Skip to main content

Advertisement

Log in

Deregulated Sphingolipid Metabolism and Membrane Organization in Neurodegenerative Disorders

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Sphingolipids are polar membrane lipids present as minor components in eukaryotic cell membranes. Sphingolipids are highly enriched in nervous cells, where they exert important biological functions. They deeply affect the structural and geometrical properties and the lateral order of cellular membranes, modulate the function of several membrane-associated proteins, and give rise to important intra- and extracellular lipid mediators. Sphingolipid metabolism is regulated along the differentiation and development of the nervous system, and the expression of a peculiar spatially and temporarily regulated sphingolipid pattern is essential for the maintenance of the functional integrity of the nervous system: sphingolipids in the nervous system participate to several signaling pathways controlling neuronal survival, migration, and differentiation, responsiveness to trophic factors, synaptic stability and synaptic transmission, and neuron–glia interactions, including the formation and stability of central and peripheral myelin. In several neurodegenerative diseases, sphingolipid metabolism is deeply deregulated, leading to the expression of abnormal sphingolipid patterns and altered membrane organization that participate to several events related to the pathogenesis of these diseases. The most impressive consequence of this deregulation is represented by anomalous sphingolipid–protein interactions that are at least, in part, responsible for the misfolding events that cause the fibrillogenic and amyloidogenic processing of disease-specific protein isoforms, such as amyloid β peptide in Alzheimer’s disease, huntingtin in Huntington’s disease, α-synuclein in Parkinson’s disease, and prions in transmissible encephalopathies. Targeting sphingolipid metabolism represents today an underexploited but realistic opportunity to design novel therapeutic strategies for the intervention in these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

CJD:

Creutzfeldt–Jakob disease

CNS:

Central nervous system

GalCer:

Galactosylceramide

GD:

Gaucher disease

GlcCer:

Glucosylceramide

GPL:

Glycerophospholipids

GSL:

Glycosphingolipids

HD:

Hungtington’s disease

MAG:

Myelin-associated glycoprotein

NPD:

Niemann–Pick disease

PD:

Parkinson’s disease

PNS:

Peripheral nervous system

PrP:

Prion protein

SL:

Sphingolipids

SM:

Sphingomyelin

References

  1. IUPAC-IUBMB Joint Commission on Biochemical Nomenclature (1998) Nomenclature of glycolipids. Carbohydr Res 312:167–175

    Google Scholar 

  2. Roisen FJ, Bartfeld H, Nagele R, Yorke G (1981) Ganglioside stimulation of axonal sprouting in vitro. Science 214:577–578

    CAS  PubMed  Google Scholar 

  3. Schauer R (1982) Chemistry, metabolism, and biological functions of sialic acids. Adv Carbohydr Chem Biochem 40:131–234

    CAS  PubMed  Google Scholar 

  4. Glebov OO, Nichols BJ (2004) Lipid raft proteins have a random distribution during localized activation of the T-cell receptor. Nat Cell Biol 6:238–243

    CAS  PubMed  Google Scholar 

  5. Karlsson KA (1970) On the chemistry and occurrence of sphingolipid long-chain bases. Chem Phys Lipids 5:6–43

    CAS  PubMed  Google Scholar 

  6. Lin J, Shaw AS (2005) Getting downstream without a raft. Cell 121:815–816

    CAS  PubMed  Google Scholar 

  7. Sonnino S, Mauri L, Chigorno V, Prinetti A (2006) Gangliosides as components of lipid membrane domains. Glycobiology 17(1):1R–13R

    PubMed  Google Scholar 

  8. Sonnino S, Prinetti A, Mauri L, Chigorno V, Tettamanti G (2006) Dynamic and structural properties of sphingolipids as driving forces for the formation of membrane domains. Chem Rev 106:2111–2125

    CAS  PubMed  Google Scholar 

  9. Levery SB (1991) 1H-NMR study of GM2 ganglioside: evidence that an interresidue amide–carboxyl hydrogen bond contributes to stabilization of a preferred conformation. Glycoconj J 8:484–492

    CAS  PubMed  Google Scholar 

  10. Acquotti D, Cantu L, Ragg E, Sonnino S (1994) Geometrical and conformational properties of ganglioside GalNAc-GD1a, IV4GalNAcIV3Neu5AcII3Neu5AcGgOse4Cer. Eur J Biochem 225:271–288

    CAS  PubMed  Google Scholar 

  11. Acquotti D, Fronza G, Ragg E, Sonnino S (1991) Three dimensional structure of GD1b and GD1b-monolactone gangliosides in dimethylsulphoxide: a nuclear Overhauser effect investigation supported by molecular dynamics calculations. Chem Phys Lipids 59:107–125

    CAS  PubMed  Google Scholar 

  12. Acquotti D, Poppe L, Dabrowski J, von der Lieth GW, Sonnino S, Tettamanti G (1990) Three-dimensional structure of the oligosaccaride chain of GM1 ganglioside revealed by a distance-mapping procedure: a rotating and laboratory frame nuclear overhauser enhancement investigation of native glycolipid in dimethyl sulfoxide and in water-dodecylphosphocholine solutions. J Am Chem Soc 112:7772–7778

    CAS  Google Scholar 

  13. Brocca P, Acquotti D, Sonnino S (1996) Nuclear Overhauser effect investigation on GM1 ganglioside containing N-glycolyl-neuraminic acid (II3Neu5GcGgOse4Cer). Glycoconj J 13:57–62

    CAS  PubMed  Google Scholar 

  14. Brocca P, Berthault P, Sonnino S (1998) Conformation of the oligosaccharide chain of G(M1) ganglioside in a carbohydrate-enriched surface. Biophys J 74:309–318

    CAS  PubMed  Google Scholar 

  15. Brocca P, Cantu L, Sonnino S (1995) Aggregation properties of semisynthetic GD1a ganglioside (IV3Neu5AcII3Neu5AcGgOse4Cer) containing an acetyl group as acyl moiety. Chem Phys Lipids 77:41–49

    CAS  PubMed  Google Scholar 

  16. Cantù L, Corti M, Casellato R, Acquotti D, Sonnino S (1991) Aggregation properties of GD1b, II3Neu5Ac2GgOse4Cer, and of GD1b-lactone, II3[alpha-Neu5Ac-(2–8, 1–9)-alpha-Neu5Ac]GgOse4Cer, in aqueous solution. Chem Phys Lipids 60:111–118

    PubMed  Google Scholar 

  17. Cantu L, Corti M, Sonnino S, Tettamanti G (1990) Evidence for spontaneous segregation phenomena in mixed micelles of gangliosides. Chem Phys Lipids 55:223–229

    CAS  PubMed  Google Scholar 

  18. Masserini M, Freire E (1986) Thermotropic characterization of phosphatidylcholine vesicles containing ganglioside GM1 with homogeneous ceramide chain length. Biochemistry 25:1043–1049

    CAS  PubMed  Google Scholar 

  19. Masserini M, Palestini P, Freire E (1989) Influence of glycolipid oligosaccharide and long-chain base composition on the thermotropic properties of dipalmitoylphosphatidylcholine large unilamellar vesicles containing gangliosides. Biochemistry 28:5029–5034

    CAS  PubMed  Google Scholar 

  20. Masserini M, Palestini P, Venerando B, Fiorilli A, Acquotti D, Tettamanti G (1988) Interactions of proteins with ganglioside-enriched microdomains on the membrane: the lateral phase separation of molecular species of GD1a ganglioside, having homogeneous long-chain base composition, is recognized by Vibrio cholerae sialidase. Biochemistry 27:7973–7978

    CAS  PubMed  Google Scholar 

  21. Poppe L, van Halbeek H, Acquotti D, Sonnino S (1994) Carbohydrate dynamics at a micellar surface: GD1a headgroup transformations revealed by NMR spectroscopy. Biophys J 66:1642–1652

    CAS  PubMed  Google Scholar 

  22. Scarsdale JN, Prestegard JH, Yu RK (1990) NMR and computational studies of interactions between remote residues in gangliosides. Biochemistry 29:9843–9855

    CAS  PubMed  Google Scholar 

  23. Siebert HC, Reuter G, Schauer R, von der Lieth CW, Dabrowski J (1992) Solution conformations of GM3 gangliosides containing different sialic acid residues as revealed by NOE-based distance mapping, molecular mechanics, and molecular dynamics calculations. Biochemistry 31:6962–6971

    CAS  PubMed  Google Scholar 

  24. Sonnino S, Cantu L, Acquotti D, Corti M, Tettamanti G (1990) Aggregation properties of GM3 ganglioside (II3Neu5AcLacCer) in aqueous solutions. Chem Phys Lipids 52:231–241

    CAS  PubMed  Google Scholar 

  25. Sonnino S, Cantu L, Corti M, Acquotti D, Kirschner G, Tettamanti G (1990) Aggregation properties of semisynthetic GM1 ganglioside (II3Neu5AcGgOse4Cer) containing an acetyl group as acyl moiety. Chem Phys Lipids 56:49–57

    CAS  PubMed  Google Scholar 

  26. Sonnino S, Cantu L, Corti M, Acquotti D, Venerando B (1994) Aggregative properties of gangliosides in solution. Chem Phys Lipids 71:21–45

    CAS  PubMed  Google Scholar 

  27. Ha JH, Spolar RS, Record MT Jr (1989) Role of the hydrophobic effect in stability of site-specific protein-DNA complexes. J Mol Biol 209:801–816

    CAS  PubMed  Google Scholar 

  28. Bach D, Sela B, Miller IR (1982) Compositional aspects of lipid hydration. Chem Phys Lipids 31:381–394

    CAS  PubMed  Google Scholar 

  29. Palestini P, Allietta M, Sonnino S, Tettamanti G, Thompson TE, Tillack TW (1995) Gel phase preference of ganglioside GM1 at low concentration in two-component, two-phase phosphatidylcholine bilayers depends upon the ceramide moiety. Biochim Biophys Acta 1235:221–230

    PubMed  Google Scholar 

  30. Chan KF (1988) Ganglioside-modulated protein phosphorylation. Partial purification and characterization of a ganglioside-inhibited protein kinase in brain. J Biol Chem 263:568–574

    CAS  PubMed  Google Scholar 

  31. Chan KF (1989) Ganglioside-modulated protein phosphorylation in muscle. Activation of phosphorylase b kinase by gangliosides. J Biol Chem 264:18632–18637

    CAS  PubMed  Google Scholar 

  32. Bassi R, Chigorno V, Fiorilli A, Sonnino S, Tettamanti G (1991) Exogenous gangliosides GD1b and GD1b-lactone, stably associated to rat brain P2 subcellular fraction, modulate differently the process of protein phosphorylation. J Neurochem 57:1207–1211

    CAS  PubMed  Google Scholar 

  33. Bremer EG, Hakomori S, Bowen-Pope DF, Raines E, Ross R (1984) Ganglioside-mediated modulation of cell growth, growth factor binding, and receptor phosphorylation. J Biol Chem 259:6818–6825

    CAS  PubMed  Google Scholar 

  34. Goldenring JR, Otis LC, Yu RK, DeLorenzo RJ (1985) Calcium/ganglioside-dependent protein kinase activity in rat brain membrane. J Neurochem 44:1229–1234

    CAS  PubMed  Google Scholar 

  35. Hakomori S, Igarashi Y (1995) Functional role of glycosphingolipids in cell recognition and signaling. J Biochem (Tokyo) 118:1091–1103

    CAS  Google Scholar 

  36. Kim JY, Goldenring JR, DeLorenzo RJ, Yu RK (1986) Gangliosides inhibit phospholipid-sensitive Ca2+-dependent kinase phosphorylation of rat myelin basic proteins. J Neurosci Res 15:159–166

