Skip to main content

Advertisement

Log in

Uncovering systems-level molecular similarities between Alzheimer’s and Parkinson’s diseases

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Two of the most prevalent central neuron system disorders are Alzheimer (AD) and Parkinson’s disease (PD). Interestingly, despite their differences in both pathological and molecular basis of the diseases, they exhibit some degrees of similarities. Here, we have conducted a comparative systems-level analysis study for these diseases. Cohort cortex samples from healthy control cases and AD/PD patients were obtained, then we have applied weighted gene co-expression network analysis (WGCNA). Network analysis identified key modules of genes related to each of these diseases. Gene ontology enrichment of the modules showed the involvement of both disease-specific and shared biological processes, including chemical synaptic transmission, nervous system development, and immune responses that are involved in both AD and PD. Surprisingly, the expression patterns for the gene members of the shared modules were strikingly identical. Additionally, we have identified a set of novel genes, including INPP4A, CREG2, ABI3, MYO1F, NAPB, NXN, DOCK6, CPSF6, and IKZF1. While these genes are implicated in either AD or PD modules as shown in Table 2, their potential functional relevance to both diseases warrants further investigation. In conclusion, besides unveiling the presence of high molecular level similarities between AD and PD, for the first time, several novel genes have been proposed that can open a new opportunity for diagnostic or treatment applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data used in this study is freely available and can be obtained from NCBI using above-mentioned GSE codes “GSE36980” and “GSE68719”.

Abbreviations

AD:

Alzheimer's disease

PD:

Parkinson’s disease

WGCNA:

Weighted gene co-expression network analysis

References

  1. Lang AE, Lozano AM. Parkinson's disease. N Engl J Med 1998; 339: 1130-43. doi: https://doi.org/10.1056/NEJM199810153391607

    Article  PubMed  CAS  Google Scholar 

  2. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease Report of the NINCDS‐ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 1984; 34: 939-. https://doi.org/10.1212/wnl.34.7.939

  3. Clark CM, Ewbank D, Lee VM-Y, Trojanowski JQ. Molecular pathology of Alzheimer's disease: neuronal cytoskeletal abnormalities. Blue Books of Practical Neurology 1998; 19: 285–304.

  4. Hoehn MM, Yahr MD. Parkinsonism: onset, progression, and mortality. Neurology 1998; 50: 318-. doi: https://doi.org/10.1212/wnl.50.2.318

  5. Farrer MJ. Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet 2006; 7: 306. doi: https://doi.org/10.1038/nrg1831

    Article  PubMed  CAS  Google Scholar 

  6. Jucker M, Walker LC. Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders. Ann Neurol 2011; 70: 532-40. doi: https://doi.org/10.1002/ana.22615.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Lodato S, Arlotta P. Generating neuronal diversity in the mammalian cerebral cortex. Annu Rev Cell Dev Biol 2015; 31: 699-720. doi: https://doi.org/10.1146/annurev-cellbio-100814-125353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. TAYLOR AE, Saint-Cyr J, Lang A. Frontal lobe dysfunction in Parkinson's disease: The cortical focus of neostriatal outflow. Brain 1986; 109: 845–83.

  9. DeKosky ST, Scheff SW. Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity. Ann Neurol 1990; 27: 457-64. doi: https://doi.org/10.1002/ana.410270502

    Article  PubMed  CAS  Google Scholar 

  10. Geroldi C, Akkawi NM, Galluzzi S, Ubezio M, Binetti G, Zanetti O, et al. Temporal lobe asymmetry in patients with Alzheimer's disease with delusions. J Neurol Neurosurg Psychiatry 2000; 69: 187-91. doi: https://doi.org/10.1136/jnnp.69.2.187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Liang WS, Reiman EM, Valla J, Dunckley T, Beach TG, Grover A, et al. Alzheimer's disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci 2008; 105: 4441-6. doi: https://doi.org/10.1073/pnas.070925910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Wen Z, Liu Z-P, Liu Z, Zhang Y, Chen L. An integrated approach to identify causal network modules of complex diseases with application to colorectal cancer. J Am Med Inform Assoc 2013; 20: 659-67. doi: https://doi.org/10.1136/amiajnl-2012-001168

