Skip to main content

Advertisement

Log in

Brachytherapy for central nervous system tumors

  • Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Radiation is a mainstay of treatment for central nervous system (CNS) tumors. Brachytherapy involves the placement of a localized/interstitial radiation source into a tumor or resection bed and has distinct advantages that can make it an attractive form of radiation when used in the appropriate setting. However, the data supporting use of brachytherapy is clouded by variability in radiation sources, techniques, delivered doses, and trial designs. The goal of this manuscript is to identify consistent themes, review the highest-level evidence and potential indications for brachytherapy in CNS tumors, as well as highlight avenues for future work. Improved understanding of the underlying biology, indications, complications, and evolving industry-academic collaborations, place brachytherapy on the brink of a resurgence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lodge WO (1936) Treatment of intrasellar tumours by radon. Br Med J 2:1257–1258. https://doi.org/10.1136/bmj.2.3963.1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Patchell RA, Tibbs PA, Regine WF et al (1998) Postoperative radiotherapy in the treatment of single metastases to the brain: a randomized trial. JAMA 280:1485–1489. https://doi.org/10.1001/jama.280.17.1485

    Article  CAS  PubMed  Google Scholar 

  3. Mahajan A, Ahmed S, McAleer MF et al (2017) Post-operative stereotactic radiosurgery versus observation for completely resected brain metastases: a single-centre, randomised, controlled, phase 3 trial. Lancet Oncol 18:1040–1048. https://doi.org/10.1016/S1470-2045(17)30414-X

    Article  PubMed  PubMed Central  Google Scholar 

  4. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996. https://doi.org/10.1056/NEJMoa043330

    Article  CAS  PubMed  Google Scholar 

  5. Bander ED, Yuan M, Reiner AS et al (2021) Durable 5-year local control for resected brain metastases with early adjuvant SRS: the effect of timing on intended-field control. Neurooncol Pract 8:278–289. https://doi.org/10.1093/nop/npab005

    Article  PubMed  PubMed Central  Google Scholar 

  6. Roth O’Brien DA, Poppas P, Kaye SM et al (2021) Timing of adjuvant fractionated stereotactic radiosurgery affects local control of resected brain metastases. Pract Radiat Oncol 11:e267–e275. https://doi.org/10.1016/j.prro.2021.01.011

    Article  PubMed  Google Scholar 

  7. Wernicke AG, Taube S, Smith AW, Parashar B (2017) Central nervous system brachytherapy. In: Mayadev J, Benedict SH, Kamrava M (eds) Handbook of image-guided brachytherapy. Springer International Publishing, Cham, pp 539–556

    Chapter  Google Scholar 

  8. Mahase SS, Navrazhina K, Schwartz TH et al (2019) Intraoperative brachytherapy for resected brain metastases. Brachytherapy 18:258–270. https://doi.org/10.1016/j.brachy.2019.01.011

    Article  PubMed  Google Scholar 

  9. Crownover RL, Wilkinson DA, Weinhous MS (1999) The radiobiology and physics of brachytherapy. Hematol Oncol Clin North Am 13:477–487. https://doi.org/10.1016/s0889-8588(05)70069-1

    Article  CAS  PubMed  Google Scholar 

  10. Vitaz TW, Warnke PC, Tabar V, Gutin PH (2005) Brachytherapy for brain tumors. J Neurooncol 73:71–86. https://doi.org/10.1007/s11060-004-2352-4

    Article  PubMed  Google Scholar 

  11. Wernicke AG, Lazow SP, Taube S et al (2016) Surgical technique and clinically relevant resection cavity dynamics following implantation of cesium-131 brachytherapy in patients with brain metastases. Operative Neurosurgery 12:49–60. https://doi.org/10.1227/NEU.0000000000000986

    Article  PubMed  Google Scholar 

  12. Ahmed S, Hamilton J, Colen R et al (2014) Change in post-surgical cavity size within first 30 days correlates with extent of surrounding edema: Consequences for postoperative radiosurgery. J Comput Assist Tomogr 38:457–460. https://doi.org/10.1097/RCT.0000000000000058