    CAS  PubMed  Google Scholar 

  37. Nakajima J, Tsuji S, Nagai Y (1986) Bioactive gangliosides: analysis of functional structures of the tetrasialoganglioside GQ1b which promotes neurite outgrowth. Biochim Biophys Acta 876:65–71

    CAS  PubMed  Google Scholar 

  38. Tsuji S, Arita M, Nagai Y (1983) GQ1b, a bioactive ganglioside that exhibits novel nerve growth factor (NGF)-like activities in the two neuroblastoma cell lines. J Biochem (Tokyo) 94:303–306

    CAS  Google Scholar 

  39. Tsuji S, Nakajima J, Sasaki T, Nagai Y (1985) Bioactive gangliosides. IV. Ganglioside GQ1b/Ca2+ dependent protein kinase activity exists in the plasma membrane fraction of neuroblastoma cell line, GOTO. J Biochem 97:969–972

    CAS  PubMed  Google Scholar 

  40. Yates AJ, Rampersaud A (1998) Sphingolipids as receptor modulators. An overview. Ann N Y Acad Sci 845:57–71

    CAS  PubMed  Google Scholar 

  41. Valaperta R, Chigorno V, Basso L, Prinetti A, Bresciani R, Preti A, Miyagi T, Sonnino S (2006) Plasma membrane production of ceramide from ganglioside GM3 in human fibroblasts. Faseb J 20:1227–1229

    CAS  PubMed  Google Scholar 

  42. Tettamanti G (2004) Ganglioside/glycosphingolipid turnover: new concepts. Glycoconj J 20:301–317

    CAS  PubMed  Google Scholar 

  43. Kolter T, Proia RL, Sandhoff K (2002) Combinatorial ganglioside biosynthesis. J Biol Chem 277:25859–25862

    CAS  PubMed  Google Scholar 

  44. van Echten G, Sandhoff K (1993) Ganglioside metabolism. Enzymology, topology, and regulation. J Biol Chem 268:5341–5344

    PubMed  Google Scholar 

  45. Pewzner-Jung Y, Ben-Dor S, Futerman AH (2006) When do Lasses (longevity assurance genes) become CerS (ceramide synthases)?: insights into the regulation of ceramide synthesis. J Biol Chem 281:25001–25005

    CAS  PubMed  Google Scholar 

  46. Yamaoka S, Miyaji M, Kitano T, Umehara H, Okazaki T (2004) Expression cloning of a human cDNA restoring sphingomyelin synthesis and cell growth in sphingomyelin synthase-defective lymphoid cells. J Biol Chem 279:18688–18693

    CAS  PubMed  Google Scholar 

  47. Hanada K, Kumagai K, Tomishige N, Yamaji T (2009) CERT-mediated trafficking of ceramide. Biochim Biophys Acta 1791:684–691

    CAS  PubMed  Google Scholar 

  48. Sprong H, Kruithof B, Leijendekker R, Slot JW, van Meer G, van der Sluijs P (1998) UDP-galactose:ceramide galactosyltransferase is a class I integral membrane protein of the endoplasmic reticulum. J Biol Chem 273:25880–25888

    CAS  PubMed  Google Scholar 

  49. Yamaji T, Kumagai K, Tomishige N, Hanada K (2008) Two sphingolipid transfer proteins, CERT and FAPP2: their roles in sphingolipid metabolism. IUBMB Life 60:511–518

    CAS  PubMed  Google Scholar 

  50. Warnock DE, Lutz MS, Blackburn WA, Young WW Jr, Baenziger JU (1994) Transport of newly synthesized glucosylceramide to the plasma membrane by a non-Golgi pathway. Proc Natl Acad Sci USA 91:2708–2712

    CAS  PubMed  Google Scholar 

  51. Riboni L, Bassi R, Prinetti A, Tettamanti G (1996) Salvage of catabolic products in ganglioside metabolism: a study on rat cerebellar granule cells in culture. FEBS Lett 391:336–340

    CAS  PubMed  Google Scholar 

  52. Riboni L, Bassi R, Tettamanti G (1994) Effect of brefeldin A on ganglioside metabolism in cultured neurons: implications for the intracellular traffic of gangliosides. J Biochem (Tokyo) 116:140–146

    CAS  Google Scholar 

  53. Hannun YA (1994) The sphingomyelin cycle and the second messenger function of ceramide. J Biol Chem 269:3125–3128

    CAS  PubMed  Google Scholar 

  54. Goni FM, Alonso A (2002) Sphingomyelinases: enzymology and membrane activity. FEBS Lett 531:38–46

    CAS  PubMed  Google Scholar 

  55. Levade T, Jaffrezou JP (1999) Signalling sphingomyelinases: which, where, how and why? Biochim Biophys Acta 1438:1–17

    CAS  PubMed  Google Scholar 

  56. Huitema K, van den Dikkenberg J, Brouwers JF, Holthuis JC (2004) Identification of a family of animal sphingomyelin synthases. Embo J 23:33–44

    CAS  PubMed  Google Scholar 

  57. Slife CW, Wang E, Hunter R, Wang S, Burgess C, Liotta DC, Merrill AH Jr (1989) Free sphingosine formation from endogenous substrates by a liver plasma membrane system with a divalent cation dependence and a neutral pH optimum. J Biol Chem 264:10371–10377

    CAS  PubMed  Google Scholar 

  58. Tani M, Iida H, Ito M (2003) O-glycosylation of mucin-like domain retains the neutral ceramidase on the plasma membranes as a type II integral membrane protein. J Biol Chem 278:10523–10530

    CAS  PubMed  Google Scholar 

  59. Tani M, Sano T, Ito M, Igarashi Y (2005) Mechanisms of sphingosine and sphingosine 1-phosphate generation in human platelets. J Lipid Res 46:2458–2467

    CAS  PubMed  Google Scholar 

  60. Schengrund CL, Rosenberg A (1970) Intracellular location and properties of bovine brain sialidase. J Biol Chem 245:6196–6200

    CAS  PubMed  Google Scholar 

  61. Tettamanti G, Morgan IG, Gombos G, Vincendon G, Mandel P (1972) Sub-synaptosomal localization of brain particulate neuraminidose. Brain Res 47:515–518

    CAS  PubMed  Google Scholar 

  62. Tettamanti G, Preti A, Lombardo A, Bonali F, Zambotti V (1973) Parallelism of subcellular location of major particulate neuraminidase and gangliosides in rabbit brain cortex. Biochim Biophys Acta 306:466–477

    CAS  PubMed  Google Scholar 

  63. Tettamanti G, Preti A, Lombardo A, Suman T, Zambotti V (1975) Membrane-bound neuraminidase in the brain of different animals: behaviour of the enzyme on endogenous sialo derivatives and rationale for its assay. J Neurochem 25:451–456

    CAS  PubMed  Google Scholar 

  64. Preti A, Fiorilli A, Lombardo A, Caimi L, Tettamanti G (1980) Occurrence of sialyltransferase activity in the synaptosomal membranes prepared from calf brain cortex. J Neurochem 35:281–296

    CAS  PubMed  Google Scholar 

  65. Matsui Y, Lombard D, Massarelli R, Mandel P, Dreyfus H (1986) Surface glycosyltransferase activities during development of neuronal cell cultures. J Neurochem 46:144–150

    CAS  PubMed  Google Scholar 

  66. Durrie R, Rosenberg A (1989) Anabolic sialosylation of gangliosides in situ in rat brain cortical slices. J Lipid Res 30:1259–1266

    CAS  PubMed  Google Scholar 

  67. Durrie R, Saito M, Rosenberg A (1988) Endogenous glycosphingolipid acceptor specificity of sialosyltransferase systems in intact Golgi membranes, synaptosomes, and synaptic plasma membranes from rat brain. Biochemistry 27:3759–3764

    CAS  PubMed  Google Scholar 

  68. Iwamori M, Iwamori Y (2005) Changes in the glycolipid composition and characteristic activation of GM3 synthase in the thymus of mouse after administration of dexamethasone. Glycoconj J 22:119–126

    CAS  PubMed  Google Scholar 

  69. Kopitz J, Muhl C, Ehemann V, Lehmann C, Cantz M (1997) Effects of cell surface ganglioside sialidase inhibition on growth control and differentiation of human neuroblastoma cells. Eur J Cell Biol 73:1–9

    CAS  PubMed  Google Scholar 

  70. Kopitz J, Sinz K, Brossmer R, Cantz M (1997) Partial characterization and enrichment of a membrane-bound sialidase specific for gangliosides from human brain tissue. Eur J Biochem 248:527–534

    CAS  PubMed  Google Scholar 

  71. Riboni L, Prinetti A, Bassi R, Tettamanti G (1991) Cerebellar granule cells in culture exhibit a ganglioside-sialidase presumably linked to the plasma membrane. FEBS Lett 287:42–46

    CAS  PubMed  Google Scholar 

  72. Kopitz J, von Reitzenstein C, Sinz K, Cantz M (1996) Selective ganglioside desialylation in the plasma membrane of human neuroblastoma cells. Glycobiology 6:367–376

    CAS  PubMed  Google Scholar 

  73. Hata K, Wada T, Hasegawa A, Kiso M, Miyagi T (1998) Purification and characterization of a membrane-associated ganglioside sialidase from bovine brain. J Biochem (Tokyo) 123:899–905

    CAS  Google Scholar 

  74. Wada T, Yoshikawa Y, Tokuyama S, Kuwabara M, Akita H, Miyagi T (1999) Cloning, expression, and chromosomal mapping of a human ganglioside sialidase. Biochem Biophys Res Commun 261:21–27

    CAS  PubMed  Google Scholar 

  75. Miyagi T, Wada T, Iwamatsu A, Hata K, Yoshikawa Y, Tokuyama S, Sawada M (1999) Molecular cloning and characterization of a plasma membrane-associated sialidase specific for gangliosides. J Biol Chem 274:5004–5011

    CAS  PubMed  Google Scholar 

  76. Hasegawa T, Yamaguchi K, Wada T, Takeda A, Itoyama Y, Miyagi T (2000) Molecular cloning of mouse ganglioside sialidase and its increased expression in neuro2a cell differentiation. J Biol Chem 275:14778

    CAS  PubMed  Google Scholar 

  77. Papini N, Anastasia L, Tringali C, Croci G, Bresciani R, Yamaguchi K, Miyagi T, Preti A, Prinetti A, Prioni S, Sonnino S, Tettamanti G, Venerando B, Monti E (2004) The plasma membrane-associated sialidase MmNEU3 modifies the ganglioside pattern of adjacent cells supporting its involvement in cell-to-cell interactions. J Biol Chem 279:16989–16995

    CAS  PubMed  Google Scholar 

  78. Aureli M, Masilamani AP, Illuzzi G, Loberto N, Scandroglio F, Prinetti A, Chigorno V, Sonnino S (2009) Activity of plasma membrane beta-galactosidase and beta-glucosidase. FEBS Lett 583:2469–2473

    CAS  PubMed  Google Scholar 

  79. Mencarelli S, Cavalieri C, Magini A, Tancini B, Basso L, Lemansky P, Hasilik A, Li YT, Chigorno V, Orlacchio A, Emiliani C, Sonnino S (2005) Identification of plasma membrane associated mature beta-hexosaminidase A, active towards GM2 ganglioside, in human fibroblasts. FEBS Lett 579:5501–5506

    CAS  PubMed  Google Scholar 

  80. Reddy A, Caler EV, Andrews NW (2001) Plasma membrane repair is mediated by Ca(2+)-regulated exocytosis of lysosomes. Cell 106:157–169

