Skip to main content

Drug Transporters At Brain Barriers

Expression and Regulation by Neurological Disorders

  • Chapter
  • First Online:
Biology and Regulation of Blood-Tissue Barriers

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 763))

Abstract

Drug transport in the central nervous system can be highly regulated by the expression of numerous influx and efflux transport proteins not only at the blood-brain barrier and blood-cerebrospinal fluid barrier but also in brain parenchymal cellular compartments (i.e., astrocytes, microglia, neurons). In particular, members of the ATP-Binding Cassette membrane-associated transporter superfamily and Solute Carrier family are known to be involved in the traffic of several endobiotics and xenobiotics (including drugs) into and out of the brain. These transport proteins have also been implicated in a number of neurological disorders including HIV-encephalitis, Alzheimer’s disease, Parkinson’s disease and neoplasia. This chapter summarizes recent knowledge on the role of drug transporters in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott NJ, Patabendige AA, Dolman DE et al. Structure and function of the blood-brain barrier. Neurobiol Dis 2010; 37:13–25.

    Article  CAS  PubMed  Google Scholar 

  2. Reese TS, Karnovsky MJ. Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 1967; 34:207–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fisher M. Pericyte signaling in the neurovascular unit. Stroke 2009; 40:S13–S15.

    Article  CAS  PubMed  Google Scholar 

  4. Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 2006; 7:41–53.

    Article  CAS  PubMed  Google Scholar 

  5. Neuwelt EA, Bauer B, Fahlke C et al. Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci 2011; 12:169–182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wu DT, Woodman SE, Weiss JM et al. Mechanisms of leukocyte trafficking into the CNS. J Neurovirol 2000; 6 Suppl 1:S82–S85.

    CAS  PubMed  Google Scholar 

  7. Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 2005; 57:173–185.

    Article  CAS  PubMed  Google Scholar 

  8. McCarthy KM, Skare IB, Stankewich MC et al. Occludin is a functional component of the tight junction. J Cell Sci 1996; 109:2287–2298.

    CAS  PubMed  Google Scholar 

  9. Pardridge WM. Transport of insulin-related peptides and glucose across the blood-brain barrier. Ann N Y Acad Sci 1993; 692:126–137.

    Article  CAS  PubMed  Google Scholar 

  10. Persidsky Y, Ramirez SH, Haorah J et al. Blood-brain barrier: structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol 2006; 1:223–236.

    Article  PubMed  Google Scholar 

  11. De Vries HE, Kuiper J, de Boer AG et al. The blood-brain barrier in neuroinflammatory diseases. Pharmacol Rev 1997; 49:143–155.

    PubMed  Google Scholar 

  12. Volterra A, Meldolesi J. Astrocytes, from brain glue to communication element: the revolution continues. Nat Rev Neurosci 2005; 6:626–640.

    Article  CAS  PubMed  Google Scholar 

  13. Janzer RC, Raff MC. Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 1987; 325:253–257.

    Article  CAS  PubMed  Google Scholar 

  14. Anderson CM, Swanson RA. Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 2000; 32:1–14.

    Article  CAS  PubMed  Google Scholar 

  15. Benarroch EE. Neuron-astrocyte interactions: partnership for normal function and disease in the central nervous system. Mayo Clin Proc 2005; 80:1326–1338.

    Article  CAS  PubMed  Google Scholar 

  16. Pardridge WM, Golden PL, Kang YS et al. Brain microvascular and astrocyte localization of P-glycoprotein. J Neurochem 1997; 68:1278–1285.

    Article  CAS  PubMed  Google Scholar 

  17. Hirrlinger J, Moeller H, Kirchhoff F et al. Expression of multidrug resistance proteins (Mrps) in astrocytes of the mouse brain: a single cell RT-PCR study. Neurochem Res 2005; 30:1237–1244.

    Article  CAS  PubMed  Google Scholar 

  18. Mrak RE, Griffin WS. Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging 2005; 26:349–354.

    Article  CAS  PubMed  Google Scholar 

  19. Gorry PR, Ong C, Thorpe J et al. Astrocyte infection by HIV-1: mechanisms of restricted virus replication, and role in the pathogenesis of HIV-1-associated dementia. Curr HIV Res 2003; 1:463–473.

    Article  CAS  PubMed  Google Scholar 

  20. Sidoryk-Wegrzynowicz M, Wegrzynowicz M, Lee E et al. Role of astrocytes in brain function and disease. Toxicol Pathol 2011; 39:115–123.

    Article  PubMed  Google Scholar 

  21. Hori S, Ohtsuki S, Hosoya K et al. A pericyte-derived angiopoietin-1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tie-2 activation in vitro. J Neurochem 2004; 89:503–513.

    Article  CAS  PubMed  Google Scholar 

  22. Dore-Duffy P. Pericytes: pluripotent cells of the blood brain barrier. Curr Pharm Des 2008; 14:1581–1593.

    Article  CAS  PubMed  Google Scholar 

  23. Berezowski V, Landry C, Dehouck MP et al. Contribution of glial cells and pericytes to the mRNA profiles of P-glycoprotein and multidrug resistance-associated proteins in an in vitro model of the blood-brain barrier. Brain Res 2004; 20(1018):1–9.

    Article  CAS  Google Scholar 

  24. Kobayashi H, Magnoni MS, Govoni S et al. Neuronal control of brain microvessel function. Experientia 1985; 41:427–434.

    Article  CAS  PubMed  Google Scholar 

  25. Vaucher E, Tong XK, Cholet N et al. GABA neurons provide a rich input to microvessels but not nitric oxide neurons in the rat cerebral cortex: a means for direct regulation of local cerebral blood flow. J Comp Neurol 2000; 421:161–171.

    Article  CAS  PubMed  Google Scholar 

  26. Tarawneh R, Galvin JE. Potential future neuroprotective therapies for neurodegenerative disorders and stroke. Clin Geriatr Med 2010; 26:125–147.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Busch AE, Karbach U, Miska D et al. Human neurons express the polyspecific cation transporter hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. Mol Pharmacol 1998; 54:342–352.

    Article  CAS  PubMed  Google Scholar 

  28. Garden GA, Moller T. Microglia biology in health and disease. J Neuroimmune Pharmacol 2006; 1:127–137.

    Article  PubMed  Google Scholar 

  29. Lee G, Schlichter L, Bendayan M et al. Functional expression of P-glycoprotein in rat brain microglia. J Pharmacol Exp Ther 2001; 299:204–212.

    CAS  PubMed  Google Scholar 

  30. Hirrlinger J, Konig J, Dringen R. Expression of mRNAs of multidrug resistance proteins (Mrps) in cultured rat astrocytes, oligodendrocytes, microglial cells and neurones. J Neurochem 2002; 82:716–719.

    Article  CAS  PubMed  Google Scholar 

  31. Lee G, Dallas S, Hong M et al. Drug transporters in the central nervous system: brain barriers and brain parenchyma considerations. Pharmacol Rev 2001; 53:569–596.

    Article  CAS  PubMed  Google Scholar 

  32. Dallas S, Zhu X, Baruchel S et al. Functional expression of the multidrug resistance protein 1 in microglia. J Pharmacol Exp Ther 2003; 307:282–290.

    Article  CAS  PubMed  Google Scholar 

  33. Dallas S, Miller DS, Bendayan R. Multidrug resistance-associated proteins: expression and function in the central nervous system. Pharmacol Rev 2006; 58:140–161.

    Article  CAS  PubMed  Google Scholar 

  34. Dallas S, Schlichter L, Bendayan R. Multidrug resistance protein (MRP) 4-and MRP 5-mediated efflux of 9-(2-phosphonylmethoxyethyl) adenine by microglia. J Pharmacol Exp Ther 2004; 309:1221–1229.

    Article  CAS  PubMed  Google Scholar 

  35. Ronaldson PT, Persidsky Y, Bendayan R. Regulation of ABC membrane transporters in glial cells: relevance to the pharmacotherapy of brain HIV-1 infection. Glia 2008; 56:1711–1735.

    Article  PubMed  Google Scholar 

  36. Ronaldson PT, Bendayan M, Gingras D et al. Cellular localization and functional expression of P-glycoprotein in rat astrocyte cultures. J Neurochem 2004; 89:788–800.

    Article  CAS  PubMed  Google Scholar 

  37. Benarroch EE. Oligodendrocytes: Susceptibility to injury and involvement in neurologic disease. Neurology 2009; 19(72):1779–1785.

    Article  Google Scholar 

  38. Spector R, Johanson CE. The mammalian choroid plexus. Sci Am 1989; 261:68–74.

    Article  CAS  PubMed  Google Scholar 

  39. Segal MB. The choroid plexuses and the barriers between the blood and the cerebrospinal fluid. Cell Mol Neurobiol 2000; 20:183–196.

    Article  CAS  PubMed  Google Scholar 

  40. Davson H, Hollingsworth G, Segal MB. The mechanism of drainage of the cerebrospinal fluid. Brain 1970; 93:665–678.

    Article  CAS  PubMed  Google Scholar 

  41. De Lange EC. Potential role of ABC transporters as a detoxification system at the blood-CSF barrier. Adv Drug Deliv Rev 2004; 56:1793–1809.

