Skip to main content
Log in

Dexamethasone-Induced Modifications of the Intracerebral Hemorrhage-Related Reactions of Astrocytes in Rats

  • Published:
Neurophysiology Aims and scope

In rats with experimental intracerebral hemorrhage, we studied reactions of astrocytes, their involvement in the formation of the glial scar, and modifications of the above reactions induced by the introduction of large doses of dexamethasone. The dependence of the state of the glial scar on the size of the hemorrhage and the severity of the inflammation was observed. Dexamethasone introduction led to a sharp increase in the expression of GFAP and an increase in the specific density of astrocytes around the hemorrhage zone. The dynamics of astrogliosis under such conditions no longer depended on morphological parameters of the hemorrhage in the brain. Despite new data on the effect of dexamethasone on the reactive astrogliosis in the model of intracerebral hemorrhage, the question of changes in the morphological type of the scar within the perihematomal area (glial scar or membrane) requires further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Armada-Moreira, J. I. Gomes, C. C. Pina, et al., “Going the extra (synaptic) mile: excitotoxicity as the road toward neurodegenerative diseases,” Front. Cell. Neurosci., 14, 90 (2020); doi: https://doi.org/10.3389/fncel.2020.00090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. A. Mazur, E. H. Bills, K. M. DeSchepper, et al., “Astrocyte-derived thrombospondin induces cortical synaptogenesis in a sex-specific manner,” eNeuro, 8, No. 4, ENEURO.0014-21.2021 (2021); doi: https://doi.org/10.1523/ENEURO.0014-21.2021.

  3. S. Pöyhönen, S. Er, A. Domanskyi, and M. Airavaara, “Effects of neurotrophic factors in glial cells in the central nervous system: expression and properties in neurodegeneration and injury,” Front. Physiol., 10, 486 (2019); doi: https://doi.org/10.3389/fphys.2019.00486.

    Article  PubMed  PubMed Central  Google Scholar 

  4. M. W. Park, H. W. Cha, J. Kim, et al., “NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer’s diseases,” Redox Biol., 41, 101947 (2021); doi: https://doi.org/10.1016/j.redox.2021.101947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. B. Schreiner, E. Romanelli, P. Liberski, et al., “Astrocyte depletion impairs redox homeostasis and triggers neuronal loss in the adult CNS,” Cell Rep., 12, No. 9, 1377–1384 (2015); doi: https://doi.org/10.1016/j.celrep.2015.07.051.

    Article  CAS  PubMed  Google Scholar 

  6. Y. Y. Fan and J. Huo, “A1/A2 astrocytes in central nervous system injuries and diseases: Angels or devils?,” Neurochem. Int., 148, No. 4, 105080 (2021); doi: https://doi.org/10.1016/j.neuint.2021.105080.

  7. Y. Zhou, A. Shao, Y. Yao, et al., “Dual roles of astrocytes in plasticity and reconstruction after traumatic brain injury,” Cell Commun. Signal., 18, No. 1, 62 (2020); doi: https://doi.org/10.1186/s12964-020-00549-2.

  8. L. Li, J. Zhou, L. Han, et al., “The specific role of reactive astrocytes in stroke,” Front. Cell. Neurosci., 16, 850866 (2022); doi: https://doi.org/10.3389/fncel.2022.850866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. J. D. Neves, R. G. Mestriner, and C. A Netto, “Astrocytes in the cerebral cortex play a role in the spontaneous motor recovery following experimental striatal hemorrhage,” Neural Regen. Res., 13, No. 1, 67–68 (2018); doi: https://doi.org/10.4103/1673-5374.224372.

    Article  PubMed  PubMed Central  Google Scholar 

  10. A. N. Early, A. A. Gorman, L. J. Van Eldik, et al., “Effects of advanced age upon astrocyte-specific responses to acute traumatic brain injury in mice,” J. Neuroinflammation, 17, No. 1, 115 (2020); doi: https://doi.org/10.1186/s12974-020-01800-w.