    Article  PubMed  PubMed Central  Google Scholar 

  13. Seymour ZA, Fogh SE, Westcott SK et al (2015) Interval from imaging to treatment delivery in the radiation surgery age: how long is too long? Int J Radiation Oncol Biol Phys 93:126–132. https://doi.org/10.1016/j.ijrobp.2015.05.001

    Article  Google Scholar 

  14. Atalar B, Choi CYH, Harsh GR, et al (2013) Cavity volume dynamics after resection of brain metastases and timing of postresection cavity stereotactic radiosurgery. Neurosurgery 72:180–185; discussion 185. https://doi.org/10.1227/NEU.0b013e31827b99f3

  15. Brachman DG, Youssef E, Dardis CJ et al (2018) Resection and permanent intracranial brachytherapy using modular, biocompatible cesium-131 implants: results in 20 recurrent, previously irradiated meningiomas. J Neurosurg 131:1819–1828. https://doi.org/10.3171/2018.7.JNS18656

    Article  PubMed  Google Scholar 

  16. Ali FS, Arevalo O, Zorofchian S et al (2019) Cerebral Radiation Necrosis: Incidence, Pathogenesis, Diagnostic Challenges, and Future Opportunities. Curr Oncol Rep 21:66. https://doi.org/10.1007/s11912-019-0818-y

    Article  CAS  PubMed  Google Scholar 

  17. Yondorf MZ, Faraz S, Smith AW et al (2020) Dosimetric differences between cesium-131 and iodine-125 brachytherapy for the treatment of resected brain metastases. J Contemp Brachytherapy 12:311–316. https://doi.org/10.5114/jcb.2020.98109

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ostertag CB, Kreth FW (1995) Interstitial iodine-125 radiosurgery for cerebral metastases. Br J Neurosurg 9:593–603. https://doi.org/10.1080/02688699550040873

    Article  CAS  PubMed  Google Scholar 

  19. Prados M, Leibel S, Barnett CM, Gutin P (1989) Interstitial brachytherapy for metastatic brain tumors. Cancer 63:657–660. https://doi.org/10.1002/1097-0142(19890215)63:4%3c657::aid-cncr2820630410%3e3.0.co;2-q

    Article  CAS  PubMed  Google Scholar 

  20. Laperriere NJ, Leung PM, McKenzie S et al (1998) Randomized study of brachytherapy in the initial management of patients with malignant astrocytoma. Int J Radiat Oncol Biol Phys 41:1005–1011

    Article  CAS  Google Scholar 

  21. Selker RG, Shapiro WR, Burger P et al (2002) The Brain Tumor Cooperative Group NIH Trial 87–01: a randomized comparison of surgery, external radiotherapy, and carmustine versus surgery, interstitial radiotherapy boost, external radiation therapy, and carmustine. Neurosurgery 51:343–355

    Article  Google Scholar 

  22. Scharfen CO, Sneed PK, Wara WM et al (1992) High activity iodine-125 interstitial implant for gliomas. Int J Radiat Oncol Biol Phys 24:583–591. https://doi.org/10.1016/0360-3016(92)90702-j

    Article  CAS  PubMed  Google Scholar 

  23. Gutin PH, Prados MD, Phillips TL et al (1991) External irradiation followed by an interstitial high activity iodine-125 implant “boost” in the initial treatment of malignant gliomas: NCOG study 6G–82-2. Int J Radiat Oncol Biol Phys 21:601–606. https://doi.org/10.1016/0360-3016(91)90676-u

    Article  CAS  PubMed  Google Scholar 

  24. Rogers LR, Rock JP, Sills AK et al (2006) Results of a phase II trial of the GliaSite radiation therapy system for the treatment of newly diagnosed, resected single brain metastases. J Neurosurg 105:375–384. https://doi.org/10.3171/jns.2006.105.3.375

    Article  PubMed  Google Scholar 

  25. Tatter SB, Shaw EG, Rosenblum ML et al (2003) An inflatable balloon catheter and liquid 125I radiation source (GliaSite radiation therapy system) for treatment of recurrent malignant glioma: multicenter safety and feasibility trial. J Neurosurg 99:297–303. https://doi.org/10.3171/jns.2003.99.2.0297