    Article  PubMed  CAS  Google Scholar 

  42. Kusuhara H, Sugiyama Y. Efflux transport systems for organic anions and cations at the blood-CSF barrier. Adv Drug Deliv Rev 2004; 56:1741–1763.

    Article  CAS  PubMed  Google Scholar 

  43. Cohen BE, Bangham AD. Diffusion of small non-electrolytes across liposome membranes. Nature 1972; 236:173–174.

    Article  CAS  PubMed  Google Scholar 

  44. Camenisch G, Alsenz J, van de WH et al. Estimation of permeability by passive diffusion through Caco-2 cell monolayers using the drugs’ lipophilicity and molecular weight. Eur J Pharm Sci 1998; 6:317–324.

    Article  CAS  Google Scholar 

  45. Van de WH, Camenisch G, Folkers G et al. Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors. J Drug Target 1998; 6:151–165.

    Article  Google Scholar 

  46. Sugano K, Kansy M, Artursson P et al. Coexistence of passive and carrier-mediated processes in drug transport. Nat Rev Drug Discov 2010; 9:597–614.

    Article  CAS  PubMed  Google Scholar 

  47. Gerencser GA, Stevens BR. Thermodynamics of symport and antiport catalyzed by cloned or native transporters. J Exp Biol 1994; 196:59–75.

    CAS  PubMed  Google Scholar 

  48. Crone C. Facilitated transfer of glucose from blood into brain tissue. J Physiol 1965; 181:103–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nelson N. Energizing porters by proton-motive force. J Exp Biol 1994; 196:7–13.

    CAS  PubMed  Google Scholar 

  50. Simionescu M, Gafencu A, Antohe F. Transcytosis of plasma macromolecules in endothelial cells: a cell biological survey. Microsc Res Tech 2002; 57:269–288.

    Article  CAS  PubMed  Google Scholar 

  51. Ghinea N, Hasu M. Charge effect on binding, uptake and transport of ferritin through fenestrated endothelium. J Submicrosc Cytol 1986; 18:647–659.

    CAS  PubMed  Google Scholar 

  52. Voinea M, Dragomir E, Manduteanu I et al. Binding and uptake of transferrin-bound liposomes targeted to transferrin receptors of endothelial cells. Vascul Pharmacol 2002; 39:13–20.

    Article  CAS  PubMed  Google Scholar 

  53. Oldendorf WH. Measurement of brain uptake of radiolabeled substances using a tritiated water internal standard. Brain Res 1970; 24:372–376.

    Article  CAS  PubMed  Google Scholar 

  54. Van Bree JB, de Boer AG, Danhof M et al. Drug transport across the blood-brain barrier. III. Mechanisms and methods to improve drug delivery to the central nervous system. Pharm World Sci 1993; 19(15):2–9.

    Article  Google Scholar 

  55. Parsons LH, Justice JB Jr. Quantitative approaches to in vivo brain microdialysis. Crit Rev Neurobiol 1994; 8:189–220.

    CAS  PubMed  Google Scholar 

  56. Shen DD, Artru AA, Adkison KK. Principles and applicability of CSF sampling for the assessment of CNS drug delivery and pharmacodynamics. Adv Drug Deliv Rev 2004; 56:1825–1857.

    Article  CAS  PubMed  Google Scholar 

  57. Cisternino S, Rousselle C, Debray M et al. In situ transport of vinblastine and selected P-glycoprotein substrates: implications for drug-drug interactions at the mouse blood-brain barrier. Pharm Res 2004; 21:1382–1389.

    Article  CAS  PubMed  Google Scholar 

  58. Takasato Y, Rapoport SI, Smith QR. An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am J Physiol 1984; 247:H484–H493.

    CAS  PubMed  Google Scholar 

  59. Mensch J, Oyarzabal J, Mackie C et al. In vivo, in vitro and in silico methods for small molecule transfer across the BBB. J Pharm Sci 2009; 98:4429–4468.

    Article  CAS  PubMed  Google Scholar 

  60. Bendayan R, Lee G, Bendayan M. Functional expression and localization of P-glycoprotein at the blood brain barrier. Microsc Res Tech 2002; 57:365–380.

    Article  CAS  PubMed  Google Scholar 

  61. Ronaldson PT, Lee G, Dallas S et al. Involvement of P-glycoprotein in the transport of saquinavir and indinavir in rat brain microvessel endothelial and microglia cell lines. Pharm Res 2004; 21:811–818.

    Article  CAS  PubMed  Google Scholar 

  62. Deli MA, Abraham CS, Kataoka Y et al. Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol 2005; 25:59–127.

    Article  PubMed  Google Scholar 

  63. Poller B, Gutmann H, Krahenbuhl S et al. The human brain endothelial cell line hCMEC/D3 as a human blood-brain barrier model for drug transport studies. J Neurochem 2008; 107:1358–1368.

    Article  CAS  PubMed  Google Scholar 

  64. Dauchy S, Miller F, Couraud PO et al. Expression and transcriptional regulation of ABC transporters and cytochromes P450 in hCMEC/D3 human cerebral microvascular endothelial cells. Biochem Pharmacol 2009; 77:897–909.

    Article  CAS  PubMed  Google Scholar 

  65. Meyer J, Rauh J, Galla HJ. The susceptibility of cerebral endothelial cells to astroglial induction of blood-brain barrier enzymes depends on their proliferative state. J Neurochem 1991; 57:1971–1977.

    Article  CAS  PubMed  Google Scholar 

  66. Hong M, Schlichter L, Bendayan R. A Na(+)-dependent nucleoside transporter in microglia. J Pharmacol Exp Ther 2000; 292:366–374.

    CAS  PubMed  Google Scholar 

  67. Schlichter LC, Sakellaropoulos G, Ballyk B et al. Properties of K+ and Cl-channels and their involvement in proliferation of rat microglial cells. Glia 1996; 17:225–236.

    Article  CAS  PubMed  Google Scholar 

  68. Hong M, Schlichter L, Bendayan R. A novel zidovudine uptake system in microglia. J Pharmacol Exp Ther 2001; 296:141–149.

    CAS  PubMed  Google Scholar 

  69. Dean M, Allikmets R. Complete characterization of the human ABC gene family. J Bioenerg Biomembr 2001; 33:475–479.

    Article  CAS  PubMed  Google Scholar 

  70. Zhou SF. Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica 2008; 38:802–32.

    Article  CAS  PubMed  Google Scholar 

  71. Deeley RG and Cole SP. Substrate recognition and transport by multidrug resistance protein 1 (ABCC1). FEBS Lett 2006; 580:1103–11.

    Article  CAS  PubMed  Google Scholar 

  72. Kim RB. Drugs as P-glycoprotein substrates, inhibitors, and inducers. Drug Metab Rev 2002;34:47–54.

    Article  CAS  PubMed  Google Scholar 

  73. Loscher W, Potschka H. Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci 2005; 6:591–602.

    Article  PubMed  CAS  Google Scholar 

  74. Sharom FJ. ABC multidrug transporters: structure, function and role in chemoresistance. Pharmacogenomics 2008; 9:105–127.

    Article  CAS  PubMed  Google Scholar 

  75. Hollenstein K, Dawson RJ, Locher KP. Structure and mechanism of ABC transporter proteins. Curr Opin Struct Biol 2007; 17:412–418.

    Article  CAS  PubMed  Google Scholar 

  76. Borst P, van Blitterswijk WJ, Borst J et al. New physiological functions for drug-transporting P-glycoproteins? Drug Resist Updat 1998; 1:337–339.

    Article  CAS  PubMed  Google Scholar 

  77. Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev 2003; 55:3–29.

    Article  CAS  PubMed  Google Scholar 

  78. Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 1976; 455:152–162.

    Article  CAS  PubMed  Google Scholar 

  79. Chen CJ, Chin JE, Ueda K et al. Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells. Cell 1986; 47:381–389.

    Article  CAS  PubMed  Google Scholar 

  80. Gottesman MM, Hrycyna CA, Schoenlein PV et al. Genetic analysis of the multidrug transporter. Annu Rev Genet 1995; 29:607–649.

    Article  CAS  PubMed  Google Scholar 

  81. Loo TW, Clarke DM. Recent progress in understanding the mechanism of P-glycoprotein-mediated drug efflux. J Membr Biol 2005; 206:173–185.

    Article  CAS  PubMed  Google Scholar 

  82. Rosenberg MF, Kamis AB, Callaghan R et al. Three-dimensional structures of the mammalian multidrug resistance P-glycoprotein demonstrate major conformational changes in the transmembrane domains upon nucleotide binding. J Biol Chem 2003; 278:8294–8299.

    Article  CAS  PubMed  Google Scholar 

  83. Aller SG, Yu J, Ward A et al. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 2009; 323:1718–1722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Demeule M, Regina A, Jodoin J et al. Drug transport to the brain: key roles for the efflux pump P-glycoprotein in the blood-brain barrier. Vascul Pharmacol 2002; 38:339–348.

    Article  CAS  PubMed  Google Scholar 

  85. Lee G, Dallas S, Hong M et al. Drug transporters in the central nervous system: brain barriers and brain parenchyma considerations. Pharmacol Rev 2001; 53:569–596.

