Skip to main content
Log in

Silver birch (Betula pendula Roth.) culture initiation in vitro and genotype determined differences in micropropagation

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

Micropropagation has several advantages over conventional vegetative propagation methods, but it is limited by genotype responsiveness. We assessed the effect of age of the mother-tree and the time of explant collection on culture initiation, as well as the multiplication ability and effect of different nutrient media and plant growth regulators on silver birch genotypes. Explants collected from 1‐year‐old trees (66%) and explants collected in spring (64–67%) developed a significantly (both p < 0.001) higher proportion of shoots than those from 15‐year‐old trees (39%) and those collected in mid-summer (31%) and autumn (29%), respectively. In a stabilised culture, the length of the main shoot varied from 1.3 to 7.8 cm between genotypes, and the multiplication rate ranged from 1.0 to 6.8 shoots per explant. Hyperhydrated shoots were present in 17 out of 50 clones, and, among the clones, ranged from 14 to 50%. Cultures on the Murashige and Skoog basal medium had a higher multiplication rate than cultures on a Woody Plant Medium, and the application of zeatin provided better results than 6‐benzylaminopurine. The difference between cytokinin types was 11–29% for the multiplication rate and 21–29% for the length of the main stem. The highest multiplication rate was obtained using a zeatin concentration of 0.5 mg L−1. However, better shoot growth and proliferation had a significant positive relation to shoot hyperhydration (all p < 0.001). Therefore, a medium with an optimal balance between the multiplication rate and the number of hyperhydrated shoots should be carefully selected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • von Aderkas P, Bonga JM (2000) Influencing micropropagation and somatic embryogenesis in mature trees by manipulation of phase change, stress and culture environment. Tree Physiol 20:921–928. https://doi.org/10.1093/treephys/20.14.921

    Article  Google Scholar 

  • Aubakirova LS, Kalashnikova EA (2011) Experimental morphogenesis in a curly birch tissue culture. Russ Agric Sci 37:109–110. https://doi.org/10.3103/S1068367411020030

    Article  Google Scholar 

  • Benson EE (2000) Special symposium: in vitro plant recalcitrance in vitro plant recalcitrance: an introduction. Vitro Cell Dev Biol-Plant 36:141–148. https://doi.org/10.1007/s11627-000-0029-z

    Article  Google Scholar 

  • Brus D, Hengeveld GM, Walvoort DJJ, Goedhart PW, Heidema AH, Nabuurs GJ, Gunia K (2012) Statistical mapping of tree species over Europe. Eur J Forest Res 131:145–157. https://doi.org/10.1007/s10342-011-0513-5

    Article  Google Scholar 

  • Bušs K (1997) Forest ecosystem classification in Latvia. Proc Latvian Acad Sci Sect B 51:204–218

    Google Scholar 

  • Cambours MA, Nejad P, Granhall U, Ramstedt M (2005) Frost-related dieback of willows. Comparison of epiphytically and endophytically isolated bacteria from different Salix clones, with emphasis on ice nucleation activity, pathogenic properties and seasonal variation. Biomass Bioenerg 28:15–27. https://doi.org/10.1016/j.biombioe.2004.06.003

    Article  Google Scholar 

  • Cheng Z-M, Schnurr JP, Dai W (2000) Micropropagation of Betula platyphylla ‘Fargo’ via shoot tip culture and regeneration from leaf tissues. J Environ Hort 18:119–122. https://doi.org/10.24266/0738-2898-18.2.119

    Article  Google Scholar 

  • Civínová B, Sladký Z (1990) Stimulation of the regeneration capacity of tree shoot segment explants in vitro. Biol plant 32:407. https://doi.org/10.1007/BF02890885

    Article  Google Scholar 

  • Debergh P, Aitken-Christie J, Cohen D, Grout B, Von Arnold S, Zimmerman R, Ziv M (1992) Reconsideration of the term ‘vitrification’ as used in micropropagation. Plant Cell Tiss Organ Cult 30:135–140. https://doi.org/10.1007/BF00034307