  11. A. V. Gumenyuk, A. A. Tykhomyrov, S. I. Savosko, et al., “State of astrocytes in the mice brain under conditions of Herpes viral infection and modeled stroke,” Neurophysiology, 50, No. 5, 326–331 (2018); doi: https://doi.org/10.1007/s11062-019-09757-0.

    Article  CAS  Google Scholar 

  12. J. Klemens, M. Ciurkiewicz, E. Chludzinski, et al., “Neurotoxic potential of reactive astrocytes in canine distemper demyelinating leukoencephalitis,” Sci. Rep., 9, 11689 (2019); https://doi.org/https://doi.org/10.1038/s41598-019-48146-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Z. B. Ding, L. J. Song, Q. Wang, et al., “Astrocytes: a double-edged sword in neurodegenerative diseases,” Neural Regen. Res., 16, No. 9, 1702–1710 (2021); doi: https://doi.org/10.4103/1673-5374.306064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. S. Revilla, S. Ursulet, M. J. Álvarez-López, et al., “Lenti-GDNF gene therapy protects against Alzheimer’s disease-like neuropathology in 3xTg-AD mice and MC65 cells,” CNS Neurosci. Ther., 20, No. 11, 961–972 (2014); doi: https://doi.org/10.1111/cns.12312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. P. A. Sandercock, T. Soane, and Cochrane Stroke Group, “Corticosteroids for acute ischaemic stroke,” Cochrane Database Syst. Rev., 2011, No. 9, CD000064 (2011); doi: https://doi.org/10.1002/14651858.CD000064.pub2.

  16. S. Wintzer, J. G. Heckmann, H. B. Huttner, and S. Schwab, “Dexamethasone in patients with spontaneous intracerebral hemorrhage: an updated metaanalysis,” Cerebrovasc. Dis., 49, No. 5, 495–502 (2020); doi: https://doi.org/10.1159/000510040.

    Article  CAS  PubMed  Google Scholar 

  17. A. F. K. Vizuete, F. Hansen, E. Negri, et al., “Effects of dexamethasone on the Li-pilocarpine model of epilepsy: protection against hippocampal inflammation and astrogliosis,” J. Neuroinflammation, 15, No. 1, 68 (2018); doi: https://doi.org/10.1186/s12974-018-1109-5.

  18. L. Spataro, J. Dilgen, S. Retterer, et al., “Dexamethasone treatment reduces astroglia responses to inserted neuroprosthetic devices in rat neocortex,” Exp. Neurol., 194, No. 2, 289–300 (2005); doi: https://doi.org/10.1016/j.expneurol.2004.08.037.

    Article  CAS  PubMed  Google Scholar 

  19. N. Bridges, K. Slais, and E. Syková, “The effects of chronic corticosterone on hippocampal astrocyte numbers: a comparison of male and female Wistar rats,” Acta Neurobiol. Exp. (Wars.), 68, No. 2, 131–138 (2008); doi: https://doi.org/10.55782/ane-2008-1682.

    Article  PubMed  Google Scholar 

  20. I. N. Lee, W. C. Cheng, C. Y. Chung, et al., “Dexamethasone reduces brain cell apoptosis and inhibits inflammatory response in rats with intracerebral hemorrhage,” J. Neurosci. Res., 93, No. 1, 178–188 (2015); doi: https://doi.org/10.1002/jnr.23454.

    Article  CAS  PubMed  Google Scholar 

  21. O. Fisher, R. A. Benson, S. Wayte, et al., “Multimodal analysis of the effects of dexamethasone on high-altitude cerebral oedema: protocol for a pilot study,” Trials, 20, No. 1, 604 (2019); doi: https://doi.org/10.1186/s13063-019-3681-0.

    Article  CAS  Google Scholar 

  22. J. Zhang, X. Shi, N. Hao, et al., “Simvastatin reduces neutrophils infiltration into brain parenchyma after intracerebral hemorrhage via regulating peripheral neutrophils apoptosis,” Front. Neurosci., 12, 977 (2018); doi: https://doi.org/10.3389/fnins.2018.00977.

