Skip to main content

Advertisement

Log in

Apoptosis in Alzheimer’s Disease: An Understanding of the Physiology, Pathology and Therapeutic Avenues

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a devastative neurodegenerative disorder with complex etiology. Apoptosis, a biological process that plays an essential role in normal physiology to oust a few cells and contribute to the normal growth, when impaired or influenced by various factors such as Bcl2, Bax, caspases, amyloid beta, tumor necrosis factor-α, amyloid precursor protein intracellular C-terminal domain, reactive oxygen species, perturbation of enzymes leads to deleterious neurodegenerative disorders like AD. There are diverse pathways that provoke manifold events in mitochondria and endoplasmic reticulum (ER) to execute the process of cell death. This review summarizes the crucial apoptotic mechanisms occurring in both mitochondria and ER. It gives substantial summary of the diverse mechanisms studied in vivo and in vitro. A brief account on neuroprotection of several bioactive components, flavonoids and antioxidants of plants against apoptotic events of both mitochondria and ER in both in vitro and in vivo has been discussed. In light of this, the burgeoning need to develop animal models to study the efficacy of various therapeutic effects has been accentuated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Obulesu M, Rao Dowlathabad Muralidhara (2010) Animal models of Alzheimer’s disease: an understanding of pathology and therapeutic avenues. Int J Neurosci 120:531–537

    CAS  PubMed  Google Scholar 

  2. Wright JW, Harding JW (2010) The brain RAS and Alzheimer’s disease. Exp Neurol 223:326–333

    CAS  PubMed  Google Scholar 

  3. Obulesu M, Venu R, Somashekhar R (2011) Lipid peroxidation in Alzheimer’s disease: emphasis on metal mediated neurotoxicity. Acta Neurol Scand 124:295–301

    CAS  PubMed  Google Scholar 

  4. Obulesu M, Somashekhar R, Venu R (2011) Genetics of Alzheimer’s disease: apo E and presenilins instigated neurodegeneration. Int J Neurosci 121:229–236

    CAS  PubMed  Google Scholar 

  5. Obulesu M, Rao Dowlathabad Muralidhara (2010) DNA damage and impairment of DNA repair in Alzheimer’s disease. Int J Neurosci 120:397–403

    CAS  PubMed  Google Scholar 

  6. Magisetty O, Rao DM, Shamasundar NM (2009) Studies on genomic DNA stability in aluminium maltolate treated aged New Zealand rabbit: relevance to the Alzheimer’s animal model. J Clin Med Res 1:212–218

    PubMed Central  PubMed  Google Scholar 

  7. Obulesu M, Venu R, Somashekhar R (2011) Tau mediated neurodegeneration: an insight into Alzheimer’s disease pathology. Neurochem Res 36:1329–1335

    CAS  PubMed  Google Scholar 

  8. Szewczyk B (2013) Zinc homeostasis and neurodegenerative disorders. Front Aging Neurosci 5:33

    PubMed Central  PubMed  Google Scholar 

  9. Obulesu M, Jhansilakshmi M (2014) Neuroinflammation in Alzheimer’s disease: an understanding of physiology and pathology. Int J Neurosci 124:227–235

    CAS  PubMed  Google Scholar 

  10. Kataoka S, Tsuruo T (1996) Apoptosis. Oncologist 1:399–401

    PubMed  Google Scholar 

  11. Rathmell JC, Lindsten T, Zong WX et al (2002) Deficiency in Bak and Bax perturbs thymic selection and lymphoid homeostasis. Nat Immunol 3:932–939

    CAS  PubMed  Google Scholar 

  12. Zapala B, Kaczynski L, Kiec-wilk B et al (2010) Humanins, the neuroprotective and cytoprotective peptides with antiapoptotic and anti-inflammatory properties. Pharmacol Rep 62:767–777

    CAS  PubMed  Google Scholar 

  13. Alvarez S, Blanco S, Fresno M et al (2011) TNF-α contributes to caspase-3 independent apoptosis in neuroblastoma cells: role of NFAT. PLoS One 6:e16100

