Skip to main content
Log in

The pathogenesis and treatment of acid sphingomyelinase-deficient Niemann–Pick disease

  • Review
  • Published:
Journal of Inherited Metabolic Disease

Summary

Patients with types A and B Niemann–Pick disease (NPD) have an inherited deficiency of acid sphingomyelinase (ASM) activity. The clinical spectrum of this disorder ranges from the infantile, neurological form that results in death by 3 years of age (type A NPD) to the non-neurological form (type B NPD) that is compatible with survival into adulthood. Intermediate cases also have been reported, and the disease is best thought of as a single entity with a spectrum of phenotypes. ASM deficiency is panethnic, but appears to be more frequent in individuals of Middle Eastern and North African descent. Current estimates of the disease incidence range from ~0.5 to 1 per 100 000 births. However, these approximations likely under estimate the true frequency of the disorder since they are based solely on cases referred to biochemical testing laboratories for enzymatic confirmation. The gene encoding ASM (SMPD1) has been studied extensively; it resides within an imprinted region on chromosome 11, and is preferentially expressed from the maternal chromosome. Over 100 SMPD1 mutations causing ASM-deficient NPD have been described, and some useful genotype–phenotype correlations have been made. Based on these findings, DNA-based carrier screening has been implemented in the Ashkenazi Jewish community. ASM ‘knockout’ mouse models also have been constructed and used to investigate disease pathogenesis and treatment. Based on these studies in the mouse model, an enzyme replacement therapy clinical trial has recently begun in adult patients with non-neurological ASM-deficient NPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbon CM, Ziegler RJ, Li C, et al (2005) AAV8-mediated hepatic expression of acid sphingomyelinase corrects the metabolic defect in the visceral organs of a mouse model of Niemann–Pick disease. Mol Ther 12: 431–440.

    Article  CAS  PubMed  Google Scholar 

  • Brady RO, Kanfer JN, Mock MB, et al (1966) The metabolism of sphingomyelin. II. Evidence of an enzymatic deficiency in Niemann–Pick disease. Proc Natl Acad Sci USA 55: 366–369.

    Article  CAS  PubMed  Google Scholar 

  • Cerneca F, Andolina M, Simeone R, Boscolo R, Ciana G, Bembi B (1997) Treatment of patients with Niemann–Pick type is using repeated amniotic epithelial cells implantation: correction of aggregation and coagulation abnormalities. Clin Pediatr 36: 141–146.

    Article  CAS  Google Scholar 

  • Cox TM (2005) Substrate reduction therapy for lysosomal storage diseases. Acta Paediatr 94: 69–75.

    Article  CAS  Google Scholar 

  • Crocker AC (1961) The cerebral defect in Tay–Sachs disease and Niemann–Pick disease. J Neurochem 17: 69.

    Article  Google Scholar 

  • Daloze P, Delvin EE, Glorieux FH, et al (1977) Replacement therapy for inherited enzyme deficiency: liver orthotopic transplantation in Niemann–Pick disease type A. Am J Med Genet 1: 229–239.

    Article  CAS  PubMed  Google Scholar 

  • Darroch PI, Dagan A, Granot T, He X, Gatt S, Schuchman EH (2005) A lipid analogue that inhibits sphingomyelin hydrolysis and synthesis, increases ceramide, and leads to cell death. J Lipid Res 46: 2315–2324.

    Article  CAS  PubMed  Google Scholar 

  • da Veiga Pereira L, Desnick RJ, Adler DA, et al (1991) Regional assignment of the human acid sphingomyelinase gene (SMPD1) by PCR analysis of somatic cell hybrids and in situ hybridization to 11p15.1–p15.4. Genomics 9: 229–234.

    Article  PubMed  Google Scholar 

  • Dhami R, Schuchman EH (2004) Mannose-6-phosphate receptor-mediated uptake is defective in acid sphingomyelinase-deficient macrophages: implications for Niemann–Pick disease enzyme replacement therapy. J Biol Chem 279: 1526–1532.

    Article  CAS  PubMed  Google Scholar 

  • Dhami R, He X, Gordon RE, Schuchman EH (2001) Analysis of the lung pathology and alveolar macrophage function in the acid sphingomyelinase-deficient mouse model of Niemann–Pick disease. Lab Invest 81: 987–999.

