Skip to main content

Drug Delivery to the Brain: Physiological Concepts, Methodologies, and Approaches

  • Chapter
  • First Online:
Drug Delivery to the Brain

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 33))

  • 1392 Accesses

Abstract

An important property in any central nervous system (CNS) drug is the ability to cross into the brain and reach therapeutic concentrations at safe and acceptable systemic doses. Multiple parameters influence drug availability to the brain. One of the most important of these is the blood-brain barrier (BBB). The vasculature of the brain differs from that of other organs of the body in that it greatly restricts the exchange of most solutes into the brain from the systemic circulation. Equilibration, which only requires seconds to minutes for low molecular weight drugs in the interstitial fluid of most tissues of the body, can require days to weeks for many agents in the brain. The restricted neurovascular exchange is based upon the unique properties of the endothelial cell membranes lining the brain blood vessels which limit the passive diffusion of many polar solutes into the brain and avidly pump out a broad array of polar and nonpolar agents through a series of active efflux transporters.

This chapter presents a conceptual overview of the primary methods to assess brain drug distribution in vivo, providing an insider’s guide to many of the critical steps to use the methods appropriately. Then, two case examples are provided in detail illustrating application and interpretation of specific methods. The entire chapter is written with a perspective of providing an “insider’s view” of the level of drug necessary to reach therapeutic action in the brain. Several parameters are broadly used to explain CNS drug passage and equilibration. One of these is the cerebrovascular permeability-surface area product (PS), which reflects how rapidly a solute can cross in or out of the brain. Another is the brain distribution volume or partition coefficient (Kp,brain), which characterizes the extent (either high or low) that a drug equilibrates in the brain. Because most drugs bind or associate reversibly to proteins, lipids, and other biologic macromolecules, a third parameter is the fraction to which a solute travels freely in the tissue or blood (fu, the free or unbound fraction). This parameter can be used to calculate the free and bound drug concentrations from the total concentration that is measured by many analytical methods. Together with the time course of drug in the circulation, the above parameters can be used to predict drug total, free, and bound concentrations in brain tissue at all time points after administration. This information can then be used to calculate biologic activity if the binding constant (KD) of the receptor or the inhibitory constant (Ki) of the signaling process is known. Specific methods, such as in situ brain perfusion, brain efflux index, and in situ brain microdialysis, are valuable to dissect the specific mechanisms operational at the barrier that mediate or regulate drug transport across the brain endothelial cell membranes. In the end, the investigator has a broad array of approaches to assess drug availability to the brain and to make recommendations that would improve outcomes. In some cases, such as for drugs that act in other tissues, the desire may be to limit brain exposure to avoid adverse drug reactions. A specific focus of the chapter is to promote accurate measurements and avoid nonspecific approaches that are error bound and have led to a lot of confusion in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alqahtani F, Chowdhury EA, Bhattacharya R, Noorani B, Mehvar R, Bickel U (2018) Brain uptake of [(13)C] and [(14)C]sucrose quantified by microdialysis and whole tissue analysis in mice. Drug Metab Dispos 46:1514–1518

    Article  CAS  PubMed  Google Scholar 

  • Amtorp O (1980) Estimation of capillary permeability of inulin, sucrose and mannitol in rat brain cortex. Acta Physiol Scand 110:337–342

    Article  CAS  PubMed  Google Scholar 

  • André P, Saubaméa B, Cochois-Guégan V, Marie-Claire C, Cattelotte J, Smirnova M, Schinkel AH, Scherrmann JM, Cisternino S (2013) Transport of biogenic amine neurotransmitters at the mouse blood-retina and blood-brain barriers by uptake1 and uptake2. AAPS J 32:1989–2001

    Google Scholar 

  • Babak MV, Zalutsky MR, Balyasnikova IV (2020) Heterogeneity and vascular permeability of breast cancer brain metastases. Cancer Lett 489:174–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blecharz KG, Colla R, Rohde V, Vajkoczy P (2015) Control of the blood-brain barrier function in cancer cell metastasis. Biol Cell 107:342–371

    Article  PubMed  Google Scholar 

  • Camilleri M, Nadeau A, Lamsam J, Nord SL, Ryks M, Burton D, Sweetser S, Zinsmeister AR, Singh R (2010) Understanding measurements of intestinal permeability in healthy humans with urine lactulose and mannitol excretion. Neurogastroenterol Motil 22:e15–e26