    CAS  PubMed  Google Scholar 

  81. Chigorno V, Giannotta C, Ottico E, Sciannamblo M, Mikulak J, Prinetti A, Sonnino S (2005) Sphingolipid uptake by cultured cells: complex aggregates of cell sphingolipids with serum proteins and lipoproteins are rapidly catabolized. J Biol Chem 280:2668–2675

    CAS  PubMed  Google Scholar 

  82. Deng W, Li R, Ladisch S (2000) Influence of cellular ganglioside depletion on tumor formation. J Natl Cancer Inst 92:912–917

    CAS  PubMed  Google Scholar 

  83. Dolo V, Li R, Dillinger M, Flati S, Manela J, Taylor BJ, Pavan A, Ladisch S (2000) Enrichment and localization of ganglioside G(D3) and caveolin-1 in shed tumor cell membrane vesicles. Biochim Biophys Acta 1486:265–274

    CAS  PubMed  Google Scholar 

  84. Kong Y, Li R, Ladisch S (1998) Natural forms of shed tumor gangliosides. Biochim Biophys Acta 1394:43–56

    CAS  PubMed  Google Scholar 

  85. McKallip R, Li R, Ladisch S (1999) Tumor gangliosides inhibit the tumor-specific immune response. J Immunol 163:3718–3726

    CAS  PubMed  Google Scholar 

  86. Ichikawa S, Nakajo N, Sakiyama H, Hirabayashi Y (1994) A mouse B16 melanoma mutant deficient in glycolipids. Proc Natl Acad Sci USA 91:2703–2707

    CAS  PubMed  Google Scholar 

  87. Kolter T, Magin TM, Sandhoff K (2000) Biomolecule function: no reliable prediction from cell culture. Traffic 1:803–804

    CAS  PubMed  Google Scholar 

  88. Yamashita T, Wada R, Sasaki T, Deng C, Bierfreund U, Sandhoff K, Proia RL (1999) A vital role for glycosphingolipid synthesis during development and differentiation. Proc Natl Acad Sci USA 96:9142–9147

    CAS  PubMed  Google Scholar 

  89. Dreyfus H, Louis JC, Harth S, Mandel P (1980) Gangliosides in cultured neurons. Neuroscience 5:1647–1655

    CAS  PubMed  Google Scholar 

  90. Ngamukote S, Yanagisawa M, Ariga T, Ando S, Yu RK (2007) Developmental changes of glycosphingolipids and expression of glycogenes in mouse brains. J Neurochem 103:2327–2341

    CAS  PubMed  Google Scholar 

  91. Svennerholm L, Bostrom K, Fredman P, Mansson JE, Rosengren B, Rynmark BM (1989) Human brain gangliosides: developmental changes from early fetal stage to advanced age. Biochim Biophys Acta 1005:109–117

    CAS  PubMed  Google Scholar 

  92. Prinetti A, Chigorno V, Prioni S, Loberto N, Marano N, Tettamanti G, Sonnino S (2001) Changes in the lipid turnover, composition, and organization, as sphingolipid-enriched membrane domains, in rat cerebellar granule cells developing in vitro. J Biol Chem 276:21136–21145

    CAS  PubMed  Google Scholar 

  93. Prinetti A, Prioni S, Chigorno V, Karagogeos D, Tettamanti G, Sonnino S (2001) Immunoseparation of sphingolipid-enriched membrane domains enriched in Src family protein tyrosine kinases and in the neuronal adhesion molecule TAG-1 by anti-GD3 ganglioside monoclonal antibody. J Neurochem 78:1162–1167

    CAS  PubMed  Google Scholar 

  94. Prioni S, Loberto N, Prinetti A, Chigorno V, Guzzi F, Maggi R, Parenti M, Sonnino S (2002) Sphingolipid metabolism and caveolin expression in gonadotropin-releasing hormone-expressing GN11 and gonadotropin-releasing hormone-secreting GT1-7 neuronal cells. Neurochem Res 27:831–840

    CAS  PubMed  Google Scholar 

  95. Riboni L, Prinetti A, Pitto M, Tettamanti G (1990) Patterns of endogenous gangliosides and metabolic processing of exogenous gangliosides in cerebellar granule cells during differentiation in culture. Neurochem Res 15:1175–1183

    CAS  PubMed  Google Scholar 

  96. Rosenberg A, Sauer A, Noble EP, Gross HJ, Chang R, Brossmer R (1992) Developmental patterns of ganglioside sialosylation coincident with neuritogenesis in cultured embryonic chick brain neurons. J Biol Chem 267:10607–10612

    CAS  PubMed  Google Scholar 

  97. Yavin Z, Yavin E (1978) Immunofluorescent patterns of dissociated rat embryo cerebral cells during development in surface culture: distinctive reactions with neurite and perikaryon cell membranes. Dev Neurosci 1:31–40

    CAS  PubMed  Google Scholar 

  98. Ohsawa T (1989) Changes of mouse brain gangliosides during aging from young adult until senescence. Mech Ageing Dev 50:169–177

    CAS  PubMed  Google Scholar 

  99. Barrier L, Ingrand S, Damjanac M, Rioux Bilan A, Hugon J, Page G (2007) Genotype-related changes of ganglioside composition in brain regions of transgenic mouse models of Alzheimer’s disease. Neurobiol Aging 28:1863–1872

    CAS  PubMed  Google Scholar 

  100. Svennerholm L, Bostrom K, Helander CG, Jungbjer B (1991) Membrane lipids in the aging human brain. J Neurochem 56:2051–2059

    CAS  PubMed  Google Scholar 

  101. Svennerholm L, Bostrom K, Jungbjer B, Olsson L (1994) Membrane lipids of adult human brain: lipid composition of frontal and temporal lobe in subjects of age 20 to 100 years. J Neurochem 63:1802–1811

    Article  CAS  PubMed  Google Scholar 

  102. Svennerholm L, Gottfries CG (1994) Membrane lipids, selectively diminished in Alzheimer brains, suggest synapse loss as a primary event in early-onset form (type I) and demyelination in late-onset form (type II). J Neurochem 62:1039–1047

    Article  CAS  PubMed  Google Scholar 

  103. Pfeiffer SE, Warrington AE, Bansal R (1993) The oligodendrocyte and its many cellular processes. Trends Cell Biol 3:191–197

    CAS  PubMed  Google Scholar 

  104. Byrne MC, Ledeen RW, Roisen FJ, Yorke G, Sclafani JR (1983) Ganglioside-induced neuritogenesis: verification that gangliosides are the active agents, and comparison of molecular species. J Neurochem 41:1214–1222

    CAS  PubMed  Google Scholar 

  105. Facci L, Leon A, Toffano G, Sonnino S, Ghidoni R, Tettamanti G (1984) Promotion of neuritogenesis in mouse neuroblastoma cells by exogenous gangliosides. Relationship between the effect and the cell association of ganglioside GM1. J Neurochem 42:299–305

    CAS  PubMed  Google Scholar 

  106. Kadowaki H, Evans JE, Rys-Sikora KE, Koff RS (1990) Effect of differentiation and cell density on glycosphingolipid class and molecular species composition of mouse neuroblastoma NB2a cells. J Neurochem 54:2125–2137

    CAS  PubMed  Google Scholar 

  107. Tettamanti G, Riboni L (1994) Gangliosides turnover and neural cells function: a new perspective. Prog Brain Res 101:77–100

    CAS  PubMed  Google Scholar 

  108. Tsuji S, Yamashita T, Tanaka M, Nagai Y (1988) Synthetic sialyl compounds as well as natural gangliosides induce neuritogenesis in a mouse neuroblastoma cell line (Neuro2a). J Neurochem 50:414–423

    CAS  PubMed  Google Scholar 

  109. Ferrari G, Fabris M, Gorio A (1983) Gangliosides enhance neurite outgrowth in PC12 cells. Brain Res 284:215–221

    CAS  PubMed  Google Scholar 

  110. Mutoh T, Hamano T, Yano S, Koga H, Yamamoto H, Furukawa K, Ledeen RW (2002) Stable transfection of GM1 synthase gene into GM1-deficient NG108-15 cells, CR-72 cells, rescues the responsiveness of Trk-neurotrophin receptor to its ligand, NGF. Neurochem Res 27:801–806

    CAS  PubMed  Google Scholar 

  111. Mutoh T, Tokuda A, Miyadai T, Hamaguchi M, Fujiki N (1995) Ganglioside GM1 binds to the Trk protein and regulates receptor function. Proc Natl Acad Sci USA 92:5087–5091

    CAS  PubMed  Google Scholar 

  112. Wu G, Lu ZH, Ledeen RW (1996) GM1 ganglioside modulates prostaglandin E1 stimulated adenylyl cyclase in neuro-2A cells. Glycoconj J 13:235–239

    PubMed  Google Scholar 

  113. Wu GS, Lu ZH, Ledeen RW (1991) Correlation of gangliotetraose gangliosides with neurite forming potential of neuroblastoma cells. Brain Res Dev Brain Res 61:217–228

    CAS  PubMed  Google Scholar 

  114. Prinetti A, Iwabuchi K, Hakomori S (1999) Glycosphingolipid-enriched signaling domain in mouse neuroblastoma Neuro2a cells. Mechanism of ganglioside-dependent neuritogenesis. J Biol Chem 274:20916–20924

    CAS  PubMed  Google Scholar 

  115. Lam RS, Shaw AR, Duszyk M (2004) Membrane cholesterol content modulates activation of BK channels in colonic epithelia. Biochim Biophys Acta 1667:241–248

    CAS  PubMed  Google Scholar 

  116. Naslavsky N, Shmeeda H, Friedlander G, Yanai A, Futerman AH, Barenholz Y, Taraboulos A (1999) Sphingolipid depletion increases formation of the scrapie prion protein in neuroblastoma cells infected with prions. J Biol Chem 274:20763–20771

    CAS  PubMed  Google Scholar 

  117. Kasahara K, Watanabe K, Takeuchi K, Kaneko H, Oohira A, Yamamoto T, Sanai Y (2000) Involvement of gangliosides in glycosylphosphatidylinositol-anchored neuronal cell adhesion molecule TAG-1 signaling in lipid rafts. J Biol Chem 275:34701–34709

    CAS  PubMed  Google Scholar 

  118. Inokuchi JI, Uemura S, Kabayama K, Igarashi Y (2000) Glycosphingolipid deficiency affects functional microdomain formation in Lewis lung carcinoma cells. Glycoconj J 17:239–245

    CAS  PubMed  Google Scholar 

  119. Mitsuzuka K, Handa K, Satoh M, Arai Y, Hakomori S (2005) A specific microdomain (”glycosynapse 3") controls phenotypic conversion and reversion of bladder cancer cells through GM3-mediated interaction of alpha3beta1 integrin with CD9. J Biol Chem 280:35545–35553

    CAS  PubMed  Google Scholar 

  120. Nagafuku M, Kabayama K, Oka D, Kato A, Tani-ichi S, Shimada Y, Ohno-Iwashita Y, Yamasaki S, Saito T, Iwabuchi K, Hamaoka T, Inokuchi J, Kosugi A (2003) Reduction of glycosphingolipid levels in lipid rafts affects the expression state and function of glycosylphosphatidylinositol-anchored proteins but does not impair signal transduction via the T cell receptor. J Biol Chem 278:51920–51927

    CAS  PubMed  Google Scholar 

  121. Sato T, Zakaria AM, Uemura S, Ishii A, Ohno-Iwashita Y, Igarashi Y, Inokuchi J (2005) Role for up-regulated ganglioside biosynthesis and association of Src family kinases with microdomains in retinoic acid-induced differentiation of F9 embryonal carcinoma cells. Glycobiology 15:687–699