    Article  CAS  PubMed  Google Scholar 

  86. Edwards JE, Alcorn J, Savolainen J et al. Role of P-glycoprotein in distribution of nelfinavir across the blood-mammary tissue barrier and blood-brain barrier. Antimicrob Agents Chemother 2005; 49:1626–1628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Su L, Cheng CY, Mruk DD. Drug transporter, P-glycoprotein (MDR1), is an integrated component of the mammalian blood-testis barrier. Int J Biochem Cell Biol 2009; 41:2578–2587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bendayan R, Ronaldson PT, Gingras D et al. In situ localization of P-glycoprotein (ABCB1) in human and rat brain. J Histochem Cytochem 2006; 54:1159–1167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Virgintino D, Robertson D, Errede M et al. Expression of P-glycoprotein in human cerebral cortex microvessels. J Histochem Cytochem 2002; 50:1671–1676.

    Article  CAS  PubMed  Google Scholar 

  90. Beaulieu E, Demeule M, Ghitescu L et al. P-glycoprotein is strongly expressed in the luminal membranes of the endothelium of blood vessels in the brain. Biochem J 1997; 326:539–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Miller DS, Nobmann SN, Gutmann H et al. Xenobiotic transport across isolated brain microvessels studied by confocal microscopy. Mol Pharmacol 2000; 58:1357–1367.

    Article  CAS  PubMed  Google Scholar 

  92. Lee G, Bendayan R. Functional expression and localization of P-glycoprotein in the central nervous system: relevance to the pathogenesis and treatment of neurological disorders. Pharm Res 2004; 21:1313–1330.

    Article  CAS  PubMed  Google Scholar 

  93. Rao VV, Dahlheimer JL, Bardgett ME et al. Choroid plexus epithelial expression of MDR1 P-glycoprotein and multidrug resistance-associated protein contribute to the blood-cerebrospinal-fluid drug-permeability barrier. Proc Natl Acad Sci U S A 1999; 96:3900–3905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Washington CB, Wiltshire HR, Man M et al. The disposition of saquinavir in normal and P-glycoprotein deficient mice, rats, and in cultured cells. Drug Metab Dispos 2000; 28:1058–1062.

    CAS  PubMed  Google Scholar 

  95. Shaik N, Giri N, Pan G et al. P-glycoprotein-mediated active efflux of the anti-HIV1 nucleoside abacavir limits cellular accumulation and brain distribution. Drug Metab Dispos 2007; 35:2076–2085.

    Article  CAS  PubMed  Google Scholar 

  96. Ronaldson PT, Bendayan R. HIV-1 viral envelope glycoprotein gp120 triggers an inflammatory response in cultured rat astrocytes and regulates the functional expression of P-glycoprotein. Mol Pharmacol 2006; 70:1087–1098.

    Article  CAS  PubMed  Google Scholar 

  97. Lee G, Piquette-Miller M. Influence of IL-6 on MDR and MRP-mediated multidrug resistance in human hepatoma cells. Can J Physiol Pharmacol 2001; 79:876–884.

    Article  CAS  PubMed  Google Scholar 

  98. Bauer B, Hartz AM, Miller DS. Tumor necrosis factor alpha and endothelin-1 increase P-glycoprotein expression and transport activity at the blood-brain barrier. Mol Pharmacol 2007; 71:667–675.

    Article  CAS  PubMed  Google Scholar 

  99. Zhong Y, Hennig B, Toborek M. Intact lipid rafts regulate HIV-1 Tat protein-induced activation of the Rho signaling and upregulation of P-glycoprotein in brain endothelial cells. J Cereb Blood Flow Metab 2010; 30:522–533.

    Article  CAS  PubMed  Google Scholar 

  100. Pan W, Yu C, Hsuchou H et al. The role of cerebral vascular NFkappaB in LPS-induced inflammation: differential regulation of efflux transporter and transporting cytokine receptors. Cell Physiol Biochem 2010; 25:623–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ott M, Fricker G, Bauer B. Pregnane X receptor (PXR) regulates P-glycoprotein at the blood-brain barrier: functional similarities between pig and human PXR. J Pharmacol Exp Ther 2009; 329:141–149.

    Article  CAS  PubMed  Google Scholar 

  102. Wang X, Sykes DB, Miller DS. Constitutive androstane receptor-mediated up-regulation of ATP-driven xenobiotic efflux transporters at the blood-brain barrier. Mol Pharmacol 2010; 78:376–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Miller DS. Regulation of P-glycoprotein and other ABC drug transporters at the blood-brain barrier. Trends Pharmacol Sci 2010; 31:246–254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kis O, Robillard K, Chan GN et al. The complexities of antiretroviral drug-drug interactions: role of ABC and SLC transporters. Trends Pharmacol Sci 2010; 31:22–35.

    Article  CAS  PubMed  Google Scholar 

  105. Keppler D. Multidrug resistance proteins (MRPs, ABCCs): importance for pathophysiology and drug therapy. Handb Exp Pharmacol 2011; 299-323.

    Google Scholar 

  106. Borst P, Evers R, Kool M et al. A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst 2000; 92:1295–1302.

    Article  CAS  PubMed  Google Scholar 

  107. Bakos E, Evers R, Szakacs G et al. Functional multidrug resistance protein (MRP1) lacking the N-terminal transmembrane domain. J Biol Chem 1998; 273:32167–32175.

    Article  CAS  PubMed  Google Scholar 

  108. Cole SP, Bhardwaj G, Gerlach JH et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 1992; 258:1650–1654.

    Article  CAS  PubMed  Google Scholar 

  109. Leier I, Jedlitschky G, Buchholz U et al. ATP-dependent glutathione disulphide transport mediated by the MRP gene-encoded conjugate export pump. Biochem J 1996; 314:433–437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hipfner DR, Deeley RG, Cole SP. Structural, mechanistic and clinical aspects of MRP1. Biochim Biophys Acta 1999; 1461:359–376.

    Article  CAS  PubMed  Google Scholar 

  111. Leslie EM, Deeley RG, Cole SP. Toxicological relevance of the multidrug resistance protein 1, MRP1 (ABCC1) and related transporters. Toxicology 2001; 167:3–23.

    Article  CAS  PubMed  Google Scholar 

  112. Rappa G, Lorico A, Flavell RA et al. Evidence that the multidrug resistance protein (MRP) functions as a co-transporter of glutathione and natural product toxins. Cancer Res 1997; 57:5232–5237.

    CAS  PubMed  Google Scholar 

  113. Loe DW, Deeley RG, Cole SP. Characterization of vincristine transport by the M(r) 190,000 multidrug resistance protein (MRP): evidence for cotransport with reduced glutathione. Cancer Res 1998; 58:5130–5136.

    CAS  PubMed  Google Scholar 

  114. Gazzin S, Berengeno AL, Strazielle N et al. Modulation of Mrp1 (ABCc1) and Pgp (ABCb1) by bilirubin at the blood-CSF and blood-brain barriers in the Gunn rat. PLoS One 2011; 6:e16165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Decleves X, Fajac A, Lehmann-Che J et al. Molecular and functional MDR1-Pgp and MRPs expression in human glioblastoma multiforme cell lines. Int J Cancer 2002; 98:173–180.

    Article  CAS  PubMed  Google Scholar 

  116. Wang F, Zhou F, Kruh GD et al. Influence of blood-brain barrier efflux pumps on the distribution of vincristine in brain and brain tumors. Neuro Oncol 2010; 12:1043–1049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hayashi K, Pu H, Andras IE et al. HIV-TAT protein upregulates expression of multidrug resistance protein 1 in the blood-brain barrier. J Cereb Blood Flow Metab 2006; 26:1052–1065.

    Article  CAS  PubMed  Google Scholar 

  118. Ronaldson PT, Ashraf T, Bendayan R. Regulation of multidrug resistance protein 1 by tumor necrosis factor alpha in cultured glial cells: involvement of nuclear factor-kappaB and c-Jun N-terminal kinase signaling pathways. Mol Pharmacol 2010; 77:644–659.

    Article  CAS  PubMed  Google Scholar 

  119. Kruh GD, Belinsky MG, Gallo JM et al. Physiological and pharmacological functions of Mrp2, Mrp3 and Mrp4 as determined from recent studies on gene-disrupted mice. Cancer Metastasis Rev 2007; 26:5–14.

    Article  CAS  PubMed  Google Scholar 

  120. Hirrlinger J, Konig J, Keppler D et al. The multidrug resistance protein MRP1 mediates the release of glutathione disulfide from rat astrocytes during oxidative stress. J Neurochem 2001; 76:627–636.

    Article  CAS  PubMed  Google Scholar 

  121. Lai L, Tan TM. Role of glutathione in the multidrug resistance protein 4 (MRP4/ABCC4)-mediated efflux of cAMP and resistance to purine analogues. Biochem J 2002; 361:497–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wijnholds J, Mol CA, van DL et al. Multidrug-resistance protein 5 is a multispecific organic anion transporter able to transport nucleotide analogs. Proc Natl Acad Sci U S A 2000; 20(97):7476–7481.

    Article  CAS  Google Scholar 

  123. Minich T, Riemer J, Schulz JB et al. The multidrug resistance protein 1 (Mrp1), but not Mrp5, mediates export of glutathione and glutathione disulfide from brain astrocytes. J Neurochem 2006; 97:373–384.