    CAS  PubMed  Google Scholar 

  • Dhami R, He X, Schuchman EH (2005) Gene expression analysis in acid sphingomyelinase deficient mice. Novel insights into disease pathogenesis and identification of potential biomarkers to monitor Niemann–Pick disease treatment. Mol Ther 13: 556–563.

    Article  PubMed  Google Scholar 

  • Dodge JC, Clarke J, Song A, et al (2005) Gene transfer of human acid sphingomyelinase corrects neuropathology and motor deficits in a mouse model of Niemann–Pick type A disease. Proc Natl Acad Sci USA 102: 17822–17827.

    Article  CAS  PubMed  Google Scholar 

  • Fan JQ (2003) A contradictory treatment for lysosomal storage disorders: inhibitors enhance mutant enzyme activity. Trends Pharmacol Sci 24: 355–360.

    Article  CAS  PubMed  Google Scholar 

  • Futerman AH, Hannun YA (2004) The complex life of simple sphingolipids. EMBO Rep 5: 777–782.

    Article  CAS  PubMed  Google Scholar 

  • Gulbins E, Kolesnick R (2002) Acid sphingomyelinase-derived ceramide signaling in apoptosis. Subcell Biochem 36: 229–244.

    Article  CAS  PubMed  Google Scholar 

  • Gulbins E, Kolesnick R (2003) Raft ceramide in molecular medicine. Oncogene 22: 7070–7077.

    Article  CAS  PubMed  Google Scholar 

  • Gulbins E, Dreschers S, Wilker B, Grassme H (2004) Ceramide, membrane rafts and infections. J Mol Med 82: 357–363.

    Article  CAS  PubMed  Google Scholar 

  • He X, Miranda SR, Xiong X, et al (1999) Characterization of human acid sphingomyelinase purified from the media of overexpressing Chinese hamster ovary cells. Biochim Biophys Acta 1432: 251–264.

    CAS  PubMed  Google Scholar 

  • He X, Okino N, Dhami R, et al (2003) Purification and characterization of recombinant, human acid ceramidase. Catalytic reactions and interactions with acid sphingomyelinase. J Biol Chem 278: 32979–32986.

    Google Scholar 

  • Horinuchi K, Erlich S, Perl DP, et al (1995) Acid sphingomyelinase deficient mice: a model of types A and B Niemann–Pick disease. Nat Genet 10: 288–293.

    Article  Google Scholar 

  • Huber JD, Campos CR, Mark KS, Davis TP (2005) Alterations in blood–brain barrier ICAM-1 expression and brain microglial activation after λ-carregeenan-induced inflammatory pain. Am J Physiol Heart Circ Physiol 290: H732.

    Article  PubMed  Google Scholar 

  • Jin HK, Schuchman EH (2003) Combined bone marrow and intracerebral mesenchymal stem cell transplantation leads to synergistic visceral and neurological improvements in Niemann–Pick disease mice. Mol Ther 26: 775–785.

    Google Scholar 

  • Kamoshita S, Aron AM, Suzuki K, Suzuki K (1969) Infantile Niemann–Pick disease. A chemical study with isolation and characterization of membranous cytoplasmic bodies and myelin. Am J Dis Child 117: 379–394.

    CAS  PubMed  Google Scholar 

  • Kolesnick RN, Fuks Z (2003) Radiation and ceramide-induced apoptosis. Oncogene 22: 5897–5906.

    Article  CAS  PubMed  Google Scholar 

  • Kolesnick RN, Kronke M (1998) Regulation of ceramide and apoptosis. Annu Rev Physiol 60: 643–645.

    Article  CAS  PubMed  Google Scholar 

  • Kolzer M, Arenz C, Ferlinz K, et al (2003) Phosphatidylinositol-3,5-bisphosphate is a potent and selective inhibitor of acid sphingomyelinase. Biol Chem 384: 1293–1298.

    Article  PubMed  Google Scholar 

  • Kolzer M, Ferlinz K, Bartelsen O, Hoops SL, Lang F, Sandhoff K (2004) Functional characterization of the postulated intramoleculr sphingolipid activator protein domain of human acid sphingomyelinase. Biol Chem 385: 1193–1195.

    Article  PubMed  Google Scholar 

  • Lancaster JM, Dressman HK, Whitaker RS, et al (2004) Gene expression patterns that characterize advanced stage serous ovarian cancers. J Soc Gynecol Investig 11: 51–59.

