Skip to main content

Advertisement

Log in

Blood–Brain Barrier Efflux Transport of Pyrimidine Nucleosides and Nucleobases in the Rat

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The brain efflux index (BEI), a measurement of blood–brain barrier (BBB) efflux transport, was estimated at 15 s, 30 s, 1 min, 3 min and 10 min after intracerebral injection of [14C]pyrimidines. An initial steep increase of the BEI values over time was observed for [14]uracil and [14C]thymine, followed by a more moderate increase after 1 min. For the corresponding nucleosides, [14C]uridine and [14C]thymidine, the increase of BEI values over time was less steep and linear between 30 s and 3 min. The apparent BBB efflux clearances for [14C]uridine, [14C]thymidine, [14C]uracil and [14C]thymine were (μl/min/g): 95.2 ± 12.1, 125.3 ± 18.4, 290.4 ± 28 and 358.5 ± 32.5, respectively, which is at least several folds higher than the predicted BBB influx clearances of uridine, uracil and thymidine. Quick depletion of brain parenchyma from brain microvasculature has revealed that [14C] radioactivity accumulated in brain microvessels after injection of nucleosides [14C]thymidine and [14C]uridine, but that was not observed when nucleobases, [14C]thymine and [14C]uracil, were injected. Reverse transcriptase-PCR revealed that the rat brain and liver (positive control) express dihydropyrimidine dehydrogenase, a key enzyme in pyrimidine nucleobase catabolism. Two bands representing spliced variants have been detected with the relative density of the bands (expressed relative to the density of glyceraldehyde3-phosphate dehydrogenase bands, mean ± SEM from 3 separate samples) 0.16 ± 0.06 and 0.04 ± 0.01 (brain) and 0.49 ± 0.1 and 0.07 ± 0.01 (liver). Overall, these results indicate that the net direction of pyrimidine BBB transport is the efflux transport; rapid BBB efflux transport and metabolic breakdown of pyrimidine nucleobases appear to be important for brain homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Connolly GP, Simmonds HA, Duley JA (1996) Pyrimidines and CNS regulation. Trends Pharmacol Sci 17:106–107. doi:10.1016/0165-6147(96)20001-X

    Article  PubMed  CAS  Google Scholar 

  2. Connolly PC, Duley JA (1999) Uridine and its nucleotides: biological actions, therapeutic potentials. Trends Pharmacol Sci 20:218–225. doi:10.1016/S0165-6147(99)01298-5

    Article  PubMed  CAS  Google Scholar 

  3. Barsotti C, Tozzi MG, Ipata PL (2002) Purine and pyrimidine salvage in whole rat brain. Utilization of ATP-derived ribose-1-phosphate and 5-phosphoribosyl-1-pyrophosphate generated in experiments with dialyzed cell-free extracts. J Biol Chem 277:9865–9869. doi:10.1074/jbc.M111418200

    Article  PubMed  CAS  Google Scholar 

  4. Balestri F, Barsotti C, Lutzemberger L et al (2007) Key role of uridine kinase and uridine phosphorylase in the homeostatic regulation of purine and pyrimidine salvage in brain. Neurochem Int 51:517–523. doi:10.1016/j.neuint.2007.06.007

    Article  PubMed  CAS  Google Scholar 

  5. Cao D, Leffert JJ, McCabe J et al (2005) Abnormalities in uridine homeostatic regulation and pyrimidine nucleotide metabolism as a consequence of the deletion of the uridine phosphorylase gene. J Biol Chem 280:21169–21175. doi:10.1074/jbc.M412343200

    Article  PubMed  CAS  Google Scholar 

  6. Cansev M (2006) Uridine and cytidine in the brain: their transport and utilization. Brain Res Brain Res Rev 52:389–397. doi:10.1016/j.brainresrev.2006.05.001

    Article  CAS  Google Scholar 

  7. Zimmermann H (1996) Biochemistry, localization and functional roles of ecto-nucleotidases in the nervous system. Prog Neurobiol 49:589–618. doi:10.1016/0301-0082(96)00026-3

    Article  PubMed  CAS  Google Scholar 

  8. Sala-Newby GB, Skladanowski AC, Newby C (1999) The mechanism of adenosine formation in cells: cloning of cytosolic 5′ nucleotidase. J Biol Chem 274:17789–17793. doi:10.1074/jbc.274.25.17789

    Article  PubMed  CAS  Google Scholar 

  9. Phillips E, Newsholme EA (1979) Maximum activities, properties and distribution of 5′-nucleotidase, adenosine kinase and adenosine deaminase in rat and human brain. J Neurochem 33:553–558. doi:10.1111/j.1471-4159.1979.tb05187.x