    CAS  PubMed  Google Scholar 

  122. Toledo MS, Suzuki E, Handa K, Hakomori S (2004) Cell growth regulation through GM3-enriched microdomain (glycosynapse) in human lung embryonal fibroblast WI38 and its oncogenic transformant VA13. J Biol Chem 279:34655–34664

    CAS  PubMed  Google Scholar 

  123. Yanagisawa M, Nakamura K, Taga T (2005) Glycosphingolipid synthesis inhibitor represses cytokine-induced activation of the Ras-MAPK pathway in embryonic neural precursor cells. J Biochem (Tokyo) 138:285–291

    CAS  Google Scholar 

  124. Chang MC, Wisco D, Ewers H, Norden C, Winckler B (2006) Inhibition of sphingolipid synthesis affects kinetics but not fidelity of L1/NgCAM transport along direct but not transcytotic axonal pathways. Mol Cell Neurosci 31:525–538

    CAS  PubMed  Google Scholar 

  125. Decker L, Baron W, Ffrench-Constant C (2004) Lipid rafts: microenvironments for integrin-growth factor interactions in neural development. Biochem Soc Trans 32:426–430

    CAS  PubMed  Google Scholar 

  126. Kilkus J, Goswami R, Testai FD, Dawson G (2003) Ceramide in rafts (detergent-insoluble fraction) mediates cell death in neurotumor cell lines. J Neurosci Res 72:65–75

    CAS  PubMed  Google Scholar 

  127. Ledesma MD, Simons K, Dotti CG (1998) Neuronal polarity: essential role of protein-lipid complexes in axonal sorting. Proc Natl Acad Sci USA 95:3966–3971

    CAS  PubMed  Google Scholar 

  128. Harel R, Futerman AH (1993) Inhibition of sphingolipid synthesis affects axonal outgrowth in cultured hippocampal neurons. J Biol Chem 268:14476–14481

    CAS  PubMed  Google Scholar 

  129. Schwarz A, Rapaport E, Hirschberg K, Futerman AH (1995) A regulatory role for sphingolipids in neuronal growth. Inhibition of sphingolipid synthesis and degradation have opposite effects on axonal branching. J Biol Chem 270:10990–10998

    CAS  PubMed  Google Scholar 

  130. Usuki S, Hamanoue M, Kohsaka S, Inokuchi J (1996) Induction of ganglioside biosynthesis and neurite outgrowth of primary cultured neurons by L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol. J Neurochem 67:1821–1830

    Article  CAS  PubMed  Google Scholar 

  131. Inokuchi J, Mizutani A, Jimbo M, Usuki S, Yamagishi K, Mochizuki H, Muramoto K, Kobayashi K, Kuroda Y, Iwasaki K, Ohgami Y, Fujiwara M (1997) Up-regulation of ganglioside biosynthesis, functional synapse formation, and memory retention by a synthetic ceramide analog (L-PDMP). Biochem Biophys Res Commun 237:595–600

    CAS  PubMed  Google Scholar 

  132. Rosner H (1998) Significance of gangliosides in neuronal differentiation of neuroblastoma cells and neurite growth in tissue culture. Ann N Y Acad Sci 845:200–214

    CAS  PubMed  Google Scholar 

  133. Mutoh T, Rudkin BB, Koizumi S, Guroff G (1988) Nerve growth factor, a differentiating agent, and epidermal growth factor, a mitogen, increase the activities of different S6 kinases in PC12 cells. J Biol Chem 263:15853–15856

    CAS  PubMed  Google Scholar 

  134. Jennemann R, Sandhoff R, Wang S, Kiss E, Gretz N, Zuliani C, Martin-Villalba A, Jager R, Schorle H, Kenzelmann M, Bonrouhi M, Wiegandt H, Grone HJ (2005) Cell-specific deletion of glucosylceramide synthase in brain leads to severe neural defects after birth. Proc Natl Acad Sci USA 102:12459–12464

    CAS  PubMed  Google Scholar 

  135. Kojima N, Kurosawa N, Nishi T, Hanai N, Tsuji S (1994) Induction of cholinergic differentiation with neurite sprouting by de novo biosynthesis and expression of GD3 and b-series gangliosides in Neuro2a cells. J Biol Chem 269:30451–30456

    CAS  PubMed  Google Scholar 

  136. Kanda T, Ariga T, Yamawaki M, Pal S, Katoh-Semba R, Yu RK (1995) Effect of nerve growth factor and forskolin on glycosyltransferase activities and expression of a globo-series glycosphingolipid in PC12D pheochromocytoma cells. J Neurochem 64:810–817

    CAS  PubMed  Google Scholar 

  137. Boldin SA, Futerman AH (2000) Up-regulation of glucosylceramide synthesis upon stimulation of axonal growth by basic fibroblast growth factor. Evidence for post-translational modification of glucosylceramide synthase. J Biol Chem 275:9905–9909

    CAS  PubMed  Google Scholar 

  138. Yu RK, Macala LJ, Taki T, Weinfield HM, Yu FS (1988) Developmental changes in ganglioside composition and synthesis in embryonic rat brain. J Neurochem 50:1825–1829

    CAS  PubMed  Google Scholar 

  139. Yu RK, Nakatani Y, Yanagisawa M (2009) The role of glycosphingolipid metabolism in the developing brain. J Lipid Res 50(Suppl):S440–445

    PubMed  Google Scholar 

  140. Proshin S, Yamaguchi K, Wada T, Miyagi T (2002) Modulation of neuritogenesis by ganglioside-specific sialidase (Neu 3) in human neuroblastoma NB-1 cells. Neurochem Res 27:841–846

    CAS  PubMed  Google Scholar 

  141. von Reitzenstein C, Kopitz J, Schuhmann V, Cantz M (2001) Differential functional relevance of a plasma membrane ganglioside sialidase in cholinergic and adrenergic neuroblastoma cell lines. Eur J Biochem 268:326–333

    Google Scholar 

  142. Da Silva JS, Hasegawa T, Miyagi T, Dotti CG, Abad-Rodriguez J (2005) Asymmetric membrane ganglioside sialidase activity specifies axonal fate. Nat Neurosci 8:606–615

    PubMed  Google Scholar 

  143. Rodriguez JA, Piddini E, Hasegawa T, Miyagi T, Dotti CG (2001) Plasma membrane ganglioside sialidase regulates axonal growth and regeneration in hippocampal neurons in culture. J Neurosci 21:8387–8395

    CAS  PubMed  Google Scholar 

  144. Kusumi A, Suzuki K (2005) Toward understanding the dynamics of membrane-raft-based molecular interactions. Biochim Biophys Acta 1746:234–251

    CAS  PubMed  Google Scholar 

  145. Prinetti A, Chigorno V, Mauri L, Loberto N, Sonnino S (2007) Modulation of cell functions by glycosphingolipid metabolic remodeling in the plasma membrane. J Neurochem 103(Suppl 1):113–125

    CAS  PubMed  Google Scholar 

  146. Rajendran L, Simons K (2005) Lipid rafts and membrane dynamics. J Cell Sci 118:1099–1102

    CAS  PubMed  Google Scholar 

  147. Tsui-Pierchala BA, Encinas M, Milbrandt J, Johnson EM Jr (2002) Lipid rafts in neuronal signaling and function. Trends Neurosci 25:412–417

    CAS  PubMed  Google Scholar 

  148. Saarma M (2001) GDNF recruits the signaling crew into lipid rafts. Trends Neurosci 24:427–429

    CAS  PubMed  Google Scholar 

  149. Chini B, Parenti M (2004) G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there? J Mol Endocrinol 32:325–338

    CAS  PubMed  Google Scholar 

  150. Kasahara K, Watanabe Y, Yamamoto T, Sanai Y (1997) Association of Src family tyrosine kinase Lyn with ganglioside GD3 in rat brain. Possible regulation of Lyn by glycosphingolipid in caveolae-like domains. J Biol Chem 272:29947–29953

    CAS  PubMed  Google Scholar 

  151. Nagappan G, Lu B (2005) Activity-dependent modulation of the BDNF receptor TrkB: mechanisms and implications. Trends Neurosci 28:464–471

    CAS  PubMed  Google Scholar 

  152. Paratcha G, Ibanez CF (2002) Lipid rafts and the control of neurotrophic factor signaling in the nervous system: variations on a theme. Curr Opin Neurobiol 12:542–549

    CAS  PubMed  Google Scholar 

  153. Prinetti A, Chigorno V, Tettamanti G, Sonnino S (2000) Sphingolipid-enriched membrane domains from rat cerebellar granule cells differentiated in culture. A compositional study. J Biol Chem 275:11658–11665

    CAS  PubMed  Google Scholar 

  154. Prinetti A, Marano N, Prioni S, Chigorno V, Mauri L, Casellato R, Tettamanti G, Sonnino S (2000) Association of Src-family protein tyrosine kinases with sphingolipids in rat cerebellar granule cells differentiated in culture. Glycoconj J 17:223–232

    CAS  PubMed  Google Scholar 

  155. Wu C, Butz S, Ying Y, Anderson RG (1997) Tyrosine kinase receptors concentrated in caveolae-like domains from neuronal plasma membrane. J Biol Chem 272:3554–3559

    CAS  PubMed  Google Scholar 

  156. Decker L, Ffrench-Constant C (2004) Lipid rafts and integrin activation regulate oligodendrocyte survival. J Neurosci 24:3816–3825

    CAS  PubMed  Google Scholar 

  157. Santuccione A, Sytnyk V, Leshchyns’ka I, Schachner M (2005) Prion protein recruits its neuronal receptor NCAM to lipid rafts to activate p59fyn and to enhance neurite outgrowth. J Cell Biol 169:341–354

    CAS  PubMed  Google Scholar 

  158. Tooze SA, Martens GJ, Huttner WB (2001) Secretory granule biogenesis: rafting to the SNARE. Trends Cell Biol 11:116–122

    CAS  PubMed  Google Scholar 

  159. McKerracher L (2002) Ganglioside rafts as MAG receptors that mediate blockade of axon growth. Proc Natl Acad Sci USA 99:7811–7813

    CAS  PubMed  Google Scholar 

  160. Vyas AA, Patel HV, Fromholt SE, Heffer-Lauc M, Vyas KA, Dang J, Schachner M, Schnaar RL (2002) Gangliosides are functional nerve cell ligands for myelin-associated glycoprotein (MAG), an inhibitor of nerve regeneration. Proc Natl Acad Sci USA 99:8412–8417

    CAS  PubMed  Google Scholar 

  161. Boggs JM, Wang H, Gao W, Arvanitis DN, Gong Y, Min W (2004) A glycosynapse in myelin? Glycoconj J 21:97–110

    CAS  PubMed  Google Scholar 

  162. Eckhardt M (2008) The role and metabolism of sulfatide in the nervous system. Mol Neurobiol 37:93–103

    CAS  PubMed  Google Scholar 

  163. Marcus J, Popko B (2002) Galactolipids are molecular determinants of myelin development and axo-glial organization. Biochim Biophys Acta 1573:406–413

    CAS  PubMed  Google Scholar 

  164. Bosio A, Binczek E, Stoffel W (1996) Functional breakdown of the lipid bilayer of the myelin membrane in central and peripheral nervous system by disrupted galactocerebroside synthesis. Proc Natl Acad Sci USA 93:13280–13285

    CAS  PubMed  Google Scholar 

  165. Coetzee T, Fujita N, Dupree J, Shi R, Blight A, Suzuki K, Popko B (1996) Myelination in the absence of galactocerebroside and sulfatide: normal structure with abnormal function and regional instability. Cell 86:209–219