    Article  PubMed  Google Scholar 

  26. Gabayan AJ, Green SB, Sanan A et al (2006) GliaSite brachytherapy for treatment of recurrent malignant gliomas: a retrospective multi-institutional analysis. Neurosurgery 58:701–709. https://doi.org/10.1227/01.NEU.0000194836.07848.69

    Article  PubMed  Google Scholar 

  27. McDermott MW, Sneed PK, Gutin PH (1998) Interstitial brachytherapy for malignant brain tumors. Semin Surg Oncol 14:79–87. https://doi.org/10.1002/(sici)1098-2388(199801/02)14:1%3c79::aid-ssu10%3e3.0.co;2-4

    Article  CAS  PubMed  Google Scholar 

  28. Raleigh DR, Seymour ZA, Tomlin B et al (2016) Resection and brain brachytherapy with permanent iodine-125 sources for brain metastasis. J Neurosurg 126:1749–1755. https://doi.org/10.3171/2016.4.JNS152530

    Article  PubMed  Google Scholar 

  29. Petr MJ, McPherson CM, Breneman JC, Warnick RE (2009) Management of newly diagnosed single brain metastasis with surgical resection and permanent I-125 seeds without upfront whole brain radiotherapy. J Neurooncol 92:393. https://doi.org/10.1007/s11060-009-9868-6

    Article  PubMed  Google Scholar 

  30. Wernicke AG, Yondorf MZ, Peng L et al (2014) Phase I/II study of resection and intraoperative cesium-131 radioisotope brachytherapy in patients with newly diagnosed brain metastases: Clinical article. J Neurosurg 121:338–348. https://doi.org/10.3171/2014.3.JNS131140

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sahgal A, Jabbari S, Chen J et al (2008) Comparison of dosimetric and biologic effective dose parameters for prostate and urethra using 131 Cs and 125 I for prostate permanent implant brachytherapy. Int J Radiat Oncol Biol Phys 72:247–254. https://doi.org/10.1016/j.ijrobp.2008.05.013

    Article  CAS  PubMed  Google Scholar 

  32. Armpilia CI, Dale RG, Coles IP et al (2003) The determination of radiobiologically optimized half-lives for radionuclides used in permanent brachytherapy implants. Int J Radiat Oncol Biol Phys 55:378–385. https://doi.org/10.1016/s0360-3016(02)04208-6

    Article  CAS  PubMed  Google Scholar 

  33. Han DY, Ma L, Braunstein S et al (2018) Resection cavity contraction effects in the use of radioactive sources (1–25 versus Cs-131) for intra-operative brain implants. Cureus 10:e2079. https://doi.org/10.7759/cureus.2079

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chen WC, Lafreniere M, Phuong C et al (2022) Resection with intraoperative cesium-131 brachytherapy as salvage therapy for recurrent brain tumors. J Neurosurg 1:1–7. https://doi.org/10.3171/2021.10.JNS211886

    Article  Google Scholar 

  35. Brachman D, Youssef E, Dardis C et al (2019) Surgically targeted radiation therapy: safety profile of collagen tile brachytherapy in 79 recurrent, previously irradiated intracranial neoplasms on a prospective clinical trial. Brachytherapy 18:S35–S36. https://doi.org/10.1016/j.brachy.2019.04.076

    Article  Google Scholar 

  36. Gessler DJ, Ferreira C, Dusenbery K, Chen CC (2020) GammaTile®: surgically targeted radiation therapy for glioblastomas. Future Oncol 16:2445–2455. https://doi.org/10.2217/fon-2020-0558

    Article  CAS  PubMed  Google Scholar 

  37. Patchell RA, Tibbs PA, Walsh JW et al (1990) A randomized trial of surgery in the treatment of single metastases to the brain. N Engl J Med 322:494–500. https://doi.org/10.1056/NEJM199002223220802

    Article  CAS  PubMed  Google Scholar 

  38. Brown PD, Ballman KV, Cerhan JH et al (2017) Postoperative stereotactic radiosurgery compared with whole brain radiotherapy for resected metastatic brain disease (NCCTG N107C/CEC·3): a multicentre, randomised, controlled, phase 3 trial. Lancet Oncol 18:1049–1060. https://doi.org/10.1016/S1470-2045(17)30441-2