    Article  Google Scholar 

  • Donis J, Saleniece R, Krisans O, Dubrovskis E, Kitenberga M, Jansons A (2020) A financial assessment of windstorm risks for Scots pine stands in hemiboreal forests. Forests 11:566. https://doi.org/10.3390/f11050566

    Article  Google Scholar 

  • Dubois H, Verkasalo E, Claessens H (2020) Potential of birch (Betula pendula Roth and B. pubescensEhrh.) for forestry and forest-based industry sector within the changing climatic and socio-economic context of western Europe. Forests 11:336. https://doi.org/10.3390/f11030336

    Article  Google Scholar 

  • Ewald D, Naujoks G, Piegert H (2000) Performance and wood quality of in vitro propagated hybrid curly birch (Betula pendula × Betula pendula var. carelica Sok.) clones. Silvae Genet 49:98–101

    Google Scholar 

  • Ewald D, Naujoks G, Welander M. Zhu LH, Hagqvist R, Salonen M, Harrison A (2002) Micropropagation and birch field trials. In: Proceedings of the workshop on high quality birch: clonal propagation and wood properties, pp 37–46

  • Franck T, Kevers C, Gaspar T (1995) Protective enzymatic systems against activated oxygen species compared in normal and vitrified shoots of Prunus avium L.L. raised in vitro. Plant Growth Regul 16:253–256. https://doi.org/10.1007/BF00024782

    Article  CAS  Google Scholar 

  • Gailis A, Augustovs J, Purvins A, Jansons A (2012) Differences of Latvia’s silver birch (Betula pendula Roth.) provenances. Special Issue Sci ProcMežzinātne 25:185–186

    Google Scholar 

  • Gailis A, Kārkliņa A, Purviņš A, Matisons R, Zeltiņš P, Jansons Ā (2020a) Effect of breeding on income at first commercial thinning in silver birch plantations. Forests 11:327. https://doi.org/10.3390/f11030327

    Article  Google Scholar 

  • Gailis A, Zeltiņš P, Purviņš A, Augustovs J, Vīndedzis V, Zariņa I, Jansons Ā (2020b) Genetic parameters of growth and quality traits in open-pollinated silver birch progeny tests. Silva Fenn 54:10220. https://doi.org/10.14214/sf.10220

    Article  Google Scholar 

  • Gaspar T (1991) Vitrification in micropropagation. In: Bajaj YPS (ed) High-tech and micropropagation I. Springer, Berlin, pp 116–126

    Chapter  Google Scholar 

  • George EF, Hall MA, De Klerk GJ (2008a) Stock plant physiological factors affecting growth and morphogenesis. In: George EF, Hall MA, Klerk GJD (eds) Plant propagation by tissue culture. Springer, Dordrecht, pp 403–422

    Google Scholar 

  • George EF, Hall MA, De Klerk GJ (2008b) Plant growth regulators II: cytokinins, their analogues and antagonists. In: George EF, Hall MA, Klerk GJD (eds) Plant propagation by tissue culture. Springer, Dordrecht, pp 205–226

    Google Scholar 

  • Girgžde E, Samsone I (2017) Effect of cytokinins on shoot proliferation of silver birch (Betula pendula) in tissue culture. Environ Exp Biol 15:1–5. https://doi.org/10.22364/eeb.15.01

    Article  Google Scholar 

  • Hetemäki L, Palahí M, Nasi R (2020) Seeing the wood in the forests. Knowledge to Action 01, European Forest Institute

  • Hohtola A (1988) Seasonal changes in explant viability and contamination of tissue cultures from mature Scots pine. Plant Cell Tiss Organ Cult 15:211–222. https://doi.org/10.1007/BF00033645

    Article  Google Scholar 

  • Hynynen J, Niemistö P, Viherä-Aarnio A, Brunner A, Hein S, Velling P (2010) Silviculture of birch (Betula pendula Roth and Betula pubescens Ehrh.) in northern Europe. Forestry 83:103–119. https://doi.org/10.1093/forestry/cpp035