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Ni C, Li Z, Li L, Liu Y, Wang C, Zhong Y, Cui D, Guo X (2015) Isoflurane anesthesia results in reversible ultrastructure and occludin tight junction protein expression changes in hippocampal blood-brain barrier in aged rats. Neurosci Lett 587:51–56

    Article  CAS  PubMed  Google Scholar 

  • Cardoso FL, Brites D, Brito MA (2010) Looking at the blood-brain barrier: molecular anatomy and possible investigation approaches. Brain Res Rev 64:328–363

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury EA, Alqahtani F, Bhattacharya R, Mehvar R, Bickel U (2018) Simultaneous UPLC-MS/MS analysis of two stable isotope labeled versions of sucrose in mouse plasma and brain samples as markers of blood-brain barrier permeability and brain vascular space. J Chromatogr B Analyt Technol Biomed Life Sci 1073:19–26

    Article  CAS  PubMed  Google Scholar 

  • Crone C (1963) Permeability of capillaries of various organs as determined using the “indicator diffusion” method. Acta Physiol Scan 58:292–305

    Article  CAS  Google Scholar 

  • Daniel PM, Lam DK, Pratt OE (1985) Comparison of the vascular permeability of the brain and the spinal cord to mannitol and inulin in rats. J Neurochem 45:647–649

    Article  CAS  PubMed  Google Scholar 

  • de Lange ECM, Danhof M, de Boer AG, Breimer DD (1997) Methodological considerations of intracerebral microdialysis in pharmacokinetic studies of drug transport across the blood-brain barrier. Brain Res Brain Res Rev 25:27–49

    Article  PubMed  Google Scholar 

  • Duncan MW, Villacreses N, Pearson PG, Wyatt L, Rapoport SI, Kopin IJ, Markey SP, Smith QR (1991) 2-Amino-3- (methylamino)-propanoic acid (BMAA) pharmacokinetics and blood-brain barrier permeability in the rat. J Pharmacol Exp Ther 258:27–35

    CAS  PubMed  Google Scholar 

  • Fidler IJ (2015) The biology of brain metastasis: challenges for therapy. Cancer J 21:284–293

    Article  CAS  PubMed  Google Scholar 

  • Fridén M, Ducrozet F, Middleton B, Antonsson M, Bredberg U, Hammarlund-Udenaes M (2009a) Development of a high-throughput brain slice method for studying drug distribution in the central nervous system. Drug Metab Dispos 37:1226–1233

    Article  PubMed  CAS  Google Scholar 

  • Fridén M, Winiwarter S, Jerndal G, Bengtsson O, Wan H, Bredberg U, Hammarlund-Udanaes M, Antonsson M (2009b) Structure-brain exposure relationships in rat and human using a novel set of unbound drug concentrations in brain interstitial and cerebrospinal fluids. J Med Chem 52:6233–6243

    Article  PubMed  CAS  Google Scholar 

  • Fridén M, Bergström F, Wan H, Rehngren M, Ahlin G, Hammarlund-Udenaes M, Bredberg U (2011) Measurement of unbound drug exposure in brain: modeling of pH partitioning explains diverging results between the brain slice and brain homogenate methods. Drug Metab Dispos 39:353–362

    Article  PubMed  CAS  Google Scholar 

  • Galano G, Caputo M, Tecce MF, Capasso A (2011) Efficacy and tolerability of vinorelbine in the cancer therapy. Curr Drug Saf 6:185–193

    Article  CAS  PubMed  Google Scholar 

  • Hammarlund-Udenaes M, Fridén M, Syvänen S, Gupta A (2008) On the rate and extent of drug delivery to the brain. Pharm Res 25:1737–1750

    Article  CAS  PubMed  Google Scholar 

  • Hladky SB, Barrand MA (2018) Elimination of substances from the brain parenchyma: efflux via perivascular pathways and via the blood-brain barrier. Fluids Barriers CNS 15(1):30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4:147ra111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kakee A, Terasaki T, Sugiyama Y (1996a) Brain efflux index as a novel method of analyzing efflux transport at the blood-brain barrier. J Pharmacol Exp Ther 277:1550–1559

    CAS  PubMed  Google Scholar 

  • Kakee A, Terasaki T, Sugiyama (1996b) Selective brain to blood efflux transport of para-aminohippuric acid across the blood-brain barrier: in vivo evidence by use of the brain efflux index method. J Pharmacol Exp Ther 283:1018–1025