    CAS  PubMed  Google Scholar 

  166. Hirahara Y, Bansal R, Honke K, Ikenaka K, Wada Y (2004) Sulfatide is a negative regulator of oligodendrocyte differentiation: development in sulfatide-null mice. Glia 45:269–277

    PubMed  Google Scholar 

  167. Boggs JM, Gao W, Hirahara Y (2008) Myelin glycosphingolipids, galactosylceramide and sulfatide, participate in carbohydrate-carbohydrate interactions between apposed membranes and may form glycosynapses between oligodendrocyte and/or myelin membranes. Biochim Biophys Acta 1780:445–455

    CAS  PubMed  Google Scholar 

  168. Taylor CM, Coetzee T, Pfeiffer SE (2002) Detergent-insoluble glycosphingolipid/cholesterol microdomains of the myelin membrane. J Neurochem 81:993–1004

    CAS  PubMed  Google Scholar 

  169. Pan B, Fromholt SE, Hess EJ, Crawford TO, Griffin JW, Sheikh KA, Schnaar RL (2005) Myelin-associated glycoprotein and complementary axonal ligands, gangliosides, mediate axon stability in the CNS and PNS: neuropathology and behavioral deficits in single- and double-null mice. Exp Neurol 195:208–217

    CAS  PubMed  Google Scholar 

  170. Schnaar RL, Lopez PH (2009) Myelin-associated glycoprotein and its axonal receptors. J Neurosci Res 87:3267–3276

    CAS  PubMed  Google Scholar 

  171. Trapp BD (1990) Myelin-associated glycoprotein. Location and potential functions. Ann N Y Acad Sci 605:29–43

    CAS  PubMed  Google Scholar 

  172. Schachner M, Bartsch U (2000) Multiple functions of the myelin-associated glycoprotein MAG (siglec-4a) in formation and maintenance of myelin. Glia 29:154–165

    CAS  PubMed  Google Scholar 

  173. Quarles RH (2007) Myelin-associated glycoprotein (MAG): past, present and beyond. J Neurochem 100:1431–1448

    CAS  PubMed  Google Scholar 

  174. Walsh FS, Doherty P (1997) Neural cell adhesion molecules of the immunoglobulin superfamily: role in axon growth and guidance. Annu Rev Cell Dev Biol 13:425–456

    CAS  PubMed  Google Scholar 

  175. Erb M, Flueck B, Kern F, Erne B, Steck AJ, Schaeren-Wiemers N (2006) Unraveling the differential expression of the two isoforms of myelin-associated glycoprotein in a mouse expressing GFP-tagged S-MAG specifically regulated and targeted into the different myelin compartments. Mol Cell Neurosci 31:613–627

    CAS  PubMed  Google Scholar 

  176. Miescher GC, Lutzelschwab R, Erne B, Ferracin F, Huber S, Steck AJ (1997) Reciprocal expression of myelin-associated glycoprotein splice variants in the adult human peripheral and central nervous systems. Brain Res Mol Brain Res 52:299–306

    CAS  PubMed  Google Scholar 

  177. Burger D, Pidoux L, Steck AJ (1993) Identification of the glycosylated sequons of human myelin-associated glycoprotein. Biochem Biophys Res Commun 197:457–464

    CAS  PubMed  Google Scholar 

  178. Voshol H, van Zuylen CW, Orberger G, Vliegenthart JF, Schachner M (1996) Structure of the HNK-1 carbohydrate epitope on bovine peripheral myelin glycoprotein P0. J Biol Chem 271:22957–22960

    CAS  PubMed  Google Scholar 

  179. Crocker PR, Paulson JC, Varki A (2007) Siglecs and their roles in the immune system. Nat Rev Immunol 7:255–266

    CAS  PubMed  Google Scholar 

  180. Kelm S, Pelz A, Schauer R, Filbin MT, Tang S, de Bellard ME, Schnaar RL, Mahoney JA, Hartnell A, Bradfield P et al (1994) Sialoadhesin, myelin-associated glycoprotein and CD22 define a new family of sialic acid-dependent adhesion molecules of the immunoglobulin superfamily. Curr Biol 4:965–972

    CAS  PubMed  Google Scholar 

  181. Collins BE, Yang LJ, Mukhopadhyay G, Filbin MT, Kiso M, Hasegawa A, Schnaar RL (1997) Sialic acid specificity of myelin-associated glycoprotein binding. J Biol Chem 272:1248–1255

    CAS  PubMed  Google Scholar 

  182. Vyas AA, Schnaar RL (2001) Brain gangliosides: functional ligands for myelin stability and the control of nerve regeneration. Biochimie 83:677–682

    CAS  PubMed  Google Scholar 

  183. Yang LJ, Zeller CB, Shaper NL, Kiso M, Hasegawa A, Shapiro RE, Schnaar RL (1996) Gangliosides are neuronal ligands for myelin-associated glycoprotein. Proc Natl Acad Sci USA 93:814–818

    CAS  PubMed  Google Scholar 

  184. Tang S, Shen YJ, DeBellard ME, Mukhopadhyay G, Salzer JL, Crocker PR, Filbin MT (1997) Myelin-associated glycoprotein interacts with neurons via a sialic acid binding site at ARG118 and a distinct neurite inhibition site. J Cell Biol 138:1355–1366

    CAS  PubMed  Google Scholar 

  185. Jaramillo ML, Afar DE, Almazan G, Bell JC (1994) Identification of tyrosine 620 as the major phosphorylation site of myelin-associated glycoprotein and its implication in interacting with signaling molecules. J Biol Chem 269:27240–27245

    CAS  PubMed  Google Scholar 

  186. Kursula P, Tikkanen G, Lehto VP, Nishikimi M, Heape AM (1999) Calcium-dependent interaction between the large myelin-associated glycoprotein and S100beta. J Neurochem 73:1724–1732

    CAS  PubMed  Google Scholar 

  187. Umemori H, Kadowaki Y, Hirosawa K, Yoshida Y, Hironaka K, Okano H, Yamamoto T (1999) Stimulation of myelin basic protein gene transcription by Fyn tyrosine kinase for myelination. J Neurosci 19:1393–1397

    CAS  PubMed  Google Scholar 

  188. Umemori H, Sato S, Yagi T, Aizawa S, Yamamoto T (1994) Initial events of myelination involve Fyn tyrosine kinase signalling. Nature 367:572–576

    CAS  PubMed  Google Scholar 

  189. Fujita N, Kemper A, Dupree J, Nakayasu H, Bartsch U, Schachner M, Maeda N, Suzuki K, Popko B (1998) The cytoplasmic domain of the large myelin-associated glycoprotein isoform is needed for proper CNS but not peripheral nervous system myelination. J Neurosci 18:1970–1978

    CAS  PubMed  Google Scholar 

  190. Kursula P, Lehto VP, Heape AM (2001) The small myelin-associated glycoprotein binds to tubulin and microtubules. Brain Res Mol Brain Res 87:22–30

    CAS  PubMed  Google Scholar 

  191. Simons M, Kramer EM, Thiele C, Stoffel W, Trotter J (2000) Assembly of myelin by association of proteolipid protein with cholesterol- and galactosylceramide-rich membrane domains. J Cell Biol 151:143–154

    CAS  PubMed  Google Scholar 

  192. Marta CB, Taylor CM, Cheng S, Quarles RH, Bansal R, Pfeiffer SE (2004) Myelin associated glycoprotein cross-linking triggers its partitioning into lipid rafts, specific signaling events and cytoskeletal rearrangements in oligodendrocytes. Neuron Glia Biol 1:35–46

    PubMed  Google Scholar 

  193. Keita M, Magy L, Heape A, Richard L, Piaser M, Vallat JM (2002) Immunocytological studies of L-MAG expression regulation during myelination of embryonic brain cell cocultures. Dev Neurosci 24:495–503

    CAS  PubMed  Google Scholar 

  194. Bartsch U (2003) Neural CAMS and their role in the development and organization of myelin sheaths. Front Biosci 8:d477–d490

    PubMed  Google Scholar 

  195. Montag D, Giese KP, Bartsch U, Martini R, Lang Y, Bluthmann H, Karthigasan J, Kirschner DA, Wintergerst ES, Nave KA et al (1994) Mice deficient for the myelin-associated glycoprotein show subtle abnormalities in myelin. Neuron 13:229–246

    CAS  PubMed  Google Scholar 

  196. Li C, Tropak MB, Gerlai R, Clapoff S, Abramow-Newerly W, Trapp B, Peterson A, Roder J (1994) Myelination in the absence of myelin-associated glycoprotein. Nature 369:747–750

    CAS  PubMed  Google Scholar 

  197. Lassmann H, Bartsch U, Montag D, Schachner M (1997) Dying-back oligodendrogliopathy: a late sequel of myelin-associated glycoprotein deficiency. Glia 19:104–110

    CAS  PubMed  Google Scholar 

  198. Fruttiger M, Montag D, Schachner M, Martini R (1995) Crucial role for the myelin-associated glycoprotein in the maintenance of axon-myelin integrity. Eur J NeuroSci 7:511–515

    CAS  PubMed  Google Scholar 

  199. Loers G, Aboul-Enein F, Bartsch U, Lassmann H, Schachner M (2004) Comparison of myelin, axon, lipid, and immunopathology in the central nervous system of differentially myelin-compromised mutant mice: a morphological and biochemical study. Mol Cell Neurosci 27:175–189

    CAS  PubMed  Google Scholar 

  200. Sandvig A, Berry M, Barrett LB, Butt A, Logan A (2004) Myelin-, reactive glia-, and scar-derived CNS axon growth inhibitors: expression, receptor signaling, and correlation with axon regeneration. Glia 46:225–251

    PubMed  Google Scholar 

  201. McKerracher L, David S, Jackson DL, Kottis V, Dunn RJ, Braun PE (1994) Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron 13:805–811

    CAS  PubMed  Google Scholar 

  202. Mukhopadhyay G, Doherty P, Walsh FS, Crocker PR, Filbin MT (1994) A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 13:757–767

    CAS  PubMed  Google Scholar 

  203. Yiu G, He Z (2006) Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 7:617–627

    CAS  PubMed  Google Scholar 

  204. Vinson M, Strijbos PJ, Rowles A, Facci L, Moore SE, Simmons DL, Walsh FS (2001) Myelin-associated glycoprotein interacts with ganglioside GT1b. A mechanism for neurite outgrowth inhibition. J Biol Chem 276:20280–20285

    CAS  PubMed  Google Scholar 

  205. Cao Z, Gao Y, Deng K, Williams G, Doherty P,Walsh FS (2009) Receptors for myelin inhibitors: Structures and therapeutic opportunities. Mol Cell Neurosci

  206. Domeniconi M, Cao Z, Spencer T, Sivasankaran R, Wang K, Nikulina E, Kimura N, Cai H, Deng K, Gao Y, He Z, Filbin M (2002) Myelin-associated glycoprotein interacts with the Nogo66 receptor to inhibit neurite outgrowth. Neuron 35:283–290

    CAS  PubMed  Google Scholar 

  207. Liu BP, Fournier A, GrandPre T, Strittmatter SM (2002) Myelin-associated glycoprotein as a functional ligand for the Nogo-66 receptor. Science 297:1190–1193

    CAS  PubMed  Google Scholar 

  208. Venkatesh K, Chivatakarn O, Lee H, Joshi PS, Kantor DB, Newman BA, Mage R, Rader C, Giger RJ (2005) The Nogo-66 receptor homolog NgR2 is a sialic acid-dependent receptor selective for myelin-associated glycoprotein. J Neurosci 25:808–822