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 2005; 4. https://doi.org/10.2202/1544-6115.1128

  14. Hokama M, Oka S, Leon J, Ninomiya T, Honda H, Sasaki K, et al. Altered expression of diabetes-related genes in Alzheimer's disease brains: the Hisayama study. Cereb Cortex 2013; 24: 2476-88. doi: https://doi.org/10.1093/cercor/bht101

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dumitriu A, Golji J, Labadorf AT, Gao B, Beach TG, Myers RH, et al. Integrative analyses of proteomics and RNA transcriptomics implicate mitochondrial processes, protein folding pathways and GWAS loci in Parkinson disease. BMC Med Genomics 2015; 9: 5. doi: https://doi.org/10.1186/s12920-016-0164-y

    Article  CAS  Google Scholar 

  16. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 2008; 9: 559. doi: https://doi.org/10.1186/1471-2105-9-559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2008; 4: 44. doi: https://doi.org/10.1038/nprot.2008.211

    Article  CAS  Google Scholar 

  18. Johnson SC. Hierarchical clustering schemes. Psychometrika 1967; 32: 241-54. doi: https://doi.org/10.1007/BF02289588

    Article  PubMed  CAS  Google Scholar 

  19. Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. Icwsm 2009; 8: 361-2.

    Article  Google Scholar 

  20. Yu H, Kim PM, Sprecher E, Trifonov V, Gerstein M. The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Comput Biol 2007; 3: e59. https://doi.org/10.1371/journal.pcbi.0030059

  21. Calderone A, Formenti M, Aprea F, Papa M, Alberghina L, Colangelo AM, et al. Comparing Alzheimer’s and Parkinson’s diseases networks using graph communities structure. BMC Syst Biol 2016; 10: 25. doi: https://doi.org/10.1186/s12918-016-0270-7

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ping L, Duong DM, Yin L, Gearing M, Lah JJ, Levey AI, et al. Global quantitative analysis of the human brain proteome in Alzheimer’s and Parkinson’s Disease. Scientific data 2018; 5: 180036. https://doi.org/10.1038/sdata.2018.36

  23. Stern Y, Richards M, Sano M, Mayeux R. Comparison of cognitive changes in patients with Alzheimer's and Parkinson's disease. Arch Neurol 1993; 50: 1040-5. doi: https://doi.org/10.1001/archneur.1993.00540100035011

    Article  PubMed  CAS  Google Scholar 

  24. Chatterjee P, Roy D, Bhattacharyya M, Bandyopadhyay S. Biological networks in Parkinson’s disease: an insight into the epigenetic mechanisms associated with this disease. BMC Genomics 2017; 18: 721. doi: https://doi.org/10.1186/s12864-017-4098-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Miller JA, Oldham MC, Geschwind DH. A systems level analysis of transcriptional changes in Alzheimer's disease and normal aging. J Neurosci 2008; 28: 1410-20. doi: https://doi.org/10.1523/JNEUROSCI.4098-07.2008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Braak H, Rüb U, Schultz C, Tredici KD. Vulnerability of cortical neurons to Alzheimer's and Parkinson's diseases. J Alzheimers Dis 2006; 9: 35-44. doi: https://doi.org/10.3233/JAD-2006-9S305

    Article  PubMed  CAS  Google Scholar 

  27. Mosley RL, Hutter-Saunders JA, Stone DK, Gendelman HE. Inflammation and adaptive immunity in Parkinson’s disease. Cold Spring Harb Perspect Med 2012; 2:9381. doi: https://doi.org/10.1101/cshperspect.a009381

    Article  Google Scholar 

  28. Marttinen M, Kurkinen KM, Soininen H, Haapasalo A, Hiltunen M. Synaptic dysfunction and septin protein family members in neurodegenerative diseases. Mol Neurodegener 2015; 10: 16. doi: https://doi.org/10.1186/s13024-015-0013-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Palubinsky AM, Martin JA, McLaughlin B. The role of central nervous system development in late-onset neurodegenerative disorders. Dev Neurosci 2012; 34: 129-39. doi: https://doi.org/10.1159/000336828