    Google Scholar 

  • Kalvass JE, Olson ER, Cassidy MP, Selley DE, Pollack GM (2007) Pharmacokinetics and pharmacodynamics of seven opioids in p-glycoprotein-competent mice; assessment of unbound brain EC50,u and correlation of in vitro, preclinical, and clinical data. J Pharmacol Exp Ther 323:346–355

    Article  CAS  PubMed  Google Scholar 

  • Kanamitsu K, Kusuhara H, Schuetz JD, Takeuchi K, Sugiyama Y (2017) Investigation of the importance of multidrug resistance-associated protein 4 (Mrp4/Abcc4) in the active efflux of anionic drugs across the blood-brain barrier. J Pharm Sci 106:2566–2575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaya M, Ahishali B (2011) Assessment of permeability in barrier type of endothelium in brain using tracers: evans blue, sodium fluorescein, and horseradish peroxidase. Methods Mol Biol 763:369–382

    Article  CAS  PubMed  Google Scholar 

  • Kemper EM, van Zandbergen AE, Cleypool C, Mos HA, Booger DW, Beijnen JH, van Tellingen O (2003) Increased penetration of paclitaxel into the brain by inhibition of P-Glycoprotein. Clin Cancer Res 9:2849–2855

    CAS  PubMed  Google Scholar 

  • Lavis LD, Rutkoski TJ, Raines RT (2007) Tuning the pK(a) of fluorescein to optimize binding assays. Anal Chem 79:6775–6782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Rockey JH (1982) Fluorescein binding to normal human serum proteins demonstrated by equilibrium dialysis. Arch Ophthalmol 100:484–487

    Article  CAS  PubMed  Google Scholar 

  • Lin F, Marchetti S, Pluim D, Iusuf D, Mazzanti R, Schellens JH, Beijnen JH, van Tellingen O (2013) Abcc4 together with abcb1 and abcg2 form a robust cooperative drug efflux system that restricts the brain entry of camptothecin analogues. Clin Cancer Res 19:2084–2095

    Article  CAS  PubMed  Google Scholar 

  • Lippmann ES, Al-Ahmad A, Azarin SM, Palecek SP, Shusta EV (2014) A retinoic acid-enhanced, multicellular human blood-brain barrier model derived from stem cell sources. Sci Rep 4:4160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu X, Smith BJ, Chen C, Callegari E, Becker SL, Chen X, Cianfrogna J, Doran AC, Doran SD, Gibbs JP, Hosea N, Liu J, Nelson FR, Szewc MA, Van Deusen J (2005) Use of a physiologically based pharmacokinetic model to study the time to reach brain equilibrium: an experimental analysis of the role of blood-brain barrier permeability, plasma protein binding, and brain tissue binding. J Pharmacol Exp Ther 313:1254–1262

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Chen C, Smith BJ (2008) Progress in brain penetration evaluation in drug discovery and development. J Pharmacol Exp Ther 325:349–356

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Vilenski O, Kwan J, Apparsundaram S, Weikert R (2009) Unbound brain concentration determines receptor occupancy: a correlation of drug concentration and brain serotonin and dopamine reuptake transporter occupancy for eighteen compounds. Drug Metab Dispos 37:1548–1556

    Article  CAS  PubMed  Google Scholar 

  • Lockman PR, Mittapalli RK, Taskar KS, Rudraraju V, Gril B, Bohn KA, Adkins CE, Roberts A, Thorsheim HR, Gaasch JA, Huang S, Palmieri D, Steeg PS, Smith QR (2010) Heterogeneous blood-tumor barrier permeability determines drug efficacy in mouse brain metastases of breast cancer. Clin Cancer Res 16:5664–5678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandula H, Parepally JMR, Feng R, Smith QR (2006) Role of site-specific binding to plasma albumin in drug availability to brain. J Pharmacol Exp Ther 317:667–675

    Article  CAS  PubMed  Google Scholar 

  • Miah MK, Bickel U, Mehvar R (2016) Development and validation of a sensitive UPLC-MS/MS method for the quantitation of [(13)C]sucrose in rat plasma, blood, and brain: its application to the measurement of blood-brain barrier permeability. J Chromatogr B Analyt Technol Biomed Life Sci 1015-1016:105–110

    Google Scholar 

  • Miah MK, Shaik IH, Bickel U, Mehvar R (2015) Effects of Pringle maneuver and partial hepatectomy on the pharmacokinetics and blood-brain barrier permeability of sodium fluorescein in rats. Brain Res 1618:249–260