    Article  PubMed  CAS  Google Scholar 

  10. Cheng N, Payne RC, Traut TW (1986) Regulation of uridine kinase. Evidence for a regulatory site. J Biol Chem 261:13006–13012

    PubMed  CAS  Google Scholar 

  11. Ropp PA, Traut TW (1998) Uridine kinase: altered enzyme with decreased affinities for uridine and CTP. Arch Biochem Biophys 359:63–68. doi:10.1006/abbi.1998.0890

    Article  PubMed  CAS  Google Scholar 

  12. Suzuki NN, Koizumi K, Fukushima M et al (2004) Structural basis for the specificity, catalysis, and regulation of human uridine-cytidine kinase. Structure 12:751–764. doi:10.1016/j.str.2004.02.038

    Article  PubMed  CAS  Google Scholar 

  13. Balestri F, Giannecchini M, Sgarrella F et al (2007) Purine and pyrimidine nucleosides preserve human astrocytoma cell adenylate energy charge under ischemic conditions. Neurochem Int 50:517–523. doi:10.1016/j.neuint.2006.10.005

    Article  PubMed  CAS  Google Scholar 

  14. Isakovic AJ, Abbott JN, Redzic ZB (2004) Brain to blood efflux transport of adenosine: blood-brain barrier studies in the rat. J Neurochem 90:272–286. doi:10.1111/j.1471-4159.2004.02439.x

    Article  PubMed  CAS  Google Scholar 

  15. Spector R (1985) Uridine transport and metabolism in the central nervous system. J Neurochem 45(5):1411–1418. doi:10.1111/j.1471-4159.1985.tb07207.x

    Article  PubMed  CAS  Google Scholar 

  16. Spector R (1985) Thymidine transport and metabolism in choroid plexus: effect of diazepam and thiopental. J Pharmacol Exp Ther 235(1):16–19

    PubMed  CAS  Google Scholar 

  17. Isakovic AJ, Segal MB, Milojkovic B et al (2002) The efflux of purine nucleobases and nucleosides from the rat brain. Neurosci Lett 318:65–68. doi:10.1016/S0304-3940(01)02478-8

    Article  PubMed  CAS  Google Scholar 

  18. Cornford EM, Oldendorf WH (1975) Independent blood-brain barrier transport systems for nucleic acid precursors. Biochim Biophys Acta 394:211–219. doi:10.1016/0005-2736(75)90259-X

    Article  PubMed  CAS  Google Scholar 

  19. Kakee A, Terasaki T, Sugiyama Y (1996) Brain efflux index as a novel method of analysing efflux transport at the blood brain barrier. J Pharmacol Exp Ther 277:1550–1559

    PubMed  CAS  Google Scholar 

  20. Kitazawa T, Terasaki T, Suzuki H et al (1998) Efflux of taurocholic acid across the blood-brain barrier: interactions with cyclic peptides. J Pharmacol Exp Ther 286:890–895

    PubMed  CAS  Google Scholar 

  21. Newman C, Hospod F, Schissel S (1991) Ischemic brain slice glucose utilization: effects of slice thickness, acidosis and K+. J Cereb Blood Flow Metab 11:398–406

    PubMed  CAS  Google Scholar 

  22. Triguero D, Buciak J, Pardridge WM (1990) Capillary depletion method for quantification of blood-brain barrier transport of circulating peptides and plasma proteins. J Neurochem 54(6):1882–1888. doi:10.1111/j.1471-4159.1990.tb04886.x

    Article  PubMed  CAS  Google Scholar 

  23. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  24. Lu Z, Zhang R, Diasio RB (1992) Purification and characterization of dihydropyrimidine dehydrogenase from human liver. J Biol Chem 267:17102–17109

    PubMed  CAS  Google Scholar 

  25. Diasio RB (1998) The role of dihydropyrimidine dehydrogenase (DPD) modulation in 5-FU pharmacology. Oncology 12(10, Suppl 7):23–27

    PubMed  CAS  Google Scholar 

  26. Smith QR, Momma S, Aoyagi M, Rapoport SI (1987) Kinetics of neutral amino acid transport across the blood-brain barrier. J Neurochem 49(5):1651–1658. doi:10.1111/j.1471-4159.1987.tb01039.x

    Article  PubMed  CAS  Google Scholar 

  27. Pardridge WM, Fierer G (1985) Blood brain barrier transport of butanol and water relative to N-isopropyl-p-iodoamphetamine as the internal reference. J Cereb Blood Flow Metab 5:275–281

    PubMed  CAS  Google Scholar 

  28. Redzic ZB, Gasic JM, Markovic ID et al (1998) The effects of NO synthesis inhibition on the uptake of endogenous nucleosides into the rat brain. Neurosci Res Commun 20:11–20. doi 10.1002/(SICI)1520-6769(199801/02)22:1<11::AID-NRC3>3.0.CO;2-V