    Article  PubMed  CAS  Google Scholar 

  30. Doty KR, Guillot-Sestier M-V, Town T. The role of the immune system in neurodegenerative disorders: adaptive or maladaptive? Brain Res 2015; 1617: 155-73. doi: https://doi.org/10.1016/j.brainres.2014.09.008

    Article  PubMed  CAS  Google Scholar 

  31. Lin J-X, Li P, Liu D, Jin HT, He J, Rasheed MAU, et al. Critical Role of STAT5 transcription factor tetramerization for cytokine responses and normal immune function. Immunity 2012; 36: 586-99. doi: https://doi.org/10.1016/j.immuni.2012.02.017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Tiwari PC, Pal R. The potential role of neuroinflammation and transcription factors in Parkinson disease. Dialogues Clin Neurosci 2017; 19: 71. doi: https://doi.org/10.31887/DCNS.2017.19.1/rpal

    Article  PubMed  PubMed Central  Google Scholar 

  33. Theuns J, Van Broeckhoven C. Transcriptional regulation of Alzheimer’s disease genes: implications for susceptibility. Hum Mol Genet 2000; 9: 2383-94. doi: https://doi.org/10.1093/hmg/9.16.2383

    Article  PubMed  CAS  Google Scholar 

  34. Ma Q-L, Yang F, Calon F, Ubeda OJ, Hansen JE, Weisbart RH, et al. p21-activated kinase-aberrant activation and translocation in Alzheimer disease pathogenesis. J Biol Chem 2008; 283: 14132-43. doi: https://doi.org/10.1074/jbc.M708034200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Chandrasekaran S, Bonchev D. A network view on Parkinson's disease. Comput Struct Biotechnol J 2013; 7: e201304004. https://doi.org/10.5936/csbj.201304004

  36. Antonell A, Lladó A, Altirriba J, Botta-Orfila T, Balasa M, Fernández M, et al. A preliminary study of the whole-genome expression profile of sporadic and monogenic early-onset Alzheimer's disease. Neurobiol Aging 2013; 34: 1772-8. doi: https://doi.org/10.1016/j.neurobiolaging.2012.12.026

    Article  PubMed  CAS  Google Scholar 

  37. Parker JG, Wanat MJ, Soden ME, Ahmad K, Zweifel LS, Bamford NS, et al. Attenuating GABAA receptor signaling in dopamine neurons selectively enhances reward learning and alters risk preference in mice. J Neurosci 2011; 31: 17103-12. doi: https://doi.org/10.1523/JNEUROSCI.1715-11.2011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Nikolić M. The Pak1 kinase: an important regulator of neuronal morphology and function in the developing forebrain. Mol Neurobiol 2008; 37: 187. doi: https://doi.org/10.1007/s12035-008-8032-1

    Article  PubMed  CAS  Google Scholar 

  39. Jeanneau C, Mathieu S, Sigaud R, PROROK-HAMON M, Ouafik L. Elucidating the roles of Alzheimer disease-associated proteases and the signal-peptide peptidase-like 3 (SPPL3) in the shedding of glycosyltransferases. bioRxiv 2018; 317214. https://doi.org/10.1101/317214

  40. Fedele CG, Ooms LM, Ho M, Vieusseux J, O'Toole SA, Millar EK, et al. Inositol polyphosphate 4-phosphatase II regulates PI3K/Akt signaling and is lost in human basal-like breast cancers. Proc Natl Acad Sci 2010; 107: 22231-6. doi: https://doi.org/10.1073/pnas.1015245107

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sasaki J, Kofuji S, Itoh R, Momiyama T, Takayama K, Murakami H, et al. The PtdIns (3, 4) P 2 phosphatase INPP4A is a suppressor of excitotoxic neuronal death. Nature 2010; 465: 497. doi: https://doi.org/10.1038/nature09023

    Article  PubMed  CAS  Google Scholar 

  42. Willemen HL, Kavelaars A, Prado J, Maas M, Versteeg S, Nellissen LJ, et al. Identification of FAM173B as a protein methyltransferase promoting chronic pain. PLoS Biol 2018; 16: e2003452. https://doi.org/10.1371/journal.pbio.2003452

  43. Hroudová J, Singh N, Fišar Z. Mitochondrial dysfunctions in neurodegenerative diseases: relevance to Alzheimer’s disease. Biomed Res Int 2014; 2014. https://doi.org/10.1155/2014/175062