    Article  Google Scholar 

  • Iliev I, Rubos A, Scaltsoyiannes A, Nellas C, Kitin P (2003) Anatomical study of in vitro obtained fasciated shoots from Betula pendula Roth. ISIS Acta Hort 616:481–484

    Article  Google Scholar 

  • Jansons Ā, Gailis A, Donis J (2011) Profitability of Silver birch (Betula pendula Roth.) breeding in Latvia. In: Annual 17th international scientific conference proceedings, research for rural development, vol 2, pp 33–38

  • Jansson G, Hansen JK, Haapanen M, Kvaalen H, Steffenrem A (2017) The genetic and economic gains from forest tree breeding programmes in Scandinavia and Finland. Scand J For Res 32:273–286. https://doi.org/10.1080/02827581.2016.1242770

    Article  Google Scholar 

  • Jokinen K, Törmälä T (1991) Micropropagation of silver birch (Betula pendula Roth.) and clonal fidelity of mass propagated birch plants. In: Ahuja MR (ed) Woody plant biotechnology. Plenum Press, New York, pp 31–36

    Chapter  Google Scholar 

  • Jones OP, Welander M, Waller BJ, Ridout MS (1996) Micropropagation of adult birch trees: production and field performance. Tree Physiol 16:521–525. https://doi.org/10.1093/treephys/16.5.521

    Article  CAS  PubMed  Google Scholar 

  • Kevers C, Franck T, Strasser RJ, Dommes J, Gaspar T (2004) Hyperhydricity of micropropagated shoots: a typically stress-induced change of physiological state. Plant Cell Tissue Organ Cult 77:181–191. https://doi.org/10.1023/B:TICU.0000016825.18930.e4

    Article  Google Scholar 

  • Kilpeläinen H, Lindblad J, Heräjärvi H, Verkasalo E (2011) Saw log recovery and stem quality of birch from thinnings in southern Finland. Silva Fenn 45:117. https://doi.org/10.14214/sf.117

    Article  Google Scholar 

  • Koski V, Rousi M (2005) A review of the promises and constraints of breeding silver birch (Betula pendula Roth) in Finland. Forestry 78:187–198. https://doi.org/10.1093/forestry/cpi017

    Article  Google Scholar 

  • Lange M, Schaber J, Marx A, Jäckel G, Badeck FW, Seppelt R, Doktor D (2016) Simulation of forest tree species’ bud burst dates for different climate scenarios: chilling requirements and photo-period may limit bud burst advancement. Int J Biometeorol 60:1711–1726. https://doi.org/10.1007/s00484-016-1161-8

    Article  PubMed  Google Scholar 

  • Lazdiņa D, Šēnhofa S, Zeps M, Makovskis K, Bebre I, Jansons Ā (2016) The early growth and fall frost damage of poplar clones in Latvia. Agron Res 14:109–122

    Google Scholar 

  • Linkosalo T (2000) Mutual regularity of spring phenology of some boreal tree species: predicting with other species and phenological models. Can J For Res 30:667–673. https://doi.org/10.1139/x99-243

    Article  Google Scholar 

  • Lloyd G, McCown B (1980) Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Comb Proc Int Plant PropertSoc 30:421–427

    Google Scholar 

  • Lutter R, Tullus A, Kanal A, Tullus T, Vares A, Tullus H (2015) Growth development and plant–soil relations in midterm silver birch (Betula pendula Roth) plantations on previous agricultural lands in hemiboreal Estonia. Eur J Forest Res 134:653–667. https://doi.org/10.1007/s10342-015-0879-x

    Article  Google Scholar 

  • Magnusson VA, Castillo CM, Dai W (2009) Micropropagation of two elite birch species trough shoot proliferation and regeneration. In: Romano A (ed) ISHS Acta horticulturae 812: III international symphosium on aclimatization and establishment of micropropagated plants, pp 223–230

  • McCown BH (2000) Special symposium: In vitro plant recalcitrance. Recalcitrance of woody and herbaceous perennial plants: dealing with genetic predeterminism. Vitro Cell Dev Biol-Plant 36:149–154. https://doi.org/10.1007/s11627-000-0030-6

