory, Milan, Italy. Starting from heterozygous mice, homozygous mice colonies were established: WT mice (C57BL/6 N; ASM +/+) used as control and mutant (ASMKO) mice (C57BL/6 N; ASM-/-). Mice were bred according to the NIH Guide for the Care and Use of Laboratory Animals. Genotypes were checked by PCR [109]. Mutants and control mice were killed with CO2.

Tissue Lipid Analysis

Tissues from ASMKO and WT mice were weighed and homogenized in iced Millipore water (500 mg of fresh tissue/mL); For lipid analysis we extracted the whole tissue from a single animal. The homogenates were sonicated at ice temperature, snap-frozen and lyophilized; lipids were extracted with chloroform/methanol/water 20:10:1 (v/v/v) three times. Total lipid extracts were subjected to a two-phase partitioning leading to the separation of an aqueous phase containing gangliosides and an organic phase containing all the other lipids [126]. The ganglioside content of each total tissue was determined in the aqueous phases as lipid-bound sialic acid using the resorcinol method [127], while the phospholipid content was determined as phosphate in the organic phases following perchloric acid digestion using the method of Bartlett [128]. The SM content was determined in the organic phase after alkaline treatment.

Lipids were separated by monodimensional HPTLC carried out using the following solvent systems: chloroform/methanol/0.2% calcium chloride 60:35:8 (v/v/v) for phospholipids and SM, hexane/ethyl-acetate 3:2 (v/v) for cholesterol, and chloroform/methanol/0.2% calcium chloride 50:42:11 (v/v/v) for gangliosides.

Separated lipids were identified on the basis of co-migration with lipid standards [68].

Phospholipids were detected by spraying the TLC with a molybdate reagent [129]. Cholesterol was visualized by spraying the TLC with anisaldehyde and quantified by densitometry and comparison with 0.1–0.2 μg of a standard compound [68]. SM was recognized using 15% concentrated sulfuric acid in 1-butanol [68]. Gangliosides were visualized after separation on HPTLC by specific detection with the p-dimethylaminobenzaldehyde reagent [130].

The relative amounts of lipids associated with each band after HPTLC separation were determined by densitometry using the Molecular Analyst program (Bio-Rad Laboratories, Hercules, CA, USA). The number of sialyl residues was taken into account for analysis of ganglioside content. The mass content of each phospholipid, or ganglioside, was calculated on the basis of the percentage distribution of total phospholipid or ganglioside content, determined as described above [8, 68]. The protein content was determined in all samples using the RC DC™ protein assay and BSA as the reference standard.

Statistical Analysis

Experiments were performed on three different tissue samples from different animals for each genotype and age group. The results are expressed as mean value ± SD Statistical analysis of the data was performed by one-way ANOVA followed by the Student–Newman–Keuls’ test. p < 0.05 was considered significant (compared with WT) and p values are indicated in the legend of each figure and/or table.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prinetti, A., Prioni, S., Chiricozzi, E. et al. Secondary Alterations of Sphingolipid Metabolism in Lysosomal Storage Diseases. Neurochem Res 36, 1654–1668 (2011). https://doi.org/10.1007/s11064-010-0380-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0380-3

Keywords

Navigation