    Article  CAS  PubMed  Google Scholar 

  124. Keppler D, Konig J, Buchler M. The canalicular multidrug resistance protein, cMRP/MRP2, a novel conjugate export pump expressed in the apical membrane of hepatocytes. Adv Enzyme Regul 1997; 37:321–333.

    Article  CAS  PubMed  Google Scholar 

  125. Choudhuri S, Cherrington NJ, Li N et al. Constitutive expression of various xenobiotic and endobiotic transporter mRNAs in the choroid plexus of rats. Drug Metab Dispos 2003; 31:1337–1345.

    Article  CAS  PubMed  Google Scholar 

  126. Potschka H, Fedrowitz M, Loscher W. Multidrug resistance protein MRP2 contributes to blood-brain barrier function and restricts antiepileptic drug activity. J Pharmacol Exp Ther 2003; 306:124–131.

    Article  CAS  PubMed  Google Scholar 

  127. Zelcer N, Saeki T, Reid G et al. Characterization of drug transport by the human multidrug resistance protein 3 (ABCC3). J Biol Chem 2001; 276:46400–46407.

    Article  CAS  PubMed  Google Scholar 

  128. Zhang Y, Han H, Elmquist WF et al. Expression of various multidrug resistance-associated protein (MRP) homologues in brain microvessel endothelial cells. Brain Res 2000; 876:148–153.

    Article  CAS  PubMed  Google Scholar 

  129. Soontornmalai A, Vlaming ML, Fritschy JM. Differential, strain-specific cellular and subcellular distribution of multidrug transporters in murine choroid plexus and blood-brain barrier. Neuroscience 2006; 138:159–169.

    Article  CAS  PubMed  Google Scholar 

  130. Nies AT, Jedlitschky G, Konig J et al. Expression and immunolocalization of the multidrug resistance proteins, MRP1-MRP6 (ABCC1-ABCC6), in human brain. Neuroscience 2004; 129:349–360.

    Article  CAS  PubMed  Google Scholar 

  131. Calatozzolo C, Gelati M, Ciusani E et al. Expression of drug resistance proteins Pgp, MRP1, MRP3, MRP5 and GST-pi in human glioma. J Neurooncol 2005; 74:113–121.

    Article  CAS  PubMed  Google Scholar 

  132. Chen ZS, Lee K, Kruh GD. Transport of cyclic nucleotides and estradiol 17-beta-D-glucuronide by multidrug resistance protein 4. Resistance to 6-mercaptopurine and 6-thioguanine. J Biol Chem 2001; 276:33747–33754.

    Article  CAS  PubMed  Google Scholar 

  133. Zhang Y, Schuetz JD, Elmquist WF et al. Plasma membrane localization of multidrug resistance-associated protein homologs in brain capillary endothelial cells. J Pharmacol Exp Ther 2004; 311:449–455.

    Article  CAS  PubMed  Google Scholar 

  134. Roberts LM, Black DS, Raman C et al. Subcellular localization of transporters along the rat blood-brain barrier and blood-cerebral-spinal fluid barrier by in vivo biotinylation. Neuroscience 2008; 155:423–438.

    Article  CAS  PubMed  Google Scholar 

  135. Leggas M, Adachi M, Scheffer GL et al. Mrp4 confers resistance to topotecan and protects the brain from chemotherapy. Mol Cell Biol 2004; 24:7612–7621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ballerini P, Di IP, Ciccarelli R et al. Glial cells express multiple ATP binding cassette proteins which are involved in ATP release. Neuroreport 2002; 13:1789–1792.

    Article  CAS  PubMed  Google Scholar 

  137. Ronaldson PT, Bendayan R. HIV-1 viral envelope glycoprotein gp120 produces oxidative stress and regulates the functional expression of multidrug resistance protein-1 (Mrp1) in glial cells. J Neurochem 2008; 106:1298–1313.

    Article  CAS  PubMed  Google Scholar 

  138. Belinsky MG, Guo P, Lee K et al. Multidrug resistance protein 4 protects bone marrow, thymus, spleen, and intestine from nucleotide analogue-induced damage. Cancer Res 2007; 67:262–268.

    Article  CAS  PubMed  Google Scholar 

  139. Zhang Y, Schuetz JD, Elmquist WF et al. Plasma membrane localization of multidrug resistance-associated protein homologs in brain capillary endothelial cells. J Pharmacol Exp Ther 2004; 311:449–455.

    Article  CAS  PubMed  Google Scholar 

  140. Zhang Y, Han H, Elmquist WF et al. Expression of various multidrug resistance-associated protein (MRP) homologues in brain microvessel endothelial cells. Brain Res 2000; 876:148–153.

    Article  CAS  PubMed  Google Scholar 

  141. Kubota H, Ishihara H, Langmann T et al. Distribution and functional activity of P-glycoprotein and multidrug resistance-associated proteins in human brain microvascular endothelial cells in hippocampal sclerosis. Epilepsy Res 2006; 68:213–228.

    Article  CAS  PubMed  Google Scholar 

  142. Varadi A, Szabo Z, Pomozi V et al. ABCC6 as a target in Pseudoxanthoma Elasticum. Curr Drug Targets 2011; 12:671–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Takayanagi S, Kataoka T, Ohara O et al. Human ATP-binding cassette transporter ABCC10: expression profile and p53-dependent upregulation. J Exp Ther Oncol 2004; 4:239–246.

    CAS  PubMed  Google Scholar 

  144. Kao HH, Huang JD, Chang MS. cDNA cloning and genomic organization of the murine MRP7, a new ATP-binding cassette transporter. Gene 2002; 20(286):299–306.

    Article  Google Scholar 

  145. Oguri T, Bessho Y, Achiwa H et al. MRP8/ABCC11 directly confers resistance to 5-fluorouracil. Mol Cancer Ther 2007; 6:122–127.

    Article  CAS  PubMed  Google Scholar 

  146. Bera TK, Lee S, Salvatore G et al. MRP8, a new member of ABC transporter superfamily, identified by EST database mining and gene prediction program, is highly expressed in breast cancer. Mol Med 2001; 7:509–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Bortfeld M, Rius M, Konig J et al. Human multidrug resistance protein 8 (MRP8/ABCC11), an apical efflux pump for steroid sulfates, is an axonal protein of the CNS and peripheral nervous system. Neuroscience 2006; 137:1247–1257.

    Article  CAS  PubMed  Google Scholar 

  148. Bera TK, Iavarone C, Kumar V et al. MRP9, an unusual truncated member of the ABC transporter superfamily, is highly expressed in breast cancer. Proc Natl Acad Sci U S A 2002; 99:6997–7002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Doyle LA, Yang W, Abruzzo LV et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A 1998; 95:15665–15670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Mao Q, Unadkat JD. Role of the breast cancer resistance protein (ABCG2) in drug transport. AAPS J 2005; 7:E118–E133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Merino G, Alvarez AI, Pulido MM et al. Breast cancer resistance protein (BCRP/ABCG2) transports fluoroquinolone antibiotics, and affects their oral availability, pharmacokinetics and milk secretion. Drug Metab Dispos 2006; 34:690–695.

    Article  CAS  PubMed  Google Scholar 

  152. Hori S, Ohtsuki S, Tachikawa M et al. Functional expression of rat ABCG2 on the luminal side of brain capillaries and its enhancement by astrocyte-derived soluble factor(s). J Neurochem 2004; 90:526–536.

    Article  CAS  PubMed  Google Scholar 

  153. Zhang W, Mojsilovic-Petrovic J, Andrade MF et al. The expression and functional characterization of ABCG2 in brain endothelial cells and vessels. FASEB J 2003; 17:2085–2087.

    Article  PubMed  Google Scholar 

  154. Lee G, Babakhanian K, Ramaswamy M et al. Expression of the ATP-binding cassette membrane transporter, ABCG2, in human and rodent brain microvessel endothelial and glial cell culture systems. Pharm Res 2007; 24:1262–1274.

    Article  CAS  PubMed  Google Scholar 

  155. Eisenblatter T, Galla HJ. A new multidrug resistance protein at the blood-brain barrier. Biochem Biophys Res Commun 2002; 293:1273–1278.

    Article  PubMed  CAS  Google Scholar 

  156. Eisenblatter T, Huwel S, Galla HJ. Characterisation of the brain multidrug resistance protein (BMDP/ ABCG2/BCRP) expressed at the blood-brain barrier. Brain Res 2003; 971:221–231.

    Article  CAS  PubMed  Google Scholar 

  157. Hartz AM, Mahringer A, Miller DS et al. 17-beta-Estradiol: a powerful modulator of blood-brain barrier BCRP activity. J Cereb Blood Flow Metab 2010; 30:1742–1755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Cisternino S, Mercier C, Bourasset F et al. Expression, up-regulation, and transport activity of the multidrug-resistance protein Abcg2 at the mouse blood-brain barrier. Cancer Res 2004; 64:3296–3301.

    Article  CAS  PubMed  Google Scholar 

  159. Breedveld P, Pluim D, Cipriani G et al. The effect of Bcrp1 (Abcg2) on the in vivo pharmacokinetics and brain penetration of imatinib mesylate (Gleevec): implications for the use of breast cancer resistance protein and P-glycoprotein inhibitors to enable the brain penetration of imatinib in patients. Cancer Res 2005; 65:2577–2582.