    Article  CAS  PubMed  Google Scholar 

  • Miah MK, Chowdhury EA, Bickel U, Mehvar R (2017) Evaluation of [14C] and [13C]sucrose as blood-brain barrier permeability markers. J Pharm Sci 106:1659–1669

    Article  CAS  PubMed  Google Scholar 

  • Morikawa A, Peereboom DM, Thorsheim HR, Samala R, Balyan R, Murphy CG, Lockman PR, Simmons A, Weil RJ, Tabar V, Steeg PS, Smith QR, Seidman AD (2015) Capecitabine and lapatinib uptake in surgically resected brain metastases from metastatic breast cancer patients: a prospective study. Neuro-Oncology 17:289–295

    Article  CAS  PubMed  Google Scholar 

  • Nishioku T, Yamauchi A, Takata F, Watanabe T, Furusho K, Shuto H, Dohgu S, Kataoka Y (2010) Disruption of the blood-brain barrier in collagen-induced arthritic mice. Neurosci Lett 482:208–211

    Article  CAS  PubMed  Google Scholar 

  • Noorani B, Chowdhury EA, Alqahtani F, Ahn Y, Patel D, Al-Ahmad A, Mehvar R, Bickel U (2020) LC-MS/MS-based in vitro and in vivo investigation of blood-brain barrier integrity by simultaneous quantitation of mannitol and sucrose. Fluids Barriers CNS 17:61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nozohouri S, Noorani B, Al-Ahmad A, Abbruscato TJ (2020) Estimating brain permeability using in vitro blood-brain barrier models. Methods Mol Biol PMID: 32789777

    Google Scholar 

  • O’Tuama LA, Phillips PC, Strauss LC, Uno Y, Smith QR, Dannals RF, Wilson AA, Ravert HT, LaFrance ND, Wagner HN (1990) Two phase [11C]L methionine pet scanning in the diagnosis of childhood brain tumors. Pediatr Neurol 6:163–170

    Article  PubMed  Google Scholar 

  • O’Tuama LA, Phillips PC, Smith QR, Strauss LC, Dannals RF, Wilson AA, Ravert HT, Wagner HN (1991) L methionine uptake by human cerebral cortex: maturation from infancy to old age. J Nucl Med 32:16–22

    PubMed  Google Scholar 

  • Ohno K, Pettigrew KD, Rapoport SI (1978) Lower limits of cerebrovascular permeability to nonelectrolytes in the conscious rat. Am J Phys 235:H299–H307

    CAS  Google Scholar 

  • Oppenheim HA, Lucero J, Guyot AC, Herbert LM, McDonald JD, Mabondzo A, Lund AK (2013) Exposure to vehicle emissions results in altered blood brain barrier permeability and expression of matrix metalloproteinases and tight junction proteins in mice. Part Fibre Toxicol 10:62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pardridge WM (2020) The isolated brain microvessel: a versatile experimental model of the blood-brain barrier. Front Physiol 11:398

    Article  PubMed  PubMed Central  Google Scholar 

  • Parepally JMR, Mandula H, Smith QR (2006) Brain uptake of nonsteroidal anti-inflammatory drugs – ibuprofen, flurbiprofen and indomethacin. Pharm Res 23:873–881

    Article  CAS  PubMed  Google Scholar 

  • Patel R, Alahmad AJ (2016) Growth-factor reduced Matrigel source influences stem cell derived brain microvascular endothelial cell barrier properties. Fluids Barriers CNS 13:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peck KD, Ghanem AH, Higuchi WI (1994) Hindered diffusion of polar molecules through and effective pore radii estimates of intact and ethanol treated human epidermal membrane. Pharm Res 11:1306–1314

    Article  CAS  PubMed  Google Scholar 

  • Preston E, Haas N (1986) Defining the lower limits of blood-brain barrier permeability: factors affecting the magnitude and interpretation of permeability-area products. J Neurosci Res 16:709–719

    Article  CAS  PubMed  Google Scholar 

  • Preston E, Haas N, Allen M (1984) Reduced permeation of 14C-sucrose, 3H-mannitol and 3H-inulin across blood-brain barrier in nephrectomized rats. Brain Res Bull 12:133–136

    Article  CAS  PubMed  Google Scholar 

  • Preston JE, al-Sarraf H, Segal MB (1995) Permeability of the developing blood-brain barrier to 14C-mannitol using the rat in situ brain perfusion technique. Brain Res Dev Brain Res 87:69–76