    Article  Google Scholar 

  • McCown BH, Sellmer JC (1987) General media and vessels suitable for woody plant culture. In: Bonga JM, Durzan DJ (eds) Cell and tissue culture in forestry. Forestry sciences, vol 24–26, pp 4–16

  • Meier‐Dinkel A (1992) Micropropagation of birches (Betula spp.). In: Bajaj YPS (ed) High-tech and micropropagation II. Biotechnology in agriculture and forestry, vol 18, pp 40–81

  • Mezei P, Jakuš R, Pennerstorfer J, Havašová M, Škvarenina J, Ferenčík J, Slivinský J, Bičárová S, Bilčík D, Blaženec M, Netherer S (2017) Storms, temperature maxima and the Eurasian spruce bark beetle Ips typographus—An infernal trio in Norway spruce forests of the Central European High Tatra Mountains. Agr Forest Meteorol 242:85–95. https://doi.org/10.1016/j.agrformet.2017.04.004

    Article  Google Scholar 

  • Mikola J (2009) Successes and failures in forest tree cutting production in Finland. Working papers of the Finnish Forest Research Institute, vol 114, pp 39–43

  • Mola-Yudego B, Arevalo J, Díaz-Yáñez O, Dimitriou I, Freshwater E, Haapala A, Khanam T, Selkimäki M (2017) Reviewing wood biomass potentials for energy in Europe: the role of forests and fast growing plantations. Biofuels 8:401–410. https://doi.org/10.1080/17597269.2016.1271627

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Peternel Š, Gabrovšek K, Gogala N, Regvar M (2009) In vitro propagation of European aspen (Populus tremula L.) from axillary buds via organogenesis. Sci Hortic 121:109–112. https://doi.org/10.1016/j.scienta.2009.01.010

    Article  CAS  Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Fondation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Rathwell R, Shukla MR, Jones AMP, Saxena PK (2016) In vitro propagation of cherry birch (Betula lenta L.). Can J Plant Sci 96:571–578. https://doi.org/10.1139/cjps-2015-0331

    Article  CAS  Google Scholar 

  • Rousi M, Heinonen J, Neuvonen S (2011) Intrapopulation variation in flowering phenology and fecundity of silver birch, implications for adaptability to changing climate. For Ecol Manag 262:2378–2385. https://doi.org/10.1016/j.foreco.2011.08.038

    Article  Google Scholar 

  • Ruotsalainen S (2014) Increased forest production through forest tree breeding. Scand J For Res 29:333–344. https://doi.org/10.1080/02827581.2014.926100

    Article  Google Scholar 

  • Rytter L, Johansson K, Karlsson B, Stener LG (2013) Tree species, genetics and regeneration for bioenergy feedstock in northern Europe. In: Kellomäki S, Kilpeläinen A, Alam A (eds) Forest bioenergy production. Springer, New York, pp 7–37

    Chapter  Google Scholar 

  • Ryynänen L, Aronen T (2005) Genome fidelity during short-and long-term tissue culture and differentially cryostored meristems of silver birch (Betula pendula). Plant Cell Tiss Organ Cult 83:21–32. https://doi.org/10.1007/s11240-005-3396-7

    Article  CAS  Google Scholar 

  • Ryynänen L, Ryynänen M (1986) Propagation of adult curly-birch succeeds with tissue culture. Silva fenn 20:139–147

    Article  Google Scholar 

  • Seidl R, Thom D, Kautz M, Martin-Benito D, Peltoniemi M, Vacchiano G, Wild J, Ascoli D, Petr M, Honkaniemi J, Lexer MJ, Trotsiuk V, Mairota P, Svoboda M, Fabrika M, Nagel TA, Reyer CPO (2017) Forest disturbances under climate change. Nat Clim Change 7:395–402. https://doi.org/10.1038/nclimate3303

    Article  Google Scholar 

  • Šēnhofa S, Zeps M, Gailis A, Kāpostiņš R, Jansons Ā (2016) Development of stem cracks in young hybrid aspen plantations. For Stud 65:16–23. https://doi.org/10.1515/fsmu-2016-0008