    Article  CAS  PubMed  Google Scholar 

  160. Gardner ER, Smith NF, Figg WD et al. Influence of the dual ABCB1 and ABCG2 inhibitor tariquidar on the disposition of oral imatinib in mice. J Exp Clin Cancer Res 2009; 28(99):99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Agarwal S, Sane R, Ohlfest JR et al. The role of the breast cancer resistance protein (ABCG2) in the distribution of sorafenib to the brain. J Pharmacol Exp Ther 2011; 336:223–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Hartz AM, Madole EK, Miller DS et al. Estrogen receptor beta signaling through phosphatase and tensin homolog/phosphoinositide 3-kinase/Akt/glycogen synthase kinase 3 down-regulates blood-brain barrier breast cancer resistance protein. J Pharmacol Exp Ther 2010; 334:467–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Hirai T, Fukui Y, Motojima K. PPAR alpha agonists positively and negatively regulate the expression of several nutrient/drug transporters in mouse small intestine. Biol Pharm Bull 2007; 30:2185–2190.

    Article  CAS  PubMed  Google Scholar 

  164. Szatmari I, Vamosi G, Brazda P et al. Peroxisome proliferator-activated receptor gamma-regulated ABCG2 expression confers cytoprotection to human dendritic cells. J Biol Chem 2006; 281:23812–23823.

    Article  CAS  PubMed  Google Scholar 

  165. Von Wedel-Parlow M, Wolte P, Galla HJ. Regulation of major efflux transporters under inflammatory conditions at the blood-brain barrier in vitro. J Neurochem 2009; 111:111–118.

    Article  CAS  Google Scholar 

  166. He L, Vasiliou K, Nebert DW. Analysis and update of the human solute carrier (SLC) gene superfamily. Hum Genomics 2009; 3:195–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hagenbuch B, Meier PJ. Organic anion transporting polypeptides of the OAT P/SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch 2004; 447:653–665.

    Article  CAS  PubMed  Google Scholar 

  168. Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev 2010; 62:1–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Konig J. Uptake transporters of the human OATP family: molecular characteristics, substrates, their role in drug-drug interactions, and functional consequences of polymorphisms. Handb Exp Pharmacol 2011; 201:1–28.

    Article  CAS  Google Scholar 

  170. Burckhardt G, Burckhardt BC. In vitro and in vivo evidence of the importance of organic anion transporters (OATs) in drug therapy. Handb Exp Pharmacol 2011; 29–104.

    Google Scholar 

  171. Rizwan AN, Burckhardt G. Organic anion transporters of the SLC22 family: biopharmaceutical, physiological and pathological roles. Pharm Res 2007; 24:450–470.

    Article  CAS  PubMed  Google Scholar 

  172. Satlin LM, Amin V, Wolkoff AW. Organic anion transporting polypeptide mediates organic anion/HCO3-exchange. J Biol Chem 1997; 272:26340–26345.

    Article  CAS  PubMed  Google Scholar 

  173. Leuthold S, Hagenbuch B, Mohebbi N et al. Mechanisms of pH-gradient driven transport mediated by organic anion polypeptide transporters. Am J Physiol Cell Physiol 2009; 296:C570–C582.

    Article  CAS  PubMed  Google Scholar 

  174. Li L, Lee TK, Meier PJ et al. Identification of glutathione as a driving force and leukotriene C4 as a substrate for oatp1, the hepatic sinusoidal organic solute transporter. J Biol Chem 1998; 273:16184–16191.

    Article  CAS  PubMed  Google Scholar 

  175. Li L, Meier PJ, Ballatori N. Oatp2 mediates bidirectional organic solute transport: a role for intracellular glutathione. Mol Pharmacol 2000; 58:335–340.

    Article  CAS  PubMed  Google Scholar 

  176. Shi X, Bai S, Ford AC et al. Stable inducible expression of a functional rat liver organic anion transport protein in HeLa cells. J Biol Chem 1995; 270:25591–25595.

    Article  CAS  PubMed  Google Scholar 

  177. Kis O, Zastre JA, Ramaswamy M et al. pH dependence of organic anion-transporting polypeptide 2B1 in Caco-2 cells: potential role in antiretroviral drug oral bioavailability and drug-drug interactions. J Pharmacol Exp Ther 2010; 334:1009–1022.

    Article  CAS  PubMed  Google Scholar 

  178. Grube M, Kock K, Karner S et al. Modification of OATP2B1-mediated transport by steroid hormones. Mol Pharmacol 2006; 70:1735–1741.

    Article  CAS  PubMed  Google Scholar 

  179. Eckhardt U, Schroeder A, Stieger B et al. Polyspecific substrate uptake by the hepatic organic anion transporter Oatp1 in stably transfected CHO cells. Am J Physiol 1999; 276:G1037–G1042.

    CAS  PubMed  Google Scholar 

  180. Shimizu M, Fuse K, Okudaira K et al. Contribution of OATP (organic anion-transporting polypeptide) family transporters to the hepatic uptake of fexofenadine in humans. Drug Metab Dispos 2005; 33:1477–1481.

    Article  CAS  PubMed  Google Scholar 

  181. Ose A, Kusuhara H, Endo C et al. Functional characterization of mouse organic anion transporting peptide 1a4 in the uptake and efflux of drugs across the blood-brain barrier. Drug Metab Dispos 2010; 38:168–176.

    Article  CAS  PubMed  Google Scholar 

  182. Nakai D, Nakagomi R, Furuta Y et al. Human liver-specific organic anion transporter, LST-1, mediates uptake of pravastatin by human hepatocytes. J Pharmacol Exp Ther 2001; 297:861–867.

    CAS  PubMed  Google Scholar 

  183. Reichel C, Gao B, Van MJ et al. Localization and function of the organic anion-transporting polypeptide Oatp2 in rat liver. Gastroenterology 1999; 117:688–695.

    Article  CAS  PubMed  Google Scholar 

  184. Nozawa T, Tamai I, Sai Y et al. Contribution of organic anion transporting polypeptide OATP-C to hepatic elimination of the opioid pentapeptide analogue [D-Ala2, D-Leu5]-enkephalin. J Pharm Pharmacol 2003; 55:1013–1020.

    Article  CAS  PubMed  Google Scholar 

  185. Gao B, Hagenbuch B, Kullak-Ublick GA et al. Organic anion-transporting polypeptides mediate transport of opioid peptides across blood-brain barrier. J Pharmacol Exp Ther 2000; 294:73–79.

    CAS  PubMed  Google Scholar 

  186. Van de Steeg E, van EA, Wagenaar E et al. High impact of Oatp1a/1b transporters on in vivo disposition of the hydrophobic anticancer drug paclitaxel. Clin Cancer Res 2011; 17:294–301.

    Google Scholar 

  187. Hartkoorn RC, Kwan WS, Shallcross V et al. HIV protease inhibitors are substrates for OATP1A2, OATP1B1 and OATP1B3 and lopinavir plasma concentrations are influenced by SLCO1B1 polymorphisms. Pharmacogenet Genomics 2010; 20:112–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Su Y, Zhang X, Sinko PJ. Human organic anion-transporting polypeptide OATP-A (SLC21A3) acts in concert with P-glycoprotein and multidrug resistance protein 2 in the vectorial transport of Saquinavir in Hep G2 cells. Mol Pharm 2004; 1:49–56.

    Article  CAS  PubMed  Google Scholar 

  189. Vavricka SR, Van MJ, Ha HR et al. Interactions of rifamycin SV and rifampicin with organic anion uptake systems of human liver. Hepatology 2002; 36:164–172.

    Article  CAS  PubMed  Google Scholar 

  190. Cheng X, Maher J, Chen C et al. Tissue distribution and ontogeny of mouse organic anion transporting polypeptides (Oatps). Drug Metab Dispos 2005; 33:1062–1073.

    Article  CAS  PubMed  Google Scholar 

  191. Ohtsuki S, Takizawa T, Takanaga H et al. Localization of organic anion transporting polypeptide 3 (oatp3) in mouse brain parenchymal and capillary endothelial cells. J Neurochem 2004; 90:743–749.

    Article  CAS  PubMed  Google Scholar 

  192. Hagenbuch B and Meier PJ. The superfamily of organic anion transporting polypeptides. Biochim Biophys Acta 2003;1609:1–18.

    Article  CAS  PubMed  Google Scholar 

  193. Angeletti RH, Novikoff PM, Juvvadi SR et al. The choroid plexus epithelium is the site of the organic anion transport protein in the brain. Proc Natl Acad Sci U S A 1997; 94:283–286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Gao B, Stieger B, Noe B et al. Localization of the organic anion transporting polypeptide 2 (Oatp2) in capillary endothelium and choroid plexus epithelium of rat brain. J Histochem Cytochem 1999; 47:1255–1264.

    Article  CAS  PubMed  Google Scholar 

  195. Huber RD, Gao B, Sidler Pfandler MA et al. Characterization of two splice variants of human organic anion transporting polypeptide 3A1 isolated from human brain. Am J Physiol Cell Physiol 2007; 292:C795–C806.