    Article  CAS  PubMed  Google Scholar 

  • Lee CY, Krimbou L, Vincent J, et al (2003) Compound heterozygosity at the sphingomyelin phosphodiesterase-1 (SMPD1) gene is associated with low HDL cholesterol. Hum Genet 112: 552–562.

    PubMed  Google Scholar 

  • Levran O, Desnick RJ, Schuchman EH (1991a) Niemann–Pick disease: a frequent missense mutation in the acid sphingomyelinase gene of Ashkenazi Jewish type A and B patients. Proc Natl Acad Sci USA 88: 3748–3752.

    Article  CAS  Google Scholar 

  • Levran O, Desnick RJ, Schuchman EH (1991b) Niemann–Pick type B disease: identification of a single codon deletion in the acid sphingomyelinase gene and genotype/phenotype correlations in type A and B patients. J Clin Invest 88: 806–810.

    Article  CAS  Google Scholar 

  • Levran O, Desnick RJ, Schuchman EH (1992) A common missense mutation (L302P) in Ashkenazi Jewish type A Niemann–Pick disease patients. Transient expression studies demonstrate the causative nature of the two common Ashkenazi Jewish Niemann–Pick disease mutations. Blood 80: 2081–2087.

    CAS  PubMed  Google Scholar 

  • Levran O, Desnick RJ, Schuchman EH (1993) Type A Niemann–Pick disease: a frame-shift mutation in the acid sphingomyelinase gene (fsP330) occurs in about 8% of Ashkenazi Jewish alleles. Hum Mut 2: 317–319.

    Article  CAS  PubMed  Google Scholar 

  • Li CM, Park JH, He X, et al (1999) The human acid ceramidase gene: structure, chromosomal location, mutation analysis, and expression. Genomics 62: 223–231.

    Article  CAS  PubMed  Google Scholar 

  • Li CM, Park JH, Simonaro CM, et al (2002) Disruption of the mouse acid ceramidase gene leads to early embryonic lethality in homozygotes and lipid storage disease in heterozygotes. Genomics 79: 218–224.

    Article  CAS  PubMed  Google Scholar 

  • Lozano J, Morales A, Cremesti A, et al (2001) Niemann–Pick disease versus acid sphingomyelinase deficiency. Cell Death Differ 8: 100–103.

    Article  CAS  PubMed  Google Scholar 

  • Marathe S, Miranda SR, Devlin C, et al (2000) Creation of a mouse model for non-neurological (type B) Niemann–Pick disease by stable, low level expression of lysosomal sphingomyelinase in the absence of secretory sphingomyelinase: relationship between brain intra-lysosomal enzyme activity and central nervous system function. Hum Mol Genet 9: 1967–1976.

    Article  CAS  PubMed  Google Scholar 

  • McGovern MM, Pohl-Worgall T, Deckelbaum RJ, et al (2004) Lipid abnormalities in children with types A and B Niemann–Pick disease. J Pediatr 145: 77–81.

    Article  CAS  PubMed  Google Scholar 

  • Meikle PJ, Hopwood JJ, Clague AE, et al (1999) Prevalence of lysosomal storage disorders. JAMA 281: 249–254.

    Article  CAS  PubMed  Google Scholar 

  • Mendelson DS, Wasserstein MP, Desnick RJ, et al (2006) Type B Niemann–Pick disease: findings at chest radiography, thin-section CT, and pulmonary function testing. Radiology 238: 339–345.

    Article  PubMed  Google Scholar 

  • Michel V, Bakovic M (2007) Lipid rafts in health and disease. Biol Cell. 99: 129–140.

    Google Scholar 

  • Mihaylova V, Hantke J, Sinigerska I, et al (2007) Highly variable neural involvement in sphingomyelianse-deficient Niemann–Pick disease caused by an ancestral Gypsy mutation. Brain 130: 1050–1061.

    Article  PubMed  Google Scholar 

  • Miranda SR, Erlich S, Friedrich VL Jr, et al (1998) Biochemical, pathological, and clinical response to transplantation of normal bone marrow cells into acid sphingomyelinase deficient mice. Transplantation 65: 884–892.

    Article  CAS  PubMed  Google Scholar 

  • Miranda SR, Erlich S, Friedrich VL Jr, et al (2000a) Hematopoietic stem cell gene therapy leads to marked visceral organ improvements and a delayed onset of neurological abnormalities in the acid sphingomyelinase deficient mouse model of Niemann–Pick disease. Gene Ther 7: 1768–1776.