    PubMed Central  PubMed  Google Scholar 

  14. Alberini CM (2009) Transcription factors in long-term memory and synaptic plasticity. Physiol Rev 89:121–145

    CAS  PubMed  Google Scholar 

  15. Gatta V, Gatta D, Drago K et al (2011) Microarray analysis on human neuroblastoma cells exposed to aluminum, β(1-42)-amyloid or the β(1-42)-amyloid aluminum complex. PLoS One 6:e15965

    PubMed Central  PubMed  Google Scholar 

  16. Morrison BE, Majdzadeh N, D’mello SR (2007) Histone deacetylases: focus on the nervous system. Cell Mol Life Sci 64:2258–2269

    CAS  PubMed  Google Scholar 

  17. Konishi Y, Lehtinen M, Donovan N et al (2002) Cdc2 phosphorylation of BAD links the cell cycle to the cell death machinery. Mol Cell 9:1005–1016

    CAS  PubMed  Google Scholar 

  18. Lee HP, Casadesus G, Zhu X et al (2009) All-trans retinoic acid as a novel therapeutic strategy for Alzheimer’s disease. Expert Rev Neurother 9:1615–1621

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Radi E, Formichi P, Battisti C et al (2014) Apoptosis and oxidative stress in neurodegenerative diseases. J Alzheimers Dis 42:S125–S152

  20. Menendez-Gonzalez M, Perez-Pinera P, Martinez-Rivera M et al (2011) Immunotherapy for Alzheimer’s disease: rational basis in ongoing clinical trials. Curr Pharm Des 17:508–520

    CAS  PubMed  Google Scholar 

  21. Lauterbach EC, Victoroff J, Coburn KL et al (2010) Mendez, Psychopharmacological neuroprotection in neurodegenerative disease: assessing the preclinical data. J Neuropsychiatry Clin Neurosci 22:8–18

    CAS  PubMed  Google Scholar 

  22. Friedlander RM (2003) Apoptosis and caspases in neurodegenerative diseases. N Engl J Med 348:1365–1375

    CAS  PubMed  Google Scholar 

  23. Zhang JH, Zhang Y, Herman B (2003) Caspases, apoptosis and aging. Ageing Res Rev 2:357–366

    CAS  PubMed  Google Scholar 

  24. Le Bras M, Rouy I, Brenner C (2006) The modulation of inter-organelle cross-talk to control apoptosis. Med Chem 2:1–12

    PubMed  Google Scholar 

  25. El-Guendy N, Rangnekar VM (2003) Apoptosis by Par-4 in cancer and neurodegenerative diseases. Exp Cell Res 283:51–66

    CAS  PubMed  Google Scholar 

  26. Kim R (2005) Unknotting the roles of Bcl-2 and Bcl-xL in cell death. Biochem Biophys Res Commun 333:336–343

    CAS  PubMed  Google Scholar 

  27. Hengartner MO, Bryant JA (2000) Apoptotic cell death: from worms to wombats… but what about the weeds? Symp Soc Exp Biol 52:1–12

    CAS  PubMed  Google Scholar 

  28. Jahanshahi M, Nickmahzar EG, Babakordi F (2013) The effect of Ginkgo biloba extract on scopolamine-induced apoptosis in the hippocampus of rats. Anat Sci Int 88:217–222

    CAS  PubMed  Google Scholar 

  29. Malik M, Fenko MD, Sheikh AM et al (2011) A novel approach for characterization of cathepsin D protease and its effect on tau and β-amyloid proteins. Neurochem Res 36:754–760

    CAS  PubMed  Google Scholar 

  30. Vasileiou E, Montero RM, Turner CM et al (2010) P2X7 receptor at the heart of disease. Hippocratia 14:155–163

    Google Scholar 

  31. Morelli A, Chiozzi P, Chiesa A et al (2003) Extracellular ATP causes ROCK 1-dependent bleb formation in P2X7-transfected HEK293 cells. Mol Biol Cell 14:2655–2664