    Article  CAS  PubMed  Google Scholar 

  196. Tohyama K, Kusuhara H, Sugiyama Y. Involvement of multispecific organic anion transporter, Oatp14 (Slc21a14), in the transport of thyroxine across the blood-brain barrier. Endocrinology 2004; 145:4384–4391.

    Article  CAS  PubMed  Google Scholar 

  197. Pizzagalli F, Hagenbuch B, Stieger B et al. Identification of a novel human organic anion transporting polypeptide as a high affinity thyroxine transporter. Mol Endocrinol 2002; 16:2283–2296.

    Article  CAS  PubMed  Google Scholar 

  198. Bronger H, Konig J, Kopplow K et al. ABCC drug efflux pumps and organic anion uptake transporters in human gliomas and the blood-tumor barrier. Cancer Res 2005; 65:11419–11428.

    Article  CAS  PubMed  Google Scholar 

  199. Dagenais C, Ducharme J, Pollack GM. Uptake and efflux of the peptidic delta-opioid receptor agonist. Neurosci Lett 2001; 301:155–158.

    Article  CAS  PubMed  Google Scholar 

  200. Sugiyama D, Kusuhara H, Shitara Y et al. Characterization of the efflux transport of 17 beta-estradiol-D-17beta-glucuronide from the brain across the blood-brain barrier. J Pharmacol Exp Ther 2001; 298:316–322.

    CAS  PubMed  Google Scholar 

  201. Kusuhara H, Sugiyama Y. Active efflux across the blood-brain barrier: role of the solute carrier family. NeuroRx 2005; 2:73–85.

    Article  PubMed  PubMed Central  Google Scholar 

  202. Cvetkovic M, Leake B, Fromm MF et al. OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos 1999; 27:866–871.

    CAS  PubMed  Google Scholar 

  203. Sekine T, Watanabe N, Hosoyamada M et al. Expression cloning and characterization of a novel multispecific organic anion transporter. J Biol Chem 1997; 272:18526–18529.

    Article  CAS  PubMed  Google Scholar 

  204. VanWert AL, Gionfriddo MR, Sweet DH. Organic anion transporters: discovery, pharmacology, regulation and roles in pathophysiology. Biopharm Drug Dispos 2010; 31:1–71.

    CAS  PubMed  Google Scholar 

  205. Ohtsuki S, Kikkawa T, Mori S et al. Mouse reduced in osteosclerosis transporter functions as an organic anion transporter 3 and is localized at abluminal membrane of blood-brain barrier. J Pharmacol Exp Ther 2004; 309:1273–1281.

    Article  CAS  PubMed  Google Scholar 

  206. Sweet DH, Miller DS, Pritchard JB et al. Impaired organic anion transport in kidney and choroid plexus of organic anion transporter 3 (Oat3 (Slc22a8)) knockout mice. J Biol Chem 2002; 277:26934–26943.

    Article  CAS  PubMed  Google Scholar 

  207. Bahn A, Ljubojevic M, Lorenz H et al. Murine renal organic anion transporters mOAT1 and mOAT3 facilitate the transport of neuroactive tryptophan metabolites. Am J Physiol Cell Physiol 2005; 289:C1075–C1084.

    Article  CAS  PubMed  Google Scholar 

  208. Enomoto A, Wempe MF, Tsuchida H et al. Molecular identification of a novel carnitine transporter specific to human testis. Insights into the mechanism of carnitine recognition. J Biol Chem 2002; 277:36262–36271.

    Article  CAS  PubMed  Google Scholar 

  209. Strazielle N, Khuth ST, Murat A et al. Pro-inflammatory cytokines modulate matrix metalloproteinase secretion and organic anion transport at the blood-cerebrospinal fluid barrier. J Neuropathol Exp Neurol 2003; 62:1254–1264.

    Article  CAS  PubMed  Google Scholar 

  210. Koepsell H, Lips K, Volk C. Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res 2007; 24:1227–1251.

    Article  CAS  PubMed  Google Scholar 

  211. Vialou V, Amphoux A, Zwart R et al. Organic cation transporter 3 (Slc22a3) is implicated in salt-intake regulation. J Neurosci 2004; 24:2846–2851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Kitaichi Y, Inoue T, Nakagawa S et al. Effect of milnacipran on extracellular monoamine concentrations in the medial prefrontal cortex of rats pre-treated with lithium. Eur J Pharmacol 2005; 516:219–226.

    Article  CAS  PubMed  Google Scholar 

  213. Aoyama N, Takahashi N, Kitaichi K et al. Association between gene polymorphisms of SLC22A3 and methamphetamine use disorder. Alcohol Clin Exp Res 2006; 30:1644–1649.

    Article  CAS  PubMed  Google Scholar 

  214. Tamai I, Ohashi R, Nezu J et al. Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J Biol Chem 1998; 273:20378–20382.

    Article  CAS  PubMed  Google Scholar 

  215. Tamai I, Ohashi R, Nezu JI et al. Molecular and functional characterization of organic cation/carnitine transporter family in mice. J Biol Chem 2000; 275:40064–40072.

    Article  CAS  PubMed  Google Scholar 

  216. Miecz D, Januszewicz E, Czeredys M et al. Localization of organic cation/carnitine transporter (OCTN2) in cells forming the blood-brain barrier. J Neurochem 2008; 104:113–123.

    CAS  PubMed  Google Scholar 

  217. Inazu M, Takeda H, Maehara K et al. Functional expression of the organic cation/carnitine transporter 2 in rat astrocytes. J Neurochem 2006; 97:424–434.

    Article  CAS  PubMed  Google Scholar 

  218. Moriyama Y, Hiasa M, Matsumoto T et al. Multidrug and toxic compound extrusion (MATE)-type proteins as anchor transporters for the excretion of metabolic waste products and xenobiotics. Xenobiotica 2008; 38:1107–1118.

    Article  CAS  PubMed  Google Scholar 

  219. Hiasa M, Matsumoto T, Komatsu T et al. Functional characterization of testis-specific rodent multidrug and toxic compound extrusion 2, a class III MATE-type polyspecific H+/organic cation exporter. Am J Physiol Cell Physiol 2007; 293:C1437–C1444.

    Article  CAS  PubMed  Google Scholar 

  220. Redzic ZB, Biringer J, Barnes K et al. Polarized distribution of nucleoside transporters in rat brain endothelial and choroid plexus epithelial cells. J Neurochem 2005; 94:1420–1426.

    Article  CAS  PubMed  Google Scholar 

  221. King AE, Ackley MA, Cass CE et al. Nucleoside transporters: from scavengers to novel therapeutic targets. Trends Pharmacol Sci 2006; 27:416–425.

    Article  CAS  PubMed  Google Scholar 

  222. Pastor-Anglada M, Cano-Soldado P, Errasti-Murugarren E et al. SLC28 genes and concentrative nucleoside transporter (CNT) proteins. Xenobiotica 2008; 38:972–994.

    Article  CAS  PubMed  Google Scholar 

  223. Ritzel MW, Yao SY, Huang MY et al. Molecular cloning and functional expression of cDNAs encoding a human Na+-nucleoside cotransporter (hCNT1). Am J Physiol 1997; 272:C707–C714.

    Article  CAS  PubMed  Google Scholar 

  224. Shin HC, Landowski CP, Sun D et al. Functional expression and characterization of a sodium-dependent nucleoside transporter hCNT2 cloned from human duodenum. Biochem Biophys Res Commun 2003; 307:696–703.

    Article  CAS  PubMed  Google Scholar 

  225. Lu H, Chen C, Klaassen C. Tissue distribution of concentrative and equilibrative nucleoside transporters in male and female rats and mice. Drug Metab Dispos 2004; 32:1455–1461.

    Article  CAS  PubMed  Google Scholar 

  226. Young JD, Yao SY, Sun L et al. Human equilibrative nucleoside transporter (ENT) family of nucleoside and nucleobase transporter proteins. Xenobiotica 2008; 38:995–1021.

    Article  CAS  PubMed  Google Scholar 

  227. Hyde RJ, Cass CE, Young JD et al. The ENT family of eukaryote nucleoside and nucleobase transporters: recent advances in the investigation of structure/function relationships and the identification of novel isoforms. Mol Membr Biol 2001; 18:53–63.

    Article  CAS  PubMed  Google Scholar 

  228. Redzic ZB, ia]Malatiali SA, Grujicic D et al. Expression and functional activity of nucleoside transporters in human choroid plexus. Cerebrospinal Fluid Res 2010; 7:2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  229. Yao SY, Ng AM, Sundaram M et al. Transport of antiviral 3’-deoxy-nucleoside drugs by recombinant human and rat equilibrative, nitrobenzylthioinosine (NBMPR)-insensitive (ENT2) nucleoside transporter proteins produced in Xenopus oocytes. Mol Membr Biol 2001; 18:161–167.

    Article  CAS  PubMed  Google Scholar 

  230. Strazielle N, Belin MF, Ghersi-Egea JF. Choroid plexus controls brain availability of anti-HIV nucleoside analogs via pharmacologically inhibitable organic anion transporters. AIDS 2003; 17:1473–1485.