    Article  CAS  Google Scholar 

  • Miranda SR, He X, Simonaro CM, et al (2000b) Infusion of recombinant human acid sphingomyelinase into Niemann–Pick disease mice leads to visceral, but not neurological, correction of the pathophysiology. FASEB J 14: 1988–1995.

    Article  CAS  Google Scholar 

  • Morita Y, Perez GI, Paris F, et al (2000) Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. Nat Med 6: 1109–1114.

    Article  CAS  PubMed  Google Scholar 

  • Muro S, Wiewrodt R, Thomas A, et al (2003) A novel endocytic pathway induced by clustering endothelial ICAM-1 or PECAM-1. J Cell Sci 116(Pt 8): 1599–1609.

    Article  CAS  PubMed  Google Scholar 

  • Muro S, Schuchman EH, Muzykantov V (2005) Lysosomal enzyme delivery by targeted nanocarriers bypasses clathrin-mediated pathways and improves lysosomal uptake. Mol Ther 13: 135–141.

    Article  PubMed  Google Scholar 

  • Mylla Neto G, Costa R, Fernandes PM, de Lima EC, Ribeiro FM, Stolf NA (1983) Niemann–Pick disease in adult: report of a case surgically treated. Rev Hosp Clin Fac Med Sao Paulo 38: 83–85.

    CAS  PubMed  Google Scholar 

  • Nicholson AG, Wells AU, Hooper J, Hansell DM, Kelleher A, Morgan C (2002) Successful treatment of endogenous lipoid pneumonia due to Niemann–Pick type B disease with whole-lung lavage. Am J Respir Crit Care Med 165: 128–131.

    PubMed  Google Scholar 

  • Notterman DA, Alon U, Sierk AJ, Levine AJ (2001) Transcriptional gene expression profiles of colorectal adenoma, adenocarcinoma, and normal tissue examined by oligonucleotide arrays. Cancer Res 61: 3124–3130.

    CAS  PubMed  Google Scholar 

  • Otterbach B, Stoffel W (1995) Acid sphingomyelinase-deficient mice mimic the neurovisceral form of human lysosomal storage disease (Niemann–Pick disease). Cell 81: 1053–1061.

    Article  CAS  PubMed  Google Scholar 

  • Pavlu-Pereira H, Asfaw B, Poupctova H, et al (2005) Acid sphingomyelinase deficiency. Phenotype variability with prevalence of intermediate phenotype in a sereies of twenty-five Czech and Slovak patients. A multi-approach study. J Inherit Metab Dis 28: 203–227.

    Article  CAS  PubMed  Google Scholar 

  • Pinto R, Caseiro C, Lemos M, et al (2004) Prevalence of lysosomal storage disease in Portugal Eur J Hum Genet 12: 87–92.

    Article  PubMed  Google Scholar 

  • Pittis MG, Ricci V, Guerci VI, et al (2004) Acid sphingomyelinase: identification of nine novel mutations among Italian Niemann–Pick type B patients and characterization of in vivo function al in-frame start codon. Hum Mut 24: 186–187.

    Article  CAS  PubMed  Google Scholar 

  • Poorthuis BJ, Wevers RA, Kleiher WJ, et al (1999) The frequency of lysosomal storage diseases in the Netherlands. Hum Genet 105: 151–156.

    CAS  PubMed  Google Scholar 

  • Qiu H, Edmunds T, Baker-Malcolm J, et al (2003) Activation of human acid sphingomyelinase through modification or deletion of C-terminal cysteine. J Biol Chem 278: 32744–32752.

    Article  CAS  PubMed  Google Scholar 

  • Santana P, Pena LA, Haimovitz-Friedman A, et al (1996) Acid sphingomyelinase deficient mice and human lymphoblasts are defective in radiation-induced apoptosis. Cell 86: 189–200.

    Article  CAS  PubMed  Google Scholar 

  • Scaggiante B, Pineschi A, Sustersich M, et al (1987) Successful therapy of Niemann–Pick disease by implantation of human amniotic membrane. Transplantation 44: 59–61.

    Article  CAS  PubMed  Google Scholar 

  • Schissel SL, Schuchman EH, Williams KJ, Tabas I (1996) Zn+2-stimulated sphingomyelinase is secreted by many cell types and is a product of the acid sphingomyelinase gene. Evidence for a second molecular defect in types A and B Niemann–Pick disease. J Biol Chem 271: 18431–18436.