  44. Ma SL, Tang NLS, Tam CWC, Lui VWC, Suen EWC, Chiu HFK, et al. Association between HLA-A alleles and Alzheimer’s disease in a southern Chinese community. Dement Geriatr Cogn Disord 2008; 26: 391-7. doi: https://doi.org/10.1159/000164275

    Article  PubMed  CAS  Google Scholar 

  45. Obulesu M, Lakshmi MJ. Apoptosis in Alzheimer’s disease: an understanding of the physiology, pathology and therapeutic avenues. Neurochem Res 2014; 39: 2301-12. doi: https://doi.org/10.1007/s11064-014-1454-4

    Article  PubMed  CAS  Google Scholar 

  46. Kunita R, Otomo A, Ikeda J-E. Identification and characterization of novel members of the CREG family, putative secreted glycoproteins expressed specifically in brain. Genomics 2002; 80: 456-60. doi: https://doi.org/10.1006/geno.2002.6857

    Article  PubMed  CAS  Google Scholar 

  47. Büttner N, Johnsen SA, Kügler S, Vogel T. Af9/Mllt3 interferes with Tbr1 expression through epigenetic modification of histone H3K79 during development of the cerebral cortex. Proc Natl Acad Sci 2010; 200912041. https://doi.org/10.1073/pnas.0912041107

  48. Rendón WO, Martínez-Alonso E, Tomás M, Martínez-Martínez N, Martínez-Menárguez JA. Golgi fragmentation is Rab and SNARE dependent in cellular models of Parkinson’s disease. Histochem Cell Biol 2013; 139: 671-84. doi: https://doi.org/10.1007/s00418-012-1059-4

    Article  PubMed  CAS  Google Scholar 

  49. Mosley RL, Hutter-Saunders JA, Stone DK, Gendelman HE. Inflammation and adaptive immunity in Parkinson’s disease. Cold Spring Harb Perspect Med 2012; 2: a009381. https://doi.org/10.1101/cshperspect.a009381

  50. Pellegrini L, Wetzel A, Grannó S, Heaton G, Harvey K. Back to the tubule: microtubule dynamics in Parkinson’s disease. Cell Mol Life Sci 2017; 74: 409-34. doi: https://doi.org/10.1007/s00018-016-2351-6

    Article  PubMed  CAS  Google Scholar 

  51. Sims R, Van Der Lee SJ, Naj AC, Bellenguez C, Badarinarayan N, Jakobsdottir J, et al. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nat Genet 2017; 49: 1373. doi: https://doi.org/10.1038/ng.3916

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Kim SV, Mehal WZ, Dong X, Heinrich V, Pypaert M, Mellman I, et al. Modulation of cell adhesion and motility in the immune system by Myo1f. Science 2006; 314: 136-9. doi: https://doi.org/10.1126/science.1131920

    Article  PubMed  CAS  Google Scholar 

  53. Yoo BC, Cairns N, Fountoulakis M, Lubec G. Synaptosomal proteins, beta-soluble N-ethylmaleimide-sensitive factor attachment protein (beta-SNAP), gamma-SNAP and synaptotagmin I in brain of patients with Down syndrome and Alzheimer’s disease. Dement Geriatr Cogn Disord 2001; 12: 219-25. doi: https://doi.org/10.1159/000051261

    Article  PubMed  CAS  Google Scholar 

  54. Triplett JC, Zhang Z, Sultana R, Cai J, Klein JB, Büeler H, et al. Quantitative expression proteomics and phosphoproteomics profile of brain from PINK1 knockout mice: insights into mechanisms of familial Parkinson's disease. J Neurochem 2015; 133: 750-65. doi: https://doi.org/10.1111/jnc.13039

    Article  PubMed  CAS  Google Scholar 

  55. Walden H, Muqit MM. Ubiquitin and Parkinson's disease through the looking glass of genetics. Biochem J 2017; 474: 1439-51. doi: https://doi.org/10.1042/BCJ20160498