    Article  PubMed  PubMed Central  Google Scholar 

  23. P. An, X. C. Zhao, M. J. Liu, et al., “Dexmedetomidine alleviates intracerebral hemorrhage-induced anxietylike behaviors in mice through the inhibition of TRPV4 opening,” Front. Pharmacol., 13, 852401 (2022); doi: https://doi.org/10.3389/fphar.2022.852401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. A. R. Crowe and W. Yue, “Semi-quantitative determination of protein expression using immunohistochemistry staining and analysis.” Bio Protoc., 9, No. 24, e3465. (2019); doi: https://doi.org/10.21769/BioProtoc.3465.

  25. G. Begum, S. Song, S. Wang, et al., “Selective knockout of astrocytic Na(+) /H(+) exchanger isoform 1 reduces astrogliosis, BBB damage, infarction, and improves neurological function after ischemic stroke,” Glia, 66, No. 1, 126–144 (2018); doi: https://doi.org/10.1002/glia.23232.

    Article  PubMed  Google Scholar 

  26. H. L. McConnell, Z. Li, R. L. Woltjer, and A. Mishra, “Astrocyte dysfunction and neurovascular impairment in neurological disorders: Correlation or causation?,” Neurochem. Int., 128, 70–84 (2019); doi: https://doi.org/10.1016/j.neuint.2019.04.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. M. V. Sofroniew, “Molecular dissection of reactive astrogliosis and glial scar formation,” Trends Neurosci., 32, No. 12, 638–647 (2009); doi: https://doi.org/10.1016/j.tins.2009.08.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. T. Magnus, J. Carmen, J. Deleon, et al., “Adult glial precursor proliferation in mutant SOD1G93A mice,” Glia, 56, No. 2, 200–208 (2008); doi: https://doi.org/10.1002/glia.20604.

    Article  PubMed  Google Scholar 

  29. M. Carlén, K. Meletis, C. Göritz, et al., “Forebrain ependymal cells are Notch-dependent and generate neuroblasts and astrocytes after stroke,” Nat. Neurosci., 12, No. 3, 259–267 (2009); doi: https://doi.org/10.1038/nn.2268.

    Article  CAS  PubMed  Google Scholar 

  30. L.H. Zou, Y.J. Shi, H. He, et al., “Effects of FGF2/FGFR1 pathway on expression of A1 astrocytes after infrasound exposure,” Front. Neurosci., 13, 429 (2019); doi: https://doi.org/10.3389/fnins.2019.00429.

    Article  PubMed  PubMed Central  Google Scholar 

  31. M. F. Guo, H. Y. Zhang, Y. H. Li, et al., “Fasudil inhibits the activation of microglia and astrocytes of transgenic Alzheimer’s disease mice via the downregulation of TLR4/Myd88/NF-κB pathway,” J. Neuroimmunol., 346, No. 12, 577284 (2020); doi: https://doi.org/10.1016/j.jneuroim.2020.577284.

  32. A. King, B. Szekely, E. Calapkulu, et al., “The increased densities, but different distributions, of both C3 and S100A10 immunopositive astrocyte-like cells in Alzheimer’s disease brains suggest possible roles for both A1 and A2 astrocytes in the disease pathogenesis,” Brain Sci., 10, No. 8, 503 (2020); doi: https://doi.org/10.3390/brainsci10080503.

  33. T. Pu, W. Zou, W. Feng, et al., “Persistent malfunction of glymphatic and meningeal lymphatic drainage in a mouse model of subarachnoid hemorrhage,” Exp. Neurobiol., 28, No. 1, 104–118 (2019); doi: https://doi.org/10.5607/en.2019.28.1.104.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Savosko.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savosko, S.I., Kuraieva, A.V., Chaikovsky, Y.B. et al. Dexamethasone-Induced Modifications of the Intracerebral Hemorrhage-Related Reactions of Astrocytes in Rats. Neurophysiology (2024). https://doi.org/10.1007/s11062-024-09944-8

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s11062-024-09944-8

Keywords

Navigation