    CAS  PubMed Central  PubMed  Google Scholar 

  32. North A (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    CAS  PubMed  Google Scholar 

  33. Chen CH, Zhou W, Liu S et al (2011) Increased NF-κB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer’s disease. Int J Neuropsychopharmacol 18:1–14

    Google Scholar 

  34. Kell DB (2010) Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: parkinson’s, Huntington’s, Alzheimer’s, prions, bactericides, chemical toxicology and others as examples. Arch Toxicol 84:825–889

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Maestre C, Delgado-Esteban M, Gomez-Sanchez JC et al (2008) Cdk5 phosphorylates Cdh1 and modulates cyclin B1 stability in excitotoxicity. EMBO J 27:2736–2745

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Siegel RM (2006) Caspases at the crossroads of immune-cell life and death. Nat Rev Immunol 6:308–317

    CAS  PubMed  Google Scholar 

  37. Shi Y (2004) Caspase activation: revisiting the induced proximity model. Cell 117:855–858

    CAS  PubMed  Google Scholar 

  38. Shi Y (2002) Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 9:459–470

    CAS  PubMed  Google Scholar 

  39. Sun X, Wu B, Zhang Z et al (2011) Regulator of calcineurin 1 (RCAN1) facilitates neuronal apoptosis through caspase 3 activation. J Biol Chem 286:9049–9062

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Eckert A, Marques CA, Keil U et al (2003) Increased apoptotic cell death in sporadic and genetic Alzheimer’s disease. Ann N Y Acad Sci 1010:604–609

    CAS  PubMed  Google Scholar 

  41. Lakhani SA, Masud A, Kuida K et al (2006) Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 311:847–851

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Li C, Zhao R, Gao K et al (2010) Astrocytes: implications for neuroinflammatory pathogenesis of Alzheimer’s disease. Curr Alzheimer Res 8:67–80

    CAS  Google Scholar 

  43. Kim JK, Kim SH, Cho HY et al (2010) GD3 accumulation in cell surface lipid rafts prior to mitochondrial targeting contributes to amyloid-β-induced apoptosis. J Korean Med Sci 25:1492–1498

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Simon D, Medina M, Avila J et al (2011) Overcoming cell death and tau phosphorylation mediated by PI3KInhibition: a cell assay to measure neuroprotection. CNS Neurol Disord Drug Targets 10:208–214

    CAS  PubMed  Google Scholar 

  45. Copani A, Melchiorri D, Caricasole A et al (2002) β-Amyloid induced synthesis of the ganglioside GD3 is a requisite for cell cycle reactivation and apoptosis in neurons. J Neurosci 22:3963–3968

    CAS  PubMed  Google Scholar 

  46. Tillement L, Lecanu L, Papadopoulos V (2011) Further evidence on mitochondrial targeting of β-amyloid and specificity of β-amyloid-induced mitotoxicity in neurons. Neurodegener Dis 8:331–344

    CAS  PubMed  Google Scholar 

  47. Gamba P, Leonarduzzi G, Tamagno E et al (2011) Interaction between 24-hydroxycholesterol, oxidative stress and amyloid-β in amplifying neuronal damage in Alzheimer’s disease: three partners in crime. Aging Cell 10:403–417

    CAS  PubMed  Google Scholar 

  48. Ermak G, Morgan TE, Davies KJ (2001) Chronic overexpression of the calcineurin inhibitory gene DSCR1 (Adapt78) is associated with Alzheimer’s disease. J Biol Chem 276:38787–38794

    CAS  PubMed  Google Scholar 

  49. Ohtsuka T, Ryu H, Minamishima YA et al (2004) ASC is a Bax adaptor and regulates the p53-Bax mitochondrial apoptosis pathway. Nat Cell Biol 6:121–128

    CAS  PubMed  Google Scholar 

  50. Jayanthi S, Deng X, Ladenheim B et al (2005) Cadet, Calcineurin/NFAT-induced up-regulation of the Fas ligand/Fas death pathway is involved in methamphetamine-induced neuronal apoptosis. Proc Natl Acad Sci USA 102:868–873