    Article  CAS  PubMed  Google Scholar 

  • Preston E, Foster DO, Mills PA (1998) Effects of radiochemical impurities on measurements of transfer constants for [14C]sucrose permeation of normal and injured blood-brain barrier of rats. Brain Res Bull 45:111–116

    Article  CAS  PubMed  Google Scholar 

  • Rapoport SI, Ohno K, Pettigrew KD (1979) Drug entry into the brain. Brain Res 172:354–359

    Article  CAS  PubMed  Google Scholar 

  • Renkin EM (1959) Transport of potassium from blood to tissue in isolated mammalian skeletal muscles. Am J Phys 197:1205–1210

    Article  CAS  Google Scholar 

  • Rusnak DW, Lackey K, Affleck K, Wood ER, Alligood KJ, Rhodes N, Keith BR, Murray DM, Knight WB, Mullin RJ, Gilmer TM (2001) The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol Cancer Ther 1:85–94

    CAS  PubMed  Google Scholar 

  • Samala R, Thorsheim HR, Goda S, Taskar K, Gril B, Steeg PS, Smith QR (2016) Vinorelbine delivery and efficacy in the MDA-MB-231BR preclinical model of brain metastases of breast cancer. Pharm Res 33:2904–2919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sisson WB, Oldendorf WH (1971) Brain distribution spaces of mannitol-3H, inulin-14C, and dextran-14C in the rat. Am J Phys 221:214–217

    Article  CAS  Google Scholar 

  • Smith QR (2003) A review of blood-brain barrier transport techniques. Methods Mol Med 10:193–208

    Google Scholar 

  • Smith QR, Rapoport SI (1986) Cerebrovascular permeability coefficients to sodium, potassium, and chloride. J Neurochem 46:1732–1742

    Article  CAS  PubMed  Google Scholar 

  • Steeg PS, Camphausen KA, Smith QR (2011) Brain metastases as preventive and therapeutic targets. Nat Rev Cancer 11:352–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takasato Y, Rapoport SI, Smith QR (1984) An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am J Phys 247:H484–H493

    CAS  Google Scholar 

  • Taskar KS, Rudraraju V, Mittapalli RK, Samala R, Thorsheim HR, Lockman J, Gril B, Hua E, Palmieri D, Polli JW, Castellino S, Rubin SD, Lockman PR, Steeg PS, Smith QR (2012) Lapatinib distribution in HER2 overexpressing experimental brain metastases of breast cancer. Pharm Res 29(3):770–781

    Article  CAS  PubMed  Google Scholar 

  • Thomas FC, Taskar K, Rudraraju V, Goda S, Thorsheim HR, Gaasch JA, Palmieri D, Steeg PS, Lockman PR, Smith QR (2009) Uptake of ANG1005 – a novel paclitaxel-peptide derivative, through the blood-brain barrier into brain and experimental brain metastases of breast cancer. Pharm Res 26:2486–2492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tress EE, Clark RS, Foley LM, Alexander H, Hickey RW, Drabek T, Kochanek PM, Manole MD (2014) Blood brain barrier is impermeable to solutes and permeable to water after experimental pediatric cardiac arrest. Neurosci Lett 578:17–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Bree JB, de Boer AG, Danhof M, Ginsel LA, Breimer DD (1988) Characterization of an “in vitro” blood-brain barrier: effects of molecular size and lipophilicity on cerebrovascular endothelial transport rates of drugs. J Pharmacol Exp Ther 247:1233–1239

    PubMed  Google Scholar 

  • Wierzba K, Sugiyama Y, Okudaira K, Iga T, Hanano M (1987) Tubulin as a major determinant of tissue distribution of vincristine. J Pharm Sci 76:872–875

    Article  CAS  PubMed  Google Scholar 

  • Zanetti-Domingues LC, Tynan CJ, Rolfe DJ, Clarke DT, Martin-Fernandez M (2013) Hydrophobic fluorescent probes introduce artifacts into single molecule tracking experiments due to non-specific binding. PLoS One 8:e74200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quentin Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Samala, R., Noorani, B., Thorsheim, H., Bickel, U., Smith, Q. (2022). Drug Delivery to the Brain: Physiological Concepts, Methodologies, and Approaches. In: de Lange, E.C., Hammarlund-Udenaes, M., Thorne, R.G. (eds) Drug Delivery to the Brain. AAPS Advances in the Pharmaceutical Sciences Series, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-030-88773-5_10

Download citation

Publish with us

Policies and ethics