    Article  Google Scholar 

  • Shukla MR, Jones AMP, Sullivan JA, Liu C, Gosling S, Saxena PK (2012) In vitro conservation of American elm (Ulmus americana): potential role of auxin metabolism in sustained plant proliferation. Can J For Res 42:686–697. https://doi.org/10.1139/x2012-022

    Article  CAS  Google Scholar 

  • Stener LG, Jansson G (2005) Improvement of Betula pendula by clonal and progeny testing of phenotypically selected trees. Scand J For Res 20:292–303. https://doi.org/10.1080/02827580510036265

    Article  Google Scholar 

  • Tao FJ, Zhang ZY, Zhou J, Yao N, Wang DM (2007) Contamination and browning in tissue culture of Platanus occidentalis L. For Stud China 9:279–282. https://doi.org/10.1007/s11632-007-0044-9

    Article  Google Scholar 

  • Uri V, Varik M, Aosaar J, Kanal A, Kukumägi M, Lõhmus K (2012) Biomass production and carbon sequestration in a fertile silver birch (Betula pendula Roth) forest chronosequence. For Ecol Manag 267:117–126. https://doi.org/10.1016/j.foreco.2011.11.033

    Article  Google Scholar 

  • Vaičiukynė M, Žiauka J, Kuusienė S (2017) Factors that determine shoot viability and root development during in vitro adaptation and propagation of silver birch (Betula pendula Roth). Biologija 63:246–255. https://doi.org/10.6001/biologija.v63i3.3579

    Article  Google Scholar 

  • Valsts meža dienests (2019) Meža statistikas CD. [State Forest Service, Forest statistics]. https://www.zm.gov.lv/public/files/CMS_Static_Page_Doc/00/00/01/49/35/CD_2019.7z (in Latvian)

  • Viherä-Aarnio A, Velling P (2001) Micropropagated silver birches (Betula pendula) in the field—performance and clonal differences. Silva Fenn 35:385–401. https://doi.org/10.14214/sf.576

    Article  Google Scholar 

  • Viherä-Aarnio A, Velling P (2017) Growth, wood density and bark thickness of silver birch originating from the Baltic countries and Finland in two Finnish provenance trials. Silva Fenn 51:7731. https://doi.org/10.14214/sf.7731

    Article  Google Scholar 

  • Welander M (1988) Biochemical and anatomical studies of birch (Betula pendula Roth) buds exposed to different climatic conditions in relation to growth in vitro. In: Hanover JW, Keathley DE, Wilson CM, Kuny G (eds) Genetic manipulation of woody plants. Springer, Boston, pp 79–99

    Chapter  Google Scholar 

  • Welander M (1993) Micropropagation of birch. In: Ahuja MR (ed) Micropropagation of woody plants. Springer, Dordrecht, pp 223–246

    Chapter  Google Scholar 

  • Wendling I, Trueman SJ, Xavier A (2014) Maturation and related aspects in clonal forestry—part II: reinvigoration, rejuvenation and juvenility maintenance. New For 45:473–486. https://doi.org/10.1007/s11056-014-9415-y

    Article  Google Scholar 

  • WWF (2012) Worldwide fund for nature. Living planet report. Forests and wood products. Gland, Switzerland, p 40

  • Zeltiņš P, Matisons R, Gailis A, Jansons J, Katrevičs J, Jansons Ā (2018) Genetic parameters of growth traits and stem quality of silver birch in a low-density clonal plantation. Forests 9:52. https://doi.org/10.3390/f9020052

    Article  Google Scholar 

Download references

Funding

The study was conducted in the Forest Competence Centre (ERDF) project “Technologies for efficient transfer of genetic gain in plant production and forestry” (No. 1.2.1.1/18/A/004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Āris Jansons.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gailis, A., Samsone, I., Šēnhofa, S. et al. Silver birch (Betula pendula Roth.) culture initiation in vitro and genotype determined differences in micropropagation. New Forests 52, 791–806 (2021). https://doi.org/10.1007/s11056-020-09828-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-020-09828-9

Keywords

Navigation