    Article  PubMed  CAS  Google Scholar 

  56. Schweig JE, Yao H, Beaulieu-Abdelahad D, Ait-Ghezala G, Mouzon B, Crawford F, et al. Alzheimer’s disease pathological lesions activate the spleen tyrosine kinase. Acta Neuropathol Commun 2017; 5: 69. doi: https://doi.org/10.1186/s40478-017-0472-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Imamura K, Takeshima T, Kashiwaya Y, Nakaso K, Nakashima K. D‐β‐hydroxybutyrate protects dopaminergic SH‐SY5Y cells in a rotenone model of Parkinson's disease. J Neurosci Res 2006; 84: 1376-84. doi: https://doi.org/10.1002/jnr.21021

    Article  PubMed  CAS  Google Scholar 

  58. Arenas E. Wnt signaling in midbrain dopaminergic neuron development and regenerative medicine for Parkinson's disease. J Mol Cell Biol 2014; 6: 42-53. doi: https://doi.org/10.1093/jmcb/mju001

    Article  PubMed  CAS  Google Scholar 

  59. Kim H, Calatayud C, Guha S, Fernández-Carasa I, Berkowitz L, Carballo-Carbajal I, et al. The Small GTPase RAC1/CED-10 Is Essential in Maintaining Dopaminergic Neuron Function and Survival Against α-Synuclein-Induced Toxicity. Mol Neurobiol 2018; 1–20. https://doi.org/10.1007/s12035-018-0881-7

  60. Dehay B, Bové J, Rodríguez-Muela N, Perier C, Recasens A, Boya P, et al. Pathogenic lysosomal depletion in Parkinson's disease. J Neurosci 2010; 30: 12535-44. doi: https://doi.org/10.1523/JNEUROSCI.1920-10.2010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Lu AT, Hannon E, Levine ME, Hao K, Crimmins EM, Lunnon K, et al. Genetic variants near MLST8 and DHX57 affect the epigenetic age of the cerebellum. Nat Commun 2016; 7: 10561. doi: https://doi.org/10.1038/ncomms10561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Rhinn H, Qiang L, Yamashita T, Rhee D, Zolin A, Vanti W, et al. Alternative α-synuclein transcript usage as a convergent mechanism in Parkinson's disease pathology. Nat Commun 2012; 3: 1084. doi: https://doi.org/10.1038/ncomms2032

    Article  PubMed  CAS  Google Scholar 

  63. Li MD, Burns TC, Morgan AA, Khatri P. Integrated multi-cohort transcriptional meta-analysis of neurodegenerative diseases. Acta Neuropathol Commun 2014; 2: 1. doi: https://doi.org/10.1186/s40478-014-0093-y

    Article  Google Scholar 

  64. Zhang Y, James M, Middleton FA, Davis RL. Transcriptional analysis of multiple brain regions in Parkinson's disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms. Am J Med Genet B Neuropsychiatr Genet 2005; 137: 5-16. doi: https://doi.org/10.1002/ajmg.b.30195

    Article  Google Scholar 

  65. Hong L, Sklar LA. Targeting GTPases in Parkinson’s disease: comparison to the historic path of kinase drug discovery and perspectives. Front Mol Neurosci 2014; 7: 52. doi: https://doi.org/10.3389/fnmol.2014.00052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Mr. Rasoul Godini (currently a Ph.D. student at Monash University, Australia) for his help with WGCNA analysis and Ms. Fatemeh Hadi (Ph.D. graduate, Razi University, Iran) for confirming the genes in the modules that has been included in Table 2 of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable

Corresponding author

Correspondence to Hossein Fallahi.

Ethics declarations

Ethics approval and Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing of interests

The authors declare that the research was conducted in the absence of any commercial or financial interest.

Additional information

Highlight study

• Network analysis identified key modules of genes related to both AD and PD.

• Chemical transmission, nervous development, and immune responses are affected.

INPP4A, CREG2, ABI3, MYO1F, NAPB, NXN, DOCK6, CPSF6, and IKZF1 were identified.

• There are system-level similarities between AD and PD.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fallahi, H., Radak, M. & Yadegari, Z.S. Uncovering systems-level molecular similarities between Alzheimer’s and Parkinson’s diseases. Neurosci Behav Physi 53, 1300–1318 (2023). https://doi.org/10.1007/s11055-023-01484-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01484-8

Keywords

Navigation