    CAS  PubMed  Google Scholar 

  209. Williams G, Wood A, Williams EJ, Gao Y, Mercado ML, Katz A, Joseph-McCarthy D, Bates B, Ling HP, Aulabaugh A, Zaccardi J, Xie Y, Pangalos MN, Walsh FS, Doherty P (2008) Ganglioside inhibition of neurite outgrowth requires Nogo receptor function: identification of interaction sites and development of novel antagonists. J Biol Chem 283:16641–16652

    CAS  PubMed  Google Scholar 

  210. Cao Z, Qiu J, Domeniconi M, Hou J, Bryson JB, Mellado W, Filbin MT (2007) The inhibition site on myelin-associated glycoprotein is within Ig-domain 5 and is distinct from the sialic acid binding site. J Neurosci 27:9146–9154

    CAS  PubMed  Google Scholar 

  211. Mehta NR, Lopez PH, Vyas AA, Schnaar RL (2007) Gangliosides and Nogo receptors independently mediate myelin-associated glycoprotein inhibition of neurite outgrowth in different nerve cells. J Biol Chem 282:27875–27886

    CAS  PubMed  Google Scholar 

  212. Venkatesh K, Chivatakarn O, Sheu SS, Giger RJ (2007) Molecular dissection of the myelin-associated glycoprotein receptor complex reveals cell type-specific mechanisms for neurite outgrowth inhibition. J Cell Biol 177:393–399

    CAS  PubMed  Google Scholar 

  213. Hooper NM (2005) Roles of proteolysis and lipid rafts in the processing of the amyloid precursor protein and prion protein. Biochem Soc Trans 33:335–338

    CAS  PubMed  Google Scholar 

  214. Kazlauskaite J, Pinheiro TJ (2005) Aggregation and fibrillization of prions in lipid membranes. Biochem Soc Symp 211–222

  215. Futerman AH, Sussman JL, Horowitz M, Silman I, Zimran A (2004) New directions in the treatment of Gaucher disease. Trends Pharmacol Sci 25:147–151

    CAS  PubMed  Google Scholar 

  216. Futerman AH, van Meer G (2004) The cell biology of lysosomal storage disorders. Nat Rev Mol Cell Biol 5:554–565

    CAS  PubMed  Google Scholar 

  217. Kolter T, Sandhoff K (2006) Sphingolipid metabolism diseases. Biochim Biophys Acta 1758:2057–2079

    CAS  PubMed  Google Scholar 

  218. Hein LK, Duplock S, Hopwood JJ, Fuller M (2008) Lipid composition of microdomains is altered in a cell model of Gaucher disease. J Lipid Res 49:1725–1734

    CAS  PubMed  Google Scholar 

  219. Langeveld M, Ghauharali KJ, Sauerwein HP, Ackermans MT, Groener JE, Hollak CE, Aerts JM, Serlie MJ (2008) Type I Gaucher disease, a glycosphingolipid storage disorder, is associated with insulin resistance. J Clin Endocrinol Metab 93:845–851

    CAS  PubMed  Google Scholar 

  220. Kabayama K, Sato T, Saito K, Loberto N, Prinetti A, Sonnino S, Kinjo M, Igarashi Y, Inokuchi J (2007) Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proc Natl Acad Sci USA 104:13678–13683

    CAS  PubMed  Google Scholar 

  221. White AB, Givogri MI, Lopez-Rosas A, Cao H, van Breemen R, Thinakaran G, Bongarzone ER (2009) Psychosine accumulates in membrane microdomains in the brain of Krabbe patients, disrupting the raft architecture. J Neurosci 29:6068–6077

    CAS  PubMed  Google Scholar 

  222. Schuchman EH (2007) The pathogenesis and treatment of acid sphingomyelinase-deficient Niemann–Pick disease. J Inherit Metab Dis 30:654–663

    CAS  PubMed  Google Scholar 

  223. Buccinna B, Piccinini M, Prinetti A, Scandroglio F, Prioni S, Valsecchi M, Votta B, Grifoni S, Lupino E, Ramondetti C, Schuchman EH, Giordana MT, Sonnino S, Rinaudo MT (2009) Alterations of myelin-specific proteins and sphingolipids characterize the brains of acid sphingomyelinase-deficient mice, an animal model of Niemann–Pick disease type A. J Neurochem 109:105–115

    CAS  PubMed  Google Scholar 

  224. Scandroglio F, Venkata JK, Loberto N, Prioni S, Schuchman EH, Chigorno V, Prinetti A, Sonnino S (2008) Lipid content of brain, brain membrane lipid domains, and neurons from acid sphingomyelinase deficient mice. J Neurochem 107:329–338

    CAS  PubMed  Google Scholar 

  225. Ariga T, McDonald MP, Yu RK (2008) Role of ganglioside metabolism in the pathogenesis of Alzheimer’s disease—a review. J Lipid Res 49:1157–1175

    CAS  PubMed  Google Scholar 

  226. Brooksbank BW, McGovern J (1989) Gangliosides in the brain in adult Down’s syndrome and Alzheimer’s disease. Mol Chem Neuropathol 11:143–156

    CAS  PubMed  Google Scholar 

  227. Crino PB, Ullman MD, Vogt BA, Bird ED, Volicer L (1989) Brain gangliosides in dementia of the Alzheimer type. Arch Neurol 46:398–401

    CAS  PubMed  Google Scholar 

  228. Kalanj S, Kracun I, Rosner H, Cosovic C (1991) Regional distribution of brain gangliosides in Alzheimer’s disease. Neurol Croat 40:269–281

    CAS  PubMed  Google Scholar 

  229. Kracun I, Kalanj S, Talan-Hranilovic J, Cosovic C (1992) Cortical distribution of gangliosides in Alzheimer’s disease. Neurochem Int 20:433–438

    CAS  PubMed  Google Scholar 

  230. Kracun I, Rosner H, Drnovsek V, Heffer-Lauc M, Cosovic C, Lauc G (1991) Human brain gangliosides in development, aging and disease. Int J Dev Biol 35:289–295

    CAS  PubMed  Google Scholar 

  231. Cheng H, Xu J, McKeel DW Jr, Han X (2003) Specificity and potential mechanism of sulfatide deficiency in Alzheimer’s disease: an electrospray ionization mass spectrometric study. Cell Mol Biol (Noisy-le-grand) 49:809–818

    CAS  Google Scholar 

  232. Cheng SH, Smith AE (2003) Gene therapy progress and prospects: gene therapy of lysosomal storage disorders. Gene Ther 10:1275–1281

    CAS  PubMed  Google Scholar 

  233. Pitto M, Raimondo F, Zoia C, Brighina L, Ferrarese C, Masserini M (2005) Enhanced GM1 ganglioside catabolism in cultured fibroblasts from Alzheimer patients. Neurobiol Aging 26:833–838

    CAS  PubMed  Google Scholar 

  234. Molander-Melin M, Blennow K, Bogdanovic N, Dellheden B, Mansson JE, Fredman P (2005) Structural membrane alterations in Alzheimer brains found to be associated with regional disease development; increased density of gangliosides GM1 and GM2 and loss of cholesterol in detergent-resistant membrane domains. J Neurochem 92:171–182

    CAS  PubMed  Google Scholar 

  235. Chapman J, Sela BA, Wertman E, Michaelson DM (1988) Antibodies to ganglioside GM1 in patients with Alzheimer’s disease. Neurosci Lett 86:235–240

    CAS  PubMed  Google Scholar 

  236. Katsel P, Li C, Haroutunian V (2007) Gene expression alterations in the sphingolipid metabolism pathways during progression of dementia and Alzheimer’s disease: a shift toward ceramide accumulation at the earliest recognizable stages of Alzheimer’s disease? Neurochem Res 32:845–856

    CAS  PubMed  Google Scholar 

  237. Ashall F, Goate AM (1994) Role of the beta-amyloid precursor protein in Alzheimer’s disease. Trends Biochem Sci 19:42–46

    CAS  PubMed  Google Scholar 

  238. Allinquant B, Hantraye P, Mailleux P, Moya K, Bouillot C, Prochiantz A (1995) Downregulation of amyloid precursor protein inhibits neurite outgrowth in vitro. J Cell Biol 128:919–927

    CAS  PubMed  Google Scholar 

  239. Brouillet E, Trembleau A, Galanaud D, Volovitch M, Bouillot C, Valenza C, Prochiantz A, Allinquant B (1999) The amyloid precursor protein interacts with Go heterotrimeric protein within a cell compartment specialized in signal transduction. J Neurosci 19:1717–1727

    CAS  PubMed  Google Scholar 

  240. Ikezu T, Trapp BD, Song KS, Schlegel A, Lisanti MP, Okamoto T (1998) Caveolae, plasma membrane microdomains for alpha-secretase-mediated processing of the amyloid precursor protein. J Biol Chem 273:10485–10495

    CAS  PubMed  Google Scholar 

  241. Simons M, Keller P, De Strooper B, Beyreuther K, Dotti CG, Simons K (1998) Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proc Natl Acad Sci USA 95:6460–6464

    CAS  PubMed  Google Scholar 

  242. Giambarella U, Yamatsuji T, Okamoto T, Matsui T, Ikezu T, Murayama Y, Levine MA, Katz A, Gautam N, Nishimoto I (1997) G protein betagamma complex-mediated apoptosis by familial Alzheimer’s disease mutant of APP. Embo J 16:4897–4907

    CAS  PubMed  Google Scholar 

  243. Cordy JM, Hooper NM, Turner AJ (2006) The involvement of lipid rafts in Alzheimer’s disease. Mol Membr Biol 23:111–122

    CAS  PubMed  Google Scholar 

  244. Hartman T (2005) Cholesterol and Alzheimer’s disease: statins, cholesterol depletion in APP processing and Abeta generation. Subcell Biochem 38:365–380

    CAS  PubMed  Google Scholar 

  245. Zha Q, Ruan Y, Hartmann T, Beyreuther K, Zhang D (2004) GM1 ganglioside regulates the proteolysis of amyloid precursor protein. Mol Psychiatry 9:946–952

    CAS  PubMed  Google Scholar 

  246. Tamboli IY, Prager K, Barth E, Heneka M, Sandhoff K, Walter J (2005) Inhibition of glycosphingolipid biosynthesis reduces secretion of the beta-amyloid precursor protein and amyloid beta-peptide. J Biol Chem 280:28110–28117

    CAS  PubMed  Google Scholar 

  247. Sawamura N, Ko M, Yu W, Zou K, Hanada K, Suzuki T, Gong JS, Yanagisawa K, Michikawa M (2004) Modulation of amyloid precursor protein cleavage by cellular sphingolipids. J Biol Chem 279:11984–11991

    CAS  PubMed  Google Scholar 

  248. Puglielli L, Ellis BC, Saunders AJ, Kovacs DM (2003) Ceramide stabilizes beta-site amyloid precursor protein-cleaving enzyme 1 and promotes amyloid beta-peptide biogenesis. J Biol Chem 278:19777–19783

    CAS  PubMed  Google Scholar 

  249. Ehehalt R, Keller P, Haass C, Thiele C, Simons K (2003) Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J Cell Biol 160:113–123

    CAS  PubMed  Google Scholar 

  250. Kim SI, Yi JS, Ko YG (2006) Amyloid beta oligomerization is induced by brain lipid rafts. J Cell Biochem 99:878–889

    CAS  PubMed  Google Scholar 

  251. Vetrivel KS, Cheng H, Kim SH, Chen Y, Barnes NY, Parent AT, Sisodia SS, Thinakaran G (2005) Spatial segregation of gamma-secretase and substrates in distinct membrane domains. J Biol Chem 280:25892–25900