    Article  PubMed  PubMed Central  Google Scholar 

  39. Brown PD, Jaeckle K, Ballman KV et al (2016) Effect of radiosurgery alone vs radiosurgery with whole brain radiation therapy on cognitive function in patients with 1 to 3 brain metastases: a randomized clinical trial. JAMA 316:401–409. https://doi.org/10.1001/jama.2016.9839

    Article  PubMed  PubMed Central  Google Scholar 

  40. Brennan C, Yang TJ, Hilden P et al (2014) A phase 2 trial of stereotactic radiosurgery boost after surgical resection for brain metastases. Int J Radiat Oncol Biol Phys 88:130–136. https://doi.org/10.1016/j.ijrobp.2013.09.051

    Article  PubMed  PubMed Central  Google Scholar 

  41. Vogelbaum MA, Angelov L, Lee S-Y et al (2006) Local control of brain metastases by stereotactic radiosurgery in relation to dose to the tumor margin. J Neurosurg 104:907–912. https://doi.org/10.3171/jns.2006.104.6.907

    Article  PubMed  Google Scholar 

  42. Ruge MI, Kickingereder P, Grau S et al (2011) Stereotactic biopsy combined with stereotactic 125iodine brachytherapy for diagnosis and treatment of locally recurrent single brain metastases. J Neurooncol 105:109. https://doi.org/10.1007/s11060-011-0571-z

    Article  PubMed  Google Scholar 

  43. Huang K, Sneed PK, Kunwar S et al (2008) Surgical resection and permanent iodine-125 brachytherapy for brain metastases. J Neurooncol 91:83. https://doi.org/10.1007/s11060-008-9686-2

    Article  CAS  PubMed  Google Scholar 

  44. Sneed PK, Mendez J, Vemer-van den Hoek JGM et al (2015) Adverse radiation effect after stereotactic radiosurgery for brain metastases: incidence, time course, and risk factors. J Neurosurg 123:373–386. https://doi.org/10.3171/2014.10.JNS141610

    Article  PubMed  Google Scholar 

  45. Minniti G, Clarke E, Lanzetta G et al (2011) Stereotactic radiosurgery for brain metastases: analysis of outcome and risk of brain radionecrosis. Radiat Oncol 6:48. https://doi.org/10.1186/1748-717X-6-48

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jhaveri J, Chowdhary M, Zhang X et al (2018) Does size matter? Investigating the optimal planning target volume margin for postoperative stereotactic radiosurgery to resected brain metastases. J Neurosurg 130:797–803. https://doi.org/10.3171/2017.9.JNS171735

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mengue L, Bertaut A, Ngo Mbus L et al (2020) Brain metastases treated with hypofractionated stereotactic radiotherapy: 8 years experience after Cyberknife installation. Radiat Oncol 15:82. https://doi.org/10.1186/s13014-020-01517-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ebner D, Rava P, Gorovets D et al (2015) Stereotactic radiosurgery for large brain metastases. J Clin Neurosci 22:1650–1654. https://doi.org/10.1016/j.jocn.2015.05.019

    Article  PubMed  Google Scholar 

  49. Kohutek ZA, Yamada Y, Chan TA et al (2015) Long-term risk of radionecrosis and imaging changes after stereotactic radiosurgery for brain metastases. J Neurooncol 125:149–156. https://doi.org/10.1007/s11060-015-1881-3

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wernicke AG, Hirschfeld CB, Smith AW et al (2017) Clinical outcomes of large brain metastases treated with neurosurgical resection and intraoperative cesium-131 brachytherapy: results of a prospective trial. Int J Radiat Oncol Biol Phys 98:1059–1068. https://doi.org/10.1016/j.ijrobp.2017.03.044

    Article  PubMed  Google Scholar 

  51. Wernicke AG, Smith AW, Taube S et al (2017) Cesium-131 brachytherapy for recurrent brain metastases: durable salvage treatment for previously irradiated metastatic disease. J Neurosurg 126:1212–1219. https://doi.org/10.3171/2016.3.JNS152836

    Article  CAS  PubMed  Google Scholar 

  52. Wilcox JA, Brown S, Reiner AS et al (2021) Salvage resection of recurrent previously irradiated brain metastases: tumor control and radiation necrosis dependency on adjuvant re-irradiation. J Neurooncol. https://doi.org/10.1007/s11060-021-03872-x