    Article  CAS  PubMed  Google Scholar 

  231. Gibbs JE, Jayabalan P, Thomas SA. Mechanisms by which 2’,3’-dideoxyinosine (ddI) crosses the guinea-pig CNS barriers; relevance to HIV therapy. J Neurochem 2003; 84:725–734.

    Article  CAS  PubMed  Google Scholar 

  232. Baldwin SA, Yao SY, Hyde RJ et al. Functional characterization of novel human and mouse equilibrative nucleoside transporters (hENT3 and mENT3) located in intracellular membranes. J Biol Chem 2005; 280:15880–15887.

    Article  CAS  PubMed  Google Scholar 

  233. Brandsch M. Transport of drugs by proton-coupled peptide transporters: pearls and pitfalls. Expert Opin Drug Metab Toxicol 2009; 5:887–905.

    Article  CAS  PubMed  Google Scholar 

  234. Terada T, Saito H, Sawada K et al. N-terminal halves of rat H+/peptide transporters are responsible for their substrate recognition. Pharm Res 2000; 17:15–20.

    Article  CAS  PubMed  Google Scholar 

  235. Rubio-Aliaga I, Daniel H. Peptide transporters and their roles in physiological processes and drug disposition. Xenobiotica 2008; 38:1022–1042.

    Article  CAS  PubMed  Google Scholar 

  236. Biegel A, Gebauer S, Brandsch M et al. Structural requirements for the substrates of the H+/peptide cotransporter PEPT2 determined by three-dimensional quantitative structure-activity relationship analysis. J Med Chem 2006; 49:4286–4296.

    Article  CAS  PubMed  Google Scholar 

  237. Berger UV, Hediger MA. Distribution of peptide transporter PEPT2 mRNA in the rat nervous system. Anat Embryol (Berl) 1999; 199:439–449.

    Article  CAS  Google Scholar 

  238. Shu C, Shen H, Teuscher NS et al. Role of PEPT2 in peptide/mimetic trafficking at the blood-cerebrospinal fluid barrier: studies in rat choroid plexus epithelial cells in primary culture. J Pharmacol Exp Ther 2002; 301:820–829.

    Article  CAS  PubMed  Google Scholar 

  239. Smith DE, Hu Y, Shen H et al. Distribution of glycylsarcosine and cefadroxil among cerebrospinal fluid, choroid plexus, and brain parenchyma after intracerebroventricular injection is markedly different between wild-type and Pept2 null mice. J Cereb Blood Flow Metab 2011; 31:250–261.

    Article  CAS  PubMed  Google Scholar 

  240. Xiang J, Hu Y, Smith DE et al. PEPT2-mediated transport of 5-aminolevulinic acid and carnosine in astrocytes. Brain Res 2006; 1122:18–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Popovic M, Sarngadharan MG, Read E et al. Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science 1984; 224:497–500.

    Article  CAS  PubMed  Google Scholar 

  242. Kedzierska K, Crowe SM. The role of monocytes and macrophages in the pathogenesis of HIV-1 infection. Curr Med Chem 2002; 9:1893–1903.

    Article  CAS  PubMed  Google Scholar 

  243. Barre-Sinoussi F, Chermann JC, Rey F et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 1983; 20(220):868–871.

    Article  Google Scholar 

  244. Kramer-Hammerle S, Rothenaigner I, Wolff H et al. Cells of the central nervous system as targets and reservoirs of the human immunodeficiency virus. Virus Res 2005; 111:194–213.

    Article  PubMed  CAS  Google Scholar 

  245. Albright AV, Soldan SS, Gonzalez-Scarano F. Pathogenesis of human immunodeficiency virus-induced neurological disease. J Neurovirol 2003; 9:222–227.

    Article  CAS  PubMed  Google Scholar 

  246. Vivithanaporn P, Heo G, Gamble J et al. Neurologic disease burden in treated HIV/AIDS predicts survival: a population-based study. Neurology 2010; 75:1150–1158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Langford D, Grigorian A, Hurford R et al. Altered P-glycoprotein expression in AIDS patients with HIV encephalitis. J Neuropathol Exp Neurol 2004; 63:1038–1047.

    Article  CAS  PubMed  Google Scholar 

  248. Hayashi K, Pu H, Tian J et al. HIV-Tat protein induces P-glycoprotein expression in brain microvascular endothelial cells. J Neurochem 2005; 93:1231–1241.

    Article  CAS  PubMed  Google Scholar 

  249. Poller B, Drewe J, Krahenbuhl S et al. Regulation of BCRP (ABCG2) and P-glycoprotein (ABCB1) by cytokines in a model of the human blood-brain barrier. Cell Mol Neurobiol 2010; 30:63–70.

    Article  CAS  PubMed  Google Scholar 

  250. Ashraf T, Ronaldson PT, Persidsky Y et al. Regulation of P-glycoprotein by human immunodeficiency virus-1 in primary cultures of human fetal astrocytes. J Neuosci Res 2011; In press.

    Google Scholar 

  251. Chandler B, Almond L, Ford J et al. The effects of protease inhibitors and nonnucleoside reverse transcriptase inhibitors on p-glycoprotein expression in peripheral blood mononuclear cells in vitro. J Acquir Immune Defic Syndr 2003; 33:551–556.

    Article  CAS  PubMed  Google Scholar 

  252. Chan GN, Tozammel HM, Cummins CL et al. Regulation of P-glycoprotein by Orphan Nuclear Receptors in Human Brain Microvessel Endothelial Cells. J Neurochem 2011; 10–4159.

    Google Scholar 

  253. Zastre JA, Chan GN, Ronaldson PT et al. Up-regulation of P-glycoprotein by HIV protease inhibitors in a human brain microvessel endothelial cell line. J Neurosci Res 2009; 87:1023–1036.

    Article  CAS  PubMed  Google Scholar 

  254. Bousquet L, Roucairol C, Hembury A et al. Comparison of ABC transporter modulation by atazanavir in lymphocytes and human brain endothelial cells: ABC transporters are involved in the atazanavir-limited passage across an in vitro human model of the blood-brain barrier. AIDS Res Hum Retroviruses 2008; 24:1147–1154.

    Article  CAS  PubMed  Google Scholar 

  255. Zembruski NC, Buchel G, Jodicke L et al. Potential of novel antiretrovirals to modulate expression and function of drug transporters in vitro. J Antimicrob Chemother 2011; 66:802–812.

    Article  CAS  PubMed  Google Scholar 

  256. Giulian D. Microglia and the immune pathology of Alzheimer disease. Am J Hum Genet 1999; 65:13–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Vogelgesang S, Warzok RW, Cascorbi I et al. The role of P-glycoprotein in cerebral amyloid angiopathy; implications for the early pathogenesis of Alzheimer’s disease. Curr Alzheimer Res 2004; 1:121–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Lam FC, Liu R, Lu P et al. Beta-Amyloid efflux mediated by p-glycoprotein. J Neurochem 2001; 76:1121–1128.

    Article  CAS  PubMed  Google Scholar 

  259. Kuhnke D, Jedlitschky G, Grube M et al. MDR1-P-Glycoprotein (ABCB1) Mediates Transport of Alzheimer’s amyloid-beta peptides-implications for the mechanisms of Abeta clearance at the blood-brain barrier. Brain Pathol 2007; 17:347–353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Hartz AM, Miller DS, Bauer B. Restoring blood-brain barrier P-glycoprotein reduces brain amyloid-beta in a mouse model of Alzheimer’s disease. Mol Pharmacol 2010; 77:715–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Tai LM, Loughlin AJ, Male DK et al. P-glycoprotein and breast cancer resistance protein restrict apical-to-basolateral permeability of human brain endothelium to amyloid-beta. J Cereb Blood Flow Metab 2009; 29:1079–1083.

    Article  CAS  PubMed  Google Scholar 

  262. Cirrito JR, Deane R, Fagan AM et al. P-glycoprotein deficiency at the blood-brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model. J Clin Invest 2005; 115:3285–3290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Ito S, Ohtsuki S, Terasaki T. Functional characterization of the brain-to-blood efflux clearance of human amyloid-beta peptide (1–40) across the rat blood-brain barrier. Neurosci Res 2006; 56:246–252.

    Article  CAS  PubMed  Google Scholar 

  264. Silverberg GD, Messier AA, Miller MC et al. Amyloid efflux transporter expression at the blood-brain barrier declines in normal aging. J Neuropathol Exp Neurol 2010; 69:1034–1043.

    Article  CAS  PubMed  Google Scholar 

  265. Xiong H, be]Callaghan D, be]Jones A et al. ABCG2 is upregulated in Alzheimer’s brain with cerebral amyloid angiopathy and may act as a gatekeeper at the blood-brain barrier for Abeta (1–40) peptides. J Neurosci 2009; 29:5463–5475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Shen S, Callaghan D, Juzwik C et al. ABCG2 reduces ROS-mediated toxicity and inflammation: a potential role in Alzheimer’s disease. J Neurochem 2010; 114:1590–1604.

    Article  CAS  PubMed  Google Scholar 

  267. Sultana R, Butterfield DA. Oxidatively modified GST and MRP1 in Alzheimer’s disease brain: implications for accumulation of reactive lipid peroxidation products. Neurochem Res 2004; 29:2215–2220.