    Article  Google Scholar 

  29. Hagberg H, Andersson P, Lacarewic P et al (1987) Extracellular adenosine, inosine, hypoxanthine and xanthine in relation to tissue nucleotides and purines in rat striatum during transient ischemia. J Neurochem 49:227–231. doi:10.1111/j.1471-4159.1987.tb03419.x

    Article  PubMed  CAS  Google Scholar 

  30. Gray JH, Owen RP, Giacomini KM (2004) The concentrative nucleoside transporter family, SLC28. Pflugers Arch––Eur J Physiol 447:728–734

    Article  CAS  Google Scholar 

  31. Baldwin SA, Beal PR, Yao SY et al (2004) The equilibrative nucleoside transporter family, SLC29. Pflugers Arch––Eur J Phys 447:735–743

    Article  CAS  Google Scholar 

  32. Ward JL, Sherali A, Mo Z et al (2000) Kinetic and pharmacological properties of cloned human equilibrative nucleoside transporters, ENT1 and ENT2, stably expressed in nucleoside transporter-deficient PK15 cells. J Biol Chem 275(12):8375–8381. doi:10.1074/jbc.275.12.8375

    Article  PubMed  CAS  Google Scholar 

  33. Redzic ZB, Biringer J, Barnes K et al (2005) Polarized distribution of nucleoside transporters in rat brain endothelial and choroid plexus epithelial cells. J Neurochem 94:1420–1426. doi:10.1111/j.1471-4159.2005.03312.x

    Article  PubMed  CAS  Google Scholar 

  34. Loffler M, Fairbanks LD, Zameitat E et al (2005) Pyrimidine pathways in health and disease. Trends Mol Med 11:430–437. doi:10.1016/j.molmed.2005.07.003

    Article  PubMed  Google Scholar 

  35. Jansson O, Bohman C, Munch-Petersen B, Eriksson S (1992) Mammalian thymidine kinase 2. Direct photoaffinity labeling with [32P] dTTP of the enzyme from spleen, liver, heart and brain. Eur J Biochem 206(2):485–490. doi:10.1111/j.1432-1033.1992.tb16951.x

    Article  PubMed  CAS  Google Scholar 

  36. Lynx MD, McKee EE (2006) 3′-Azido-3′-deoxythymidine (AZT) is a competitive inhibitor of thymidine kinase 2 in isolated rat heart and liver mitochondria. Biochem Pharmacol 72(2):239–243. doi:10.1016/j.bcp.2006.04.004

    Article  PubMed  CAS  Google Scholar 

  37. Lynx MD, Kang BK, McKee EE (2008) Effect of AZT on thymidine phosphorylation in cultured H9c2, U-937, and Raji cell lines. Biochem Pharmacol 75(8):1610–1615. doi:10.1016/j.bcp.2008.01.006

    Article  PubMed  CAS  Google Scholar 

  38. Yao SY, Ng AM, Sundaram M, Cass CE et al (2001) Transport of antiviral 3′-deoxy-nucleoside drugs by recombinant human and rat equilibrative, nitrobenzylthioinosine (NBMPR)-insensitive (ENT2) nucleoside transporter proteins produced in Xenopus oocytes. Mol Membr Biol 18(2):161–167. doi:10.1080/09687680110048318

    Article  PubMed  CAS  Google Scholar 

  39. Smith KM, Slugoski MD, Loewen SK et al (2005) The broadly selective human Na+/nucleoside cotransporter (hCNT3) exhibits novel cation-coupled nucleoside transport characteristics. J Biol Chem 280(27):25436–25449. doi:10.1074/jbc.M409454200

    Article  PubMed  CAS  Google Scholar 

  40. Parkinson FE, Ferguson J, Zamzow CR et al (2006) Gene expression for enzymes and transporters involved in regulating adenosine and inosine levels in rat forebrain neurons, astrocytes and C6 glioma cells. J Neurosci Res 84(4):801–808. doi:10.1002/jnr.20988

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support of the Department of Physiology, Kuwait University and of the ICN Pharmaceuticals (their ex branch ICN Yugoslavia) for their kind support with radiolabeled nucleosides and nucleobases. We also acknowledge Mrs Nada Selakovic Bojovic for her technical assistance in the BEI experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoran B. Redzic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Redzic, Z.B., Malatiali, S.A., Craik, J.D. et al. Blood–Brain Barrier Efflux Transport of Pyrimidine Nucleosides and Nucleobases in the Rat. Neurochem Res 34, 566–573 (2009). https://doi.org/10.1007/s11064-008-9823-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9823-5

Keywords

Navigation