    Article  PubMed  Google Scholar 

  53. Pham A, Yondorf MZ, Parashar B et al (2016) Neurocognitive function and quality of life in patients with newly diagnosed brain metastasis after treatment with intra-operative cesium-131 brachytherapy: a prospective trial. J Neurooncol 127:63–71. https://doi.org/10.1007/s11060-015-2009-5

    Article  CAS  PubMed  Google Scholar 

  54. Chang EL, Wefel JS, Hess KR et al (2009) Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol 10:1037–1044. https://doi.org/10.1016/S1470-2045(09)70263-3

    Article  PubMed  Google Scholar 

  55. Wernicke AG, Yondorf MZ, Parashar B et al (2016) The cost-effectiveness of surgical resection and cesium-131 intraoperative brachytherapy versus surgical resection and stereotactic radiosurgery in the treatment of metastatic brain tumors. J Neurooncol 127:145–153. https://doi.org/10.1007/s11060-015-2026-4

    Article  CAS  PubMed  Google Scholar 

  56. Julie DA, Lazow SP, Vanderbilt DB et al (2020) A matched-pair analysis of clinical outcomes after intracavitary cesium-131 brachytherapy versus stereotactic radiosurgery for resected brain metastases. J Neurosurg 134:1447–1454. https://doi.org/10.3171/2020.3.JNS193419

    Article  PubMed  Google Scholar 

  57. Yusuf MB, Amsbaugh MJ, Burton E et al (2018) Increasing time to postoperative stereotactic radiation therapy for patients with resected brain metastases: investigating clinical outcomes and identifying predictors associated with time to initiation. J Neurooncol 136:545–553. https://doi.org/10.1007/s11060-017-2679-2

    Article  PubMed  Google Scholar 

  58. Scharl S, Kirstein A, Kessel KA et al (2019) Stereotactic irradiation of the resection cavity after surgical resection of brain metastases—when is the right timing? Acta Oncol 58:1714–1719. https://doi.org/10.1080/0284186X.2019.1643917

    Article  CAS  PubMed  Google Scholar 

  59. Petrecca K, Guiot M-C, Panet-Raymond V, Souhami L (2013) Failure pattern following complete resection plus radiotherapy and temozolomide is at the resection margin in patients with glioblastoma. J Neurooncol 111:19–23. https://doi.org/10.1007/s11060-012-0983-4

    Article  PubMed  Google Scholar 

  60. Florell RC, Macdonald DR, Irish WD et al (1992) Selection bias, survival, and brachytherapy for glioma. J Neurosurg 76:179–183. https://doi.org/10.3171/jns.1992.76.2.0179

    Article  CAS  PubMed  Google Scholar 

  61. Stummer W, Reulen H-J, Meinel T et al (2008) Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery 62:564–576. https://doi.org/10.1227/01.neu.0000317304.31579.17

    Article  PubMed  Google Scholar 

  62. Li YM, Suki D, Hess K, Sawaya R (2016) The influence of maximum safe resection of glioblastoma on survival in 1229 patients: can we do better than gross-total resection? J Neurosurg 124:977–988. https://doi.org/10.3171/2015.5.JNS142087

    Article  PubMed  Google Scholar 

  63. Lacroix M, Abi-Said D, Fourney DR et al (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95:190–198. https://doi.org/10.3171/jns.2001.95.2.0190

    Article  CAS  PubMed  Google Scholar 

  64. Keles GE, Anderson B, Berger MS (1999) The effect of extent of resection on time to tumor progression and survival in patients with glioblastoma multiforme of the cerebral hemisphere. Surg Neurol 52:371–379

    Article  CAS  Google Scholar 

  65. Brem H, Piantadosi S, Burger PC et al (1995) Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The Lancet 345:1008–1012. https://doi.org/10.1016/S0140-6736(95)90755-6

    Article  CAS  Google Scholar 

  66. van den Bent MJ, Brandes AA, Taphoorn MJB et al (2013) Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951. J Clin Oncol 31:344–350. https://doi.org/10.1200/JCO.2012.43.2229