    CAS  PubMed  Google Scholar 

  252. Matsuzaki K (2007) Physicochemical interactions of amyloid beta-peptide with lipid bilayers. Biochim Biophys Acta 1768:1935–1942

    CAS  PubMed  Google Scholar 

  253. Terzi E, Holzemann G, Seelig J (1995) Self-association of beta-amyloid peptide (1-40) in solution and binding to lipid membranes. J Mol Biol 252:633–642

    CAS  PubMed  Google Scholar 

  254. Yanagisawa K, Odaka A, Suzuki N, Ihara Y (1995) GM1 ganglioside-bound amyloid beta-protein (A beta): a possible form of preamyloid in Alzheimer’s disease. Nat Med 1:1062–1066

    CAS  PubMed  Google Scholar 

  255. Yanagisawa K, Ihara Y (1998) GM1 ganglioside-bound amyloid beta-protein in Alzheimer’s disease brain. Neurobiol Aging 19:S65–S67

    CAS  PubMed  Google Scholar 

  256. Kakio A, Nishimoto S, Yanagisawa K, Kozutsumi Y, Matsuzaki K (2002) Interactions of amyloid beta-protein with various gangliosides in raft-like membranes: importance of GM1 ganglioside-bound form as an endogenous seed for Alzheimer amyloid. Biochemistry 41:7385–7390

    CAS  PubMed  Google Scholar 

  257. Utsumi M, Yamaguchi Y, Sasakawa H, Yamamoto N, Yanagisawa K, Kato K (2008) Up-and-down topological mode of amyloid beta-peptide lying on hydrophilic/hydrophobic interface of ganglioside clusters. Glycoconj J 26:999–1006

    Google Scholar 

  258. Wakabayashi M, Okada T, Kozutsumi Y, Matsuzaki K (2005) GM1 ganglioside-mediated accumulation of amyloid beta-protein on cell membranes. Biochem Biophys Res Commun 328:1019–1023

    CAS  PubMed  Google Scholar 

  259. Yanagisawa K (2007) Role of gangliosides in Alzheimer’s disease. Biochim Biophys Acta 1768:1943–1951

    CAS  PubMed  Google Scholar 

  260. Hayashi H, Kimura N, Yamaguchi H, Hasegawa K, Yokoseki T, Shibata M, Yamamoto N, Michikawa M, Yoshikawa Y, Terao K, Matsuzaki K, Lemere CA, Selkoe DJ, Naiki H, Yanagisawa K (2004) A seed for Alzheimer amyloid in the brain. J Neurosci 24:4894–4902

    CAS  PubMed  Google Scholar 

  261. Yamamoto N, Matsubara T, Sato T, Yanagisawa K (2008) Age-dependent high-density clustering of GM1 ganglioside at presynaptic neuritic terminals promotes amyloid beta-protein fibrillogenesis. Biochim Biophys Acta 1778:2717–2726

    CAS  PubMed  Google Scholar 

  262. Ariga T, Kobayashi K, Hasegawa A, Kiso M, Ishida H, Miyatake T (2001) Characterization of high-affinity binding between gangliosides and amyloid beta-protein. Arch Biochem Biophys 388:225–230

    CAS  PubMed  Google Scholar 

  263. Choo-Smith LP, Garzon-Rodriguez W, Glabe CG, Surewicz WK (1997) Acceleration of amyloid fibril formation by specific binding of Abeta-(1-40) peptide to ganglioside-containing membrane vesicles. J Biol Chem 272:22987–22990

    CAS  PubMed  Google Scholar 

  264. Valdes-Gonzalez T, Inagawa J, Ido T (2001) Neuropeptides interact with glycolipid receptors: a surface plasmon resonance study. Peptides 22:1099–1106

    CAS  PubMed  Google Scholar 

  265. Kakio A, Nishimoto SI, Yanagisawa K, Kozutsumi Y, Matsuzaki K (2001) Cholesterol-dependent formation of GM1 ganglioside-bound amyloid beta-protein, an endogenous seed for Alzheimer amyloid. J Biol Chem 276:24985–24990

    CAS  PubMed  Google Scholar 

  266. Mizuno T, Nakata M, Naiki H, Michikawa M, Wang R, Haass C, Yanagisawa K (1999) Cholesterol-dependent generation of a seeding amyloid beta-protein in cell culture. J Biol Chem 274:15110–15114

    CAS  PubMed  Google Scholar 

  267. Kakio A, Nishimoto S, Kozutsumi Y, Matsuzaki K (2003) Formation of a membrane-active form of amyloid beta-protein in raft-like model membranes. Biochem Biophys Res Commun 303:514–518

    CAS  PubMed  Google Scholar 

  268. Yamamoto N, Hasegawa K, Matsuzaki K, Naiki H, Yanagisawa K (2004) Environment- and mutation-dependent aggregation behavior of Alzheimer amyloid beta-protein. J Neurochem 90:62–69

    CAS  PubMed  Google Scholar 

  269. Yamamoto N, Hirabayashi Y, Amari M, Yamaguchi H, Romanov G, Van Nostrand WE, Yanagisawa K (2005) Assembly of hereditary amyloid beta-protein variants in the presence of favorable gangliosides. FEBS Lett 579:2185–2190

    CAS  PubMed  Google Scholar 

  270. Yamamoto N, Matsuzaki K, Yanagisawa K (2005) Cross-seeding of wild-type and hereditary variant-type amyloid beta-proteins in the presence of gangliosides. J Neurochem 95:1167–1176

    CAS  PubMed  Google Scholar 

  271. Yamamoto N, Yokoseki T, Shibata M, Yamaguchi H, Yanagisawa K (2005) Suppression of Abeta deposition in brain by peripheral administration of Fab fragments of anti-seed antibody. Biochem Biophys Res Commun 335:45–47

    CAS  PubMed  Google Scholar 

  272. Oikawa N, Yamaguchi H, Ogino K, Taki T, Yuyama K, Yamamoto N, Shin RW, Furukawa K, Yanagisawa K (2009) Gangliosides determine the amyloid pathology of Alzheimer’s disease. NeuroReport 20:1043–1046

    CAS  PubMed  Google Scholar 

  273. Kimura N, Yanagisawa K (2007) Endosomal accumulation of GM1 ganglioside-bound amyloid beta-protein in neurons of aged monkey brains. NeuroReport 18:1669–1673

    CAS  PubMed  Google Scholar 

  274. Yamamoto N, Matsubara E, Maeda S, Minagawa H, Takashima A, Maruyama W, Michikawa M, Yanagisawa K (2007) A ganglioside-induced toxic soluble Abeta assembly. Its enhanced formation from Abeta bearing the Arctic mutation. J Biol Chem 282:2646–2655

    CAS  PubMed  Google Scholar 

  275. Dunbar GL, Sandstrom MI, Rossignol J, Lescaudron L (2006) Neurotrophic enhancers as therapy for behavioral deficits in rodent models of Huntington’s disease: use of gangliosides, substituted pyrimidines, and mesenchymal stem cells. Behav Cogn Neurosci Rev 5:63–79

    PubMed  Google Scholar 

  276. Goebel HH, Heipertz R, Scholz W, Iqbal K, Tellez-Nagel I (1978) Juvenile Huntington chorea: clinical, ultrastructural, and biochemical studies. Neurology 28:23–31

    CAS  PubMed  Google Scholar 

  277. Heipertz R, Pilz H, Scholz W (1977) The fatty acid composition of sphingomyelin from adult human cerebral white matter and changes in childhood, senium and unspecific brain damage. J Neurol 216:57–65

    CAS  PubMed  Google Scholar 

  278. Wherrett JR, Brown BL (1969) Erythrocyte glycolipids in Huntington’s chorea. Neurology 19:489–493

    CAS  PubMed  Google Scholar 

  279. Higatsberger MR, Sperk G, Bernheimer H, Shannak KS, Hornykiewicz O (1981) Striatal ganglioside levels in the rat following kainic acid lesions: comparison with Huntington’s disease. Exp Brain Res 44:93–96

    CAS  PubMed  Google Scholar 

  280. Desplats PA, Denny CA, Kass KE, Gilmartin T, Head SR, Sutcliffe JG, Seyfried TN, Thomas EA (2007) Glycolipid and ganglioside metabolism imbalances in Huntington’s disease. Neurobiol Dis 27:265–277

    CAS  PubMed  Google Scholar 

  281. Herrero MT, Kastner A, Perez-Otano I, Hirsch EC, Luquin MR, Javoy-Agid F, Del Rio J, Obeso JA, Agid Y (1993) Gangliosides and Parkinsonism. Neurology 43:2132–2134

    CAS  PubMed  Google Scholar 

  282. Schneider JS, Roeltgen DP, Mancall EL, Chapas-Crilly J, Rothblat DS, Tatarian GT (1998) Parkinson’s disease: improved function with GM1 ganglioside treatment in a randomized placebo-controlled study. Neurology 50:1630–1636

    CAS  PubMed  Google Scholar 

  283. Goettl VM, Wemlinger TA, Duchemin AM, Neff NH, Hadjiconstantinou M (1999) GM1 ganglioside restores dopaminergic neurochemical and morphological markers in aged rats. Neuroscience 92:991–1000

    CAS  PubMed  Google Scholar 

  284. Tayebi N, Walker J, Stubblefield B, Orvisky E, LaMarca ME, Wong K, Rosenbaum H, Schiffmann R, Bembi B, Sidransky E (2003) Gaucher disease with parkinsonian manifestations: does glucocerebrosidase deficiency contribute to a vulnerability to parkinsonism? Mol Genet Metab 79:104–109

    CAS  PubMed  Google Scholar 

  285. Zappia M, Crescibene L, Bosco D, Arabia G, Nicoletti G, Bagala A, Bastone L, Napoli ID, Caracciolo M, Bonavita S, Di Costanzo A, Gambardella A, Quattrone A (2002) Anti-GM1 ganglioside antibodies in Parkinson’s disease. Acta Neurol Scand 106:54–57

    CAS  PubMed  Google Scholar 

  286. Martinez Z, Zhu M, Han S, Fink AL (2007) GM1 specifically interacts with alpha-synuclein and inhibits fibrillation. Biochemistry 46:1868–1877

    CAS  PubMed  Google Scholar 

  287. Park JY, Kim KS, Lee SB, Ryu JS, Chung KC, Choo YK, Jou I, Kim J, Park SM (2009) On the mechanism of internalization of alpha-synuclein into microglia: roles of ganglioside GM1 and lipid raft. J Neurochem 110:400–411

    CAS  PubMed  Google Scholar 

  288. Ryu JK, Shin WH, Kim J, Joe EH, Lee YB, Cho KG, Oh YJ, Kim SU, Jin BK (2002) Trisialoganglioside GT1b induces in vivo degeneration of nigral dopaminergic neurons: role of microglia. Glia 38:15–23

    PubMed  Google Scholar 

  289. Prusiner SB (1997) Prion diseases and the BSE crisis. Science 278:245–251

    CAS  PubMed  Google Scholar 

  290. Klein TR, Kirsch D, Kaufmann R, Riesner D (1998) Prion rods contain small amounts of two host sphingolipids as revealed by thin-layer chromatography and mass spectrometry. Biol Chem 379:655–666

    CAS  PubMed  Google Scholar 

  291. Critchley P, Kazlauskaite J, Eason R, Pinheiro TJ (2004) Binding of prion proteins to lipid membranes. Biochem Biophys Res Commun 313:559–567