    Article  CAS  PubMed  Google Scholar 

  • Schneider PB, Kennedy EP (1967) Sphingomyelinase in normal human spleens and in spleens from subjects with Niemann–Pick disease. J Lipid Res 8: 202–209.

    CAS  PubMed  Google Scholar 

  • Schuchman EH, Miranda SR (1997) Niemann-Pick disease: mutation update, genotype/phenotype correlations, and prospects for genetic testing. Genet Test 1: 9–13.

    Google Scholar 

  • Schuchman EH, Desnick RJ (2001) Niemann–Pick disease types A and B: acid sphingomyelinase deficiencies. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds; Childs B, Kinzler KW, Vogelstein B, assoc. eds. The Metabolic and Molecular Bases of Inherited Disease, 8th edn. New York: McGraw-Hill, 3589.

    Google Scholar 

  • Schuchman EH, Suchi M, Takahashi T, et al (1991a) Human acid sphingomyelinase. Isolation, nucleotide sequence and expression of the full-length and alternatively spliced cDNAs. J Biol Chem 266: 8531–8539.

    CAS  Google Scholar 

  • Schuchman EH, Levran O, Suchi M, et al (1991b) An MspI polymorphism in the human acid sphingomyelinase gene (SMPD1). Nucleic Acids Res 19: 3160.

    Article  CAS  Google Scholar 

  • Schuchman EH, Levran O, Pereira LV, et al (1992) Structural organization and complete nucleotide sequence of the gene encoding human acid sphingomyelinase (SMPD1). Genomics 112: 197–205.

    Article  Google Scholar 

  • Simonaro CM, Desnick RJ, McGovern MM, et al (2002) The demographics and distribution of type B Niemann–Pick disease: novel mutations lead to new genotype/phenotype correlations. Am J Hum Genet 71: 1413–1419.

    Article  CAS  PubMed  Google Scholar 

  • Simonaro CM, Park JH, Eliyahu E, et al (2006) Imprinting at the SMPD-1 gene: implications for acid sphingomyelinase-deficient Niemann–Pick disease. Am J Hum Genet 78: 79–84.

    Article  Google Scholar 

  • Smanik EJ, Tavill AS, Jacobs GH, et al (1993) Orthotopic liver transplantation in two adults with Niemann–Pick and Gaucher’s diseases: implications for the treatment of inherited metabolic disease. Hepatology 17: 42–49.

    Article  CAS  PubMed  Google Scholar 

  • Vanier MT, Ferlinz K, Rousoon R, et al (1993) Deletion of arginine (608) in acid sphingomyelinase is the prevalent mutation among Niemann–Pick disease type B patients from northern Africa. Hum Genet 92: 325–330.

    Article  CAS  PubMed  Google Scholar 

  • Victor S, Coulter JBS, Besley GTN, et al (2003) Niemann–Pick disease type B: 16 year follow-up after allogenic bone marrow transplantation. J Inherit Metab Dis 26: 775–785.

    Article  CAS  PubMed  Google Scholar 

  • Wan Q, Schuchman EH (1995) A novel polymorphism in the human acid sphingomyelinase gene due to size variation of the signal peptide region. Biochim Biophys Acta 1270: 207–210.

    PubMed  Google Scholar 

  • Wang N, Lv X, Su L, Zhao B, Zhang S, Miao J (2006) D609 blocks cell survival and induces apoptosis in neural stem cells. Bioorg Med Chem Lett 15: 4780–4783.

    Article  Google Scholar 

  • Wasserstein MP, Aron A, Brodie SE, Simonaro C, Desnick RJ, McGovern MM (2006) Acid sphingomyelinase deficiency: prevalence and characterization of an intermediate phenotype of Niemann–Pick disease. J Pediatr 149: 554–559.

    Article  PubMed  Google Scholar 

  • Wolf C, Quinn PJ (2004) Membrane lipid homeostasis. Subcell Biochem 37: 317–357.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. H. Schuchman.

Additional information

Communicating editor: Ed Wraith

Competing interests: None declared

References to electronic databases: OMIM accession numbers: 257200, 607616, 607608.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuchman, E.H. The pathogenesis and treatment of acid sphingomyelinase-deficient Niemann–Pick disease. J Inherit Metab Dis 30, 654–663 (2007). https://doi.org/10.1007/s10545-007-0632-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-007-0632-9

Keywords

Navigation