    Article  CAS  PubMed  Google Scholar 

  67. Combs SE, Thilmann C, Edler L et al (2005) Efficacy of fractionated stereotactic reirradiation in recurrent gliomas: long-term results in 172 patients treated in a single institution. JCO 23:8863–8869. https://doi.org/10.1200/JCO.2005.03.4157

    Article  Google Scholar 

  68. Chapman CH, Hara JH, Molinaro AM et al (2019) Reirradiation of recurrent high-grade glioma and development of prognostic scores for progression and survival. Neuro-Oncology Practice 6:364–374. https://doi.org/10.1093/nop/npz017

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wernicke AG, Taube S, Smith AW et al (2020) Cs-131 brachytherapy for patients with recurrent glioblastoma combined with bevacizumab avoids radiation necrosis while maintaining local control. Brachytherapy 19:705–712. https://doi.org/10.1016/j.brachy.2020.06.013

    Article  PubMed  Google Scholar 

  70. Gessler DJ, Neil EC, Shah R et al (2022) GammaTile® brachytherapy in the treatment of recurrent glioblastomas. Neuro-Oncol Adv. https://doi.org/10.1093/noajnl/vdab185

    Article  Google Scholar 

  71. Alexiou GA, Tsiouris S, Kyritsis AP et al (2009) Glioma recurrence versus radiation necrosis: accuracy of current imaging modalities. J Neurooncol 95:1–11. https://doi.org/10.1007/s11060-009-9897-1

    Article  PubMed  Google Scholar 

  72. Sughrue ME, Kane AJ, Shangari G et al (2010) The relevance of Simpson Grade I and II resection in modern neurosurgical treatment of World Health Organization Grade I meningiomas. J Neurosurg 113:1029–1035. https://doi.org/10.3171/2010.3.JNS091971

    Article  PubMed  Google Scholar 

  73. Aghi MK, Carter BS, Cosgrove GR et al (2009) Long-term recurrence rates of atypical meningiomas after gross total resection with or without postoperative adjuvant radiation. Neurosurgery 64:56–60. https://doi.org/10.1227/01.NEU.0000330399.55586.63

    Article  PubMed  Google Scholar 

  74. Komotar RJ, Iorgulescu JB, Raper DMS et al (2012) The role of radiotherapy following gross-total resection of atypical meningiomas. J Neurosurg 117:679–686. https://doi.org/10.3171/2012.7.JNS112113

    Article  PubMed  Google Scholar 

  75. Walcott BP, Nahed BV, Brastianos PK, Loeffler JS (2013) Radiation treatment for WHO Grade II and III meningiomas. Front Oncol 3:227. https://doi.org/10.3389/fonc.2013.00227

    Article  PubMed  PubMed Central  Google Scholar 

  76. Lam Shin Cheung V, Kim A, Sahgal A, Das S (2018) Meningioma recurrence rates following treatment: a systematic analysis. J Neurooncol 136:351–361. https://doi.org/10.1007/s11060-017-2659-6

    Article  PubMed  Google Scholar 

  77. Nanda A, Bir SC, Konar S et al (2016) Outcome of resection of WHO Grade II meningioma and correlation of pathological and radiological predictive factors for recurrence. J Clin Neurosci 31:112–121. https://doi.org/10.1016/j.jocn.2016.02.021

    Article  PubMed  Google Scholar 

  78. Sughrue ME, Sanai N, Shangari G et al (2010) Outcome and survival following primary and repeat surgery for World Health Organization Grade III meningiomas. J Neurosurg 113:202–209. https://doi.org/10.3171/2010.1.JNS091114

    Article  PubMed  Google Scholar 

  79. Jenkinson MD, Javadpour M, Haylock BJ et al (2015) The ROAM/EORTC-1308 trial: radiation versus observation following surgical resection of atypical meningioma: study protocol for a randomised controlled trial. Trials 16:519. https://doi.org/10.1186/s13063-015-1040-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rogers L, Zhang P, Vogelbaum MA et al (2017) Intermediate-risk meningioma: initial outcomes from NRG oncology RTOG 0539. J Neurosurg 129:35–47. https://doi.org/10.3171/2016.11.JNS161170