    Article  CAS  PubMed  Google Scholar 

  268. Bartels AL, Leenders KL. Parkinson’s disease: the syndrome, the pathogenesis and pathophysiology. Cortex 2009; 45:915–921.

    Article  PubMed  Google Scholar 

  269. Westerlund M, Hoffer B, Olson L. Parkinson’s disease: Exit toxins, enter genetics. Prog Neurobiol 2010; 90:146–156.

    Article  CAS  PubMed  Google Scholar 

  270. Koller W, Vetere-Overfield B, Gray C et al. Environmental risk factors in Parkinson’s disease. Neurology 1990; 40:1218–1221.

    Article  CAS  PubMed  Google Scholar 

  271. Westerlund M, Belin AC, Anvret A et al. Association of a polymorphism in the ABCB1 gene with Parkinson’s disease. Parkinsonism Relat Disord 2009; 15:422–424.

    Article  PubMed  Google Scholar 

  272. Lee CG, Tang K, Cheung YB et al. MDR1, the blood-brain barrier transporter, is associated with Parkinson’s disease in ethnic Chinese. J Med Genet 2004; 41:e60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Westerlund M, Belin AC, Olson L et al. Expression of multi-drug resistance 1 mRNA in human and rodent tissues: reduced levels in Parkinson patients. Cell Tissue Res 2008; 334:179–185.

    Article  CAS  PubMed  Google Scholar 

  274. Kortekaas R, Leenders KL, van Oostrom JC et al. Blood-brain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol 2005; 57:176–179.

    Article  CAS  PubMed  Google Scholar 

  275. Bartels AL, Willemsen AT, Kortekaas R et al. Decreased blood-brain barrier P-glycoprotein function in the progression of Parkinson’s disease, PSP and MSA. J Neural Transm 2008; 115:1001–1009.

    Article  CAS  PubMed  Google Scholar 

  276. Soares-Da-Silva P, Serrao MP. Outward transfer of dopamine precursor L-3,4-dihydroxyphenylalanine (L-dopa) by native and human P-glycoprotein in LLC-PK(1) and LLC-GA5 col300 renal cells. J Pharmacol Exp Ther 2000; 293:697–704.

    CAS  PubMed  Google Scholar 

  277. Vautier S, Milane A, Fernandez C et al. Interactions between antiparkinsonian drugs and ABCB1/P-glycoprotein at the blood-brain barrier in a rat brain endothelial cell model. Neurosci Lett 2008; 442:19–23.

    Article  CAS  PubMed  Google Scholar 

  278. Shiraki N, Okamura K, Tokunaga J et al. Bromocriptine reverses P-glycoprotein-mediated multidrug resistance in tumor cells. Jpn J Cancer Res 2002; 93:209–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Vautier S, Lacomblez L, Chacun H et al. Interactions between the dopamine agonist, bromocriptine and the efflux protein, P-glycoprotein at the blood-brain barrier in the mouse. Eur J Pharm Sci 2006; 27:167–174.

    Article  CAS  PubMed  Google Scholar 

  280. Uhr M, Ebinger M, Rosenhagen MC et al. The anti-Parkinson drug budipine is exported actively out of the brain by P-glycoprotein in mice. Neurosci Lett 2005; 383:73–76.

    Article  CAS  PubMed  Google Scholar 

  281. Regesta G, Tanganelli P. Clinical aspects and biological bases of drug-resistant epilepsies. Epilepsy Res 1999; 34:109–122.

    Article  CAS  PubMed  Google Scholar 

  282. Volk H, Potschka H, Loscher W. Immunohistochemical localization of P-glycoprotein in rat brain and detection of its increased expression by seizures are sensitive to fixation and staining variables. J Histochem Cytochem 2005; 53:517–531.

    Article  CAS  PubMed  Google Scholar 

  283. Potschka H, Loscher W. In vivo evidence for P-glycoprotein-mediated transport of phenytoin at the blood-brain barrier of rats. Epilepsia 2001; 42:1231–1240.

    Article  CAS  PubMed  Google Scholar 

  284. Tishler DM, Weinberg KI, Hinton DR et al. MDR1 gene expression in brain of patients with medically intractable epilepsy. Epilepsia 1995; 36:1–6.

    Article  CAS  PubMed  Google Scholar 

  285. Volk HA, Burkhardt K, Potschka H et al. Neuronal expression of the drug efflux transporter P-glycoprotein in the rat hippocampus after limbic seizures. Neuroscience 2004; 123:751–759.

    Article  CAS  PubMed  Google Scholar 

  286. Van Vliet EA, Redeker S, Aronica E et al. Expression of multidrug transporters MRP1, MRP2, and BCRP shortly after status epilepticus, during the latent period, and in chronic epileptic rats. Epilepsia 2005; 46:1569–1580.

    Article  PubMed  Google Scholar 

  287. Sisodiya SM, Lin WR, Squier MV et al. Multidrug-resistance protein 1 in focal cortical dysplasia. Lancet 2001; 357:42–43.

    Article  CAS  PubMed  Google Scholar 

  288. Sisodiya SM, Lin WR, Harding BN et al. Drug resistance in epilepsy: expression of drug resistance proteins in common causes of refractory epilepsy. Brain 2002; 125:22–31.

    Article  CAS  PubMed  Google Scholar 

  289. Kim WJ, Lee JH, Yi J et al. A nonsynonymous variation in MRP2/ABCC2 is associated with neurological adverse drug reactions of carbamazepine in patients with epilepsy. Pharmacogenet Genomics 2010; 20:249–256.

    CAS  PubMed  Google Scholar 

  290. Luna-Tortos C, Fedrowitz M, Loscher W. Several major antiepileptic drugs are substrates for human P-glycoprotein. Neuropharmacology 2008; 55:1364–1375.

    Article  CAS  PubMed  Google Scholar 

  291. Sills GJ, Kwan P, Butler E et al. P-glycoprotein-mediated efflux of antiepileptic drugs: preliminary studies in mdr1a knockout mice. Epilepsy Behav 2002; 3:427–432.

    Article  PubMed  Google Scholar 

  292. Schinkel AH, Wagenaar E, Mol CA et al. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest 1996; 97:2517–2524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Luna-Tortos C, Fedrowitz M, Loscher W. Evaluation of transport of common antiepileptic drugs by human multidrug resistance-associated proteins (MRP1, 2 and 5) that are overexpressed in pharmacoresistant epilepsy. Neuropharmacology 2010; 58:1019–1032.

    Article  CAS  PubMed  Google Scholar 

  294. Ambroziak K, Kuteykin-Teplyakov K, Luna-Tortos C et al. Exposure to antiepileptic drugs does not alter the functionality of P-glycoprotein in brain capillary endothelial and kidney cell lines. Eur J Pharmacol 2010; 628:57–66.

    Article  CAS  PubMed  Google Scholar 

  295. De Vries NA, Buckle T, Zhao J et al. Restricted brain penetration of the tyrosine kinase inhibitor erlotinib due to the drug transporters P-gp and BCRP. Invest New Drugs, 2010; Epub.

    Google Scholar 

  296. Agarwal S, Sane R, Gallardo JL et al. Distribution of gefitinib to the brain is limited by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2)-mediated active efflux. J Pharmacol Exp Ther 2010; 334:147–155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Regina A, Demeule M, Laplante A et al. Multidrug resistance in brain tumors: roles of the blood-brain barrier. Cancer Metastasis Rev 2001; 20:13–25.

    Article  CAS  PubMed  Google Scholar 

  298. Spiegl-Kreinecker S, Buchroithner J, Elbling L et al. Expression and functional activity of the ABC-transporter proteins P-glycoprotein and multidrug-resistance protein 1 in human brain tumor cells and astrocytes. J Neurooncol 2002; 57:27–36.

    Article  PubMed  Google Scholar 

  299. Haber M, Smith J, Bordow SB et al. Association of high-level MRP1 expression with poor clinical outcome in a large prospective study of primary neuroblastoma. J Clin Oncol 2006; 24:1546–1553.

    Article  CAS  PubMed  Google Scholar 

  300. Burkhart CA, Watt F, Murray J et al. Small-molecule multidrug resistance-associated protein 1 inhibitor revers an increases the therapeutic index of chemotherapy in mouse models of neuroblastoma. Cancer Res 2009; 69:6573–6580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Chen L, Feng P, Li S et al. Effect of hypoxia-inducible factor-1alpha silencing on the sensitivity of human brain glioma cells to doxorubicin and etoposide. Neurochem Res 2009; 34:984–990.

    Article  CAS  PubMed  Google Scholar 

  302. Zhang Y, Laterra J, Pomper MG. Hedgehog pathway inhibitor HhAntag691 is a potent inhibitor of ABCG2/ BCRP and ABCB1/Pgp. Neoplasia 2009; 11:96–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Kuan CT, Wakiya K, Herndon JE et al. MRP3: a molecular target for human glioblastoma multiforme immunotherapy. BMC Cancer 2010; 10(468):468.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reina Bendayan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Ashraf, T., Kis, O., Banerjee, N., Bendayan, R. (2013). Drug Transporters At Brain Barriers. In: Cheng, C.Y. (eds) Biology and Regulation of Blood-Tissue Barriers. Advances in Experimental Medicine and Biology, vol 763. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4711-5_2

Download citation

Publish with us

Policies and ethics