    CAS  PubMed  Google Scholar 

  292. Sanghera N, Pinheiro TJ (2002) Binding of prion protein to lipid membranes and implications for prion conversion. J Mol Biol 315:1241–1256

    CAS  PubMed  Google Scholar 

  293. Zhong J, Yang C, Zheng W, Huang L, Hong Y, Wang L, Sha Y (2009) Effects of lipid composition and phase on the membrane interaction of the prion peptide 106-126 amide. Biophys J 96:4610–4621

    CAS  PubMed  Google Scholar 

  294. Fantini J, Garmy N, Mahfoud R, Yahi N (2002) Lipid rafts: structure, function and role in HIV, Alzheimer’s and prion diseases. Expert Rev Mol Med 4:1–22

    PubMed  Google Scholar 

  295. Kaneko K, Vey M, Scott M, Pilkuhn S, Cohen FE, Prusiner SB (1997) COOH-terminal sequence of the cellular prion protein directs subcellular trafficking and controls conversion into the scrapie isoform. Proc Natl Acad Sci USA 94:2333–2338

    CAS  PubMed  Google Scholar 

  296. Stahl N, Baldwin MA, Hecker R, Pan KM, Burlingame AL, Prusiner SB (1992) Glycosylinositol phospholipid anchors of the scrapie and cellular prion proteins contain sialic acid. Biochemistry 31:5043–5053

    CAS  PubMed  Google Scholar 

  297. Taraboulos A, Scott M, Semenov A, Avrahami D, Laszlo L, Prusiner SB (1995) Cholesterol depletion and modification of COOH-terminal targeting sequence of the prion protein inhibit formation of the scrapie isoform. J Cell Biol 129:121–132

    CAS  PubMed  Google Scholar 

  298. Baron GS, Wehrly K, Dorward DW, Chesebro B, Caughey B (2002) Conversion of raft associated prion protein to the protease-resistant state requires insertion of PrP-res (PrP(Sc)) into contiguous membranes. Embo J 21:1031–1040

    CAS  PubMed  Google Scholar 

  299. Keshet GI, Bar-Peled O, Yaffe D, Nudel U, Gabizon R (2000) The cellular prion protein colocalizes with the dystroglycan complex in the brain. J Neurochem 75:1889–1897

    CAS  PubMed  Google Scholar 

  300. Loberto N, Prioni S, Bettiga A, Chigorno V, Prinetti A, Sonnino S (2005) The membrane environment of endogenous cellular prion protein in primary rat cerebellar neurons. J Neurochem 95:771–783

    CAS  PubMed  Google Scholar 

  301. Rivaroli A, Prioni S, Loberto N, Bettiga A, Chigorno V, Prinetti A, Sonnino S (2007) Reorganization of prion protein membrane environment during low potassium-induced apoptosis in primary rat cerebellar neurons. J Neurochem 103:1954–1967

    CAS  PubMed  Google Scholar 

  302. Ando S, Toyoda Y, Nagai Y, Ikuta F (1984) Alterations in brain gangliosides and other lipids of patients with Creutzfeldt–Jakob disease and subacute sclerosing panencephalitis (SSPE). Jpn J Exp Med 54:229–234

    CAS  PubMed  Google Scholar 

  303. Ohtani Y, Tamai Y, Ohnuki Y, Miura S (1996) Ganglioside alterations in the central and peripheral nervous systems of patients with Creutzfeldt–Jakob disease. Neurodegeneration 5:331–338

    CAS  PubMed  Google Scholar 

  304. Tamai Y, Ohtani Y, Miura S, Narita Y, Iwata T, Kaiya H, Namba M (1979) Creutzfeldt-Jakob disease—alteration in ganglioside sphingosine in the brain of a patient. Neurosci Lett 11:81–86

    CAS  PubMed  Google Scholar 

  305. Yu RK, Ledeen RW, Gajdusek DC, Gibbs CJ (1974) Ganglioside changes in slow virus diseases: analyses of chimpanzee brains infected with kuru and Creutzfeldt–Jakob agents. Brain Res 70:103–112

    CAS  PubMed  Google Scholar 

  306. Yu RK, Manuelidis EE (1978) Ganglioside alterations in guinea pig brains at end stages of experimental Creutzfeldt–Jakob disease. J Neurol Sci 35:15–23

    CAS  PubMed  Google Scholar 

  307. Di Martino A, Safar J, Callegaro L, Salem N Jr, Gibbs CJ Jr (1993) Ganglioside composition changes in spongiform encephalopathies: analyses of 263K scrapie-infected hamster brains. Neurochem Res 18:907–913

    PubMed  Google Scholar 

  308. Simpson MA, Cross H, Proukakis C, Priestman DA, Neville DC, Reinkensmeier G, Wang H, Wiznitzer M, Gurtz K, Verganelaki A, Pryde A, Patton MA, Dwek RA, Butters TD, Platt FM, Crosby AH (2004) Infantile-onset symptomatic epilepsy syndrome caused by a homozygous loss-of-function mutation of GM3 synthase. Nat Genet 36:1225–1229

    CAS  PubMed  Google Scholar 

  309. Yamashita T, Hashiramoto A, Haluzik M, Mizukami H, Beck S, Norton A, Kono M, Tsuji S, Daniotti JL, Werth N, Sandhoff R, Sandhoff K, Proia RL (2003) Enhanced insulin sensitivity in mice lacking ganglioside GM3. Proc Natl Acad Sci USA 100:3445–3449

    CAS  PubMed  Google Scholar 

  310. Izumi T, Ogawa T, Koizumi H, Fukuyama Y (1993) Low levels of CSF gangliotetraose-series gangliosides in West syndrome: implication of brain maturation disturbance. Pediatr Neurol 9:293–296

    CAS  PubMed  Google Scholar 

  311. Yu RK, Glaser GH (1975) Possible role of gangliosides in epilepsy: effects of epileptic seizures on cerebral gangliosides. Trans Am Neurol Assoc 100:261–263

    CAS  PubMed  Google Scholar 

  312. Yu RK, Holley JA, Macala LJ, Spencer DD (1987) Ganglioside changes associated with temporal lobe epilepsy in the human hippocampus. Yale J Biol Med 60:107–117

    CAS  PubMed  Google Scholar 

  313. Prinetti A, Rocchetta F, Costantino E, Frattini A, Caldana E, Rucci F, Bettiga A, Poliani PL, Chigorno V, Sonnino S (2009) Brain lipid composition in grey-lethal mutant mouse characterized by severe malignant osteopetrosis. Glycoconj J 26:623–633

    CAS  PubMed  Google Scholar 

  314. Mocchetti I (2005) Exogenous gangliosides, neuronal plasticity and repair, and the neurotrophins. Cell Mol Life Sci 62:2283–2294

    CAS  PubMed  Google Scholar 

  315. Schneider JS, Bradbury KA, Anada Y, Inokuchi J, Anderson DW (2006) The synthetic ceramide analog L-PDMP partially protects striatal dopamine levels but does not promote dopamine neuron survival in murine models of parkinsonism. Brain Res 1099:199–205

    CAS  PubMed  Google Scholar 

  316. Inokuchi J (2009) Neurotrophic and neuroprotective actions of an enhancer of ganglioside biosynthesis. Int Rev Neurobiol 85:319–336

    CAS  PubMed  Google Scholar 

  317. D’Azzo A (2003) Gene transfer strategies for correction of lysosomal storage disorders. Acta Haematol 110:71–85

    PubMed  Google Scholar 

  318. Arfi A, Bourgoin C, Basso L, Emiliani C, Tancini B, Chigorno V, Li YT, Orlacchio A, Poenaru L, Sonnino S, Caillaud C (2005) Bicistronic lentiviral vector corrects beta-hexosaminidase deficiency in transduced and cross-corrected human Sandhoff fibroblasts. Neurobiol Dis 20:583–593

    CAS  PubMed  Google Scholar 

  319. Villani GR, Follenzi A, Vanacore B, Di Domenico C, Naldini L, Di Natale P (2002) Correction of mucopolysaccharidosis type IIIb fibroblasts by lentiviral vector-mediated gene transfer. Biochem J 364:747–753

    CAS  PubMed  Google Scholar 

  320. Desnick RJ, Schuchman EH (2002) Enzyme replacement and enhancement therapies: lessons from lysosomal disorders. Nat Rev Genet 3:954–966

    CAS  PubMed  Google Scholar 

  321. Bengtsson BA, Johansson JO, Hollak C, Linthorst G, FeldtRasmussen U (2003) Enzyme replacement in Anderson-Fabry disease. Lancet 361:352

    PubMed  Google Scholar 

  322. Grabowski GA, Hopkin RJ (2003) Enzyme therapy for lysosomal storage disease: principles, practice, and prospects. Annu Rev Genomics Hum Genet 4:403–436

    CAS  PubMed  Google Scholar 

  323. Dhami R, Schuchman EH (2004) Mannose 6-phosphate receptor-mediated uptake is defective in acid sphingomyelinase-deficient macrophages: implications for Niemann–Pick disease enzyme replacement therapy. J Biol Chem 279:1526–1532

    CAS  PubMed  Google Scholar 

  324. Sawkar AR, Cheng WC, Beutler E, Wong CH, Balch WE, Kelly JW (2002) Chemical chaperones increase the cellular activity of N370S beta-glucosidase: a therapeutic strategy for Gaucher disease. Proc Natl Acad Sci USA 99:15428–15433

    CAS  PubMed  Google Scholar 

  325. Lachmann RH (2003) Miglustat. Oxford glycosciences/actelion. Curr Opin Investig Drugs 4:472–479

    CAS  PubMed  Google Scholar 

  326. Cox T, Lachmann R, Hollak C, Aerts J, van Weely S, Hrebicek M, Platt F, Butters T, Dwek R, Moyses C, Gow I, Elstein D, Zimran A (2000) Novel oral treatment of Gaucher’s disease with N-butyldeoxynojirimycin (OGT 918) to decrease substrate biosynthesis. Lancet 355:1481–1485

    CAS  PubMed  Google Scholar 

  327. Weinreb NJ, Barranger JA, Charrow J, Grabowski GA, Mankin HJ, Mistry P (2005) Guidance on the use of miglustat for treating patients with type 1 Gaucher disease. Am J Hematol 80:223–229

    CAS  PubMed  Google Scholar 

  328. Patterson MC, Vecchio D, Prady H, Abel L, Wraith JE (2007) Miglustat for treatment of Niemann–Pick C disease: a randomised controlled study. Lancet Neurol 6:765–772

    CAS  PubMed  Google Scholar 

  329. Platt FM, Neises GR, Reinkensmeier G, Townsend MJ, Perry VH, Proia RL, Winchester B, Dwek RA, Butters TD (1997) Prevention of lysosomal storage in Tay-Sachs mice treated with N-butyldeoxynojirimycin. Science 276:428–431

    CAS  PubMed  Google Scholar 

  330. Fortin DL, Troyer MD, Nakamura K, Kubo S, Anthony MD, Edwards RH (2004) Lipid rafts mediate the synaptic localization of alpha-synuclein. J Neurosci 24(30):6715–6723

    Google Scholar 

Download references

Acknowledgements

This paper has been supported by University of Milan Grant 2006 to S. S., Fondazione Cariplo Grant 2006 to S. S., and by Mizutani Foundation for Glycosciences Grant 2007 to A. P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Prinetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piccinini, M., Scandroglio, F., Prioni, S. et al. Deregulated Sphingolipid Metabolism and Membrane Organization in Neurodegenerative Disorders. Mol Neurobiol 41, 314–340 (2010). https://doi.org/10.1007/s12035-009-8096-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-009-8096-6

Keywords

Navigation