    Article  PubMed  PubMed Central  Google Scholar 

  81. Rogers CL, Won M, Vogelbaum MA et al (2020) High-risk meningioma: initial outcomes from NRG oncology/RTOG 0539. Int J Radiat Oncol Biol Phys 106:790–799. https://doi.org/10.1016/j.ijrobp.2019.11.028

    Article  PubMed  Google Scholar 

  82. Shepard MJ, Xu Z, Kearns K et al (2021) Stereotactic radiosurgery for atypical (World Health Organization II) and Anaplastic (World Health Organization III) Meningiomas: results from a multicenter, international cohort study. Neurosurgery 88:980–988. https://doi.org/10.1093/neuros/nyaa553

    Article  PubMed  Google Scholar 

  83. Kaley T, Barani I, Chamberlain M et al (2014) Historical benchmarks for medical therapy trials in surgery- and radiation-refractory meningioma: a RANO review. Neuro Oncol 16:829–840. https://doi.org/10.1093/neuonc/not330

    Article  PubMed  PubMed Central  Google Scholar 

  84. Magill ST, Lau D, Raleigh DR et al (2017) Surgical resection and interstitial iodine-125 brachytherapy for high-grade meningiomas: a 25-year series. Neurosurgery 80:409–416. https://doi.org/10.1227/NEU.0000000000001262

    Article  PubMed  Google Scholar 

  85. Ware ML, Larson DA, Sneed PK et al (2004) Surgical resection and permanent brachytherapy for recurrent atypical and malignant meningioma. Neurosurgery 54:55–63. https://doi.org/10.1227/01.neu.0000097199.26412.2a

    Article  PubMed  Google Scholar 

  86. Koch MJ, Agarwalla PK, Royce TJ et al (2019) Brachytherapy as an adjuvant for recurrent atypical and malignant meningiomas. Neurosurgery 85:E910–E916. https://doi.org/10.1093/neuros/nyz115

    Article  PubMed  PubMed Central  Google Scholar 

  87. Mooney MA, Bi WL, Cantalino JM et al (2020) Brachytherapy with surgical resection as salvage treatment for recurrent high-grade meningiomas: a matched cohort study. J Neurooncol 146:111–120. https://doi.org/10.1007/s11060-019-03342-5

    Article  CAS  PubMed  Google Scholar 

  88. Di L, Eichberg DG, Park YJ et al (2021) Rapid intraoperative diagnosis of meningiomas using stimulated raman histology. World Neurosurgery 150:e108–e116. https://doi.org/10.1016/j.wneu.2021.02.097

    Article  PubMed  Google Scholar 

  89. Nassiri F, Liu J, Patil V et al (2021) A clinically applicable integrative molecular classification of meningiomas. Nature 597:119–125. https://doi.org/10.1038/s41586-021-03850-3

    Article  CAS  PubMed  Google Scholar 

  90. Hale AT, Stonko DP, Wang L et al (2018) Machine learning analyses can differentiate meningioma grade by features on magnetic resonance imaging. Neurosurg Focus 45:E4. https://doi.org/10.3171/2018.8.FOCUS18191

    Article  PubMed  Google Scholar 

  91. Park YW, Oh J, You SC et al (2019) Radiomics and machine learning may accurately predict the grade and histological subtype in meningiomas using conventional and diffusion tensor imaging. Eur Radiol 29:4068–4076. https://doi.org/10.1007/s00330-018-5830-3

    Article  PubMed  Google Scholar 

  92. Reddy AK, Ryoo JS, Denyer S et al (2019) Determining the role of adjuvant radiotherapy in the management of meningioma: a surveillance, epidemiology, and end results analysis. Neurosurg Focus 46:E3. https://doi.org/10.3171/2019.3.FOCUS1971

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

EDB is a Leon Levy Research Fellow, Feil Family Brain and Mind Research Institute.

Author information

Authors and Affiliations

Authors

Contributions

EB, JPSK, and THS wrote the manuscript and prepared the figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Theodore H. Schwartz.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bander, E.D., Knisely, J.P.S. & Schwartz, T.H. Brachytherapy for central nervous system tumors. J Neurooncol 158, 393–403 (2022). https://doi.org/10.1007/s11060-022-04026-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-022-04026-3

Keywords

Navigation