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Viviani B, Bartesaghi S, Corsini E et al (2004) Cytokines role in neurodegenerative events. Toxicol Lett 149:85–89

    CAS  PubMed  Google Scholar 

  52. Wajant H, Pfizenmaier K, Scheurich P (2003) Tumor necrosis factor signaling. Cell Death Differ 10:45–65

    CAS  PubMed  Google Scholar 

  53. Figiel I, Dzwonek K (2007) TNF alpha and TNF receptor 1 expression in the mixed neuronal-glial cultures of hippocampal dentate gyrus exposed to glutamate or trimethyltin. Brain Res 1131:17–28

    CAS  PubMed  Google Scholar 

  54. Lambertsen KL, Clausen BH, Fenger C et al (2007) Microglia and macrophages express tumor necrosis factor receptor p75 following middle cerebral artery occlusion in mice. Neuroscience 144:934–949

    CAS  PubMed  Google Scholar 

  55. Ye L, Huang Y, Zhao L et al (2013) IL-1β and TNF-α induce neurotoxicity through glutamate production: a potential role for neuronal glutaminase. J Neurochem 125:897–908

    CAS  PubMed Central  PubMed  Google Scholar 

  56. DeChiara TM, Vejsada R, Poueymirou WT et al (1995) Mice lacking the CNTF receptor, unlike mice lacking CNTF, exhibit profound motor neuron deficits at birth. Cell 83:313–322

    CAS  PubMed  Google Scholar 

  57. Bianco F, Pravettoni E, Colombo A et al (2005) Astrocyte derived ATP induces vesicle shedding and IL-1 release from microglia. J Immunol 174:7268–7277

    CAS  PubMed  Google Scholar 

  58. Chang KA, Su YH (2010) Possible roles of amyloid intracellular domain of amyloid precursor protein. BMB rep 43:656–663

    CAS  PubMed  Google Scholar 

  59. Nakaya T, Suzuki T (2006) Role of APP phosphorylation in FE65-dependent gene transactivation mediated by AICD. Genes Cells 11:633–645

    CAS  PubMed  Google Scholar 

  60. Nakayama K, Ohkawara T, Hiratochi M et al (2008) The intracellular domain of amyloid precursor protein induces neuron-specific apoptosis. Neurosci Lett 444:127–131

    CAS  PubMed  Google Scholar 

  61. Ozaki T, Li Y, Kiruchi H et al (2006) The intracellular domain of the amyloid precursor protein (AICD) enhances the p53-mediated apoptosis. Biochem Biophys Res Commun 351:57–63

    CAS  PubMed  Google Scholar 

  62. Xu Y, Kim HS, Joo Y et al (2007) Intracellular domains of amyloid precursor-like protein 2 interact with CP2 transcription factor in the nucleus and induce glycogen synthase kinase-3 beta expression. Cell Death Differ 14:79–91

    CAS  PubMed  Google Scholar 

  63. Vazquez MC, Vargas LM, Inestrosa NC et al (2009) c-Abl modulates AICD dependent cellular responses: transcriptional induction and apoptosis. J Cell Physiol 220:136–143

    CAS  PubMed  Google Scholar 

  64. Saraiva LM, da Silva GSS, Galina A et al (2010) Amyloid-β triggers the release of neuronal hexokinase 1 from mitochondria. PLoS One 5:e15230

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Vander Heiden MG, Plas DR, Rathmell JC et al (2001) Growth factors can influence cell growth and survival through effects on glucose metabolism. Mol Cell Biol 21:5899–5912

    CAS  PubMed Central  PubMed  Google Scholar 

  66. YamamotoY Takase K, Kishino J et al (2011) Proteomic identification of protein targets for 15-Deoxy-D12,14-Prostaglandin J2 in neuronal plasma membrane. PLoS One 6:e17552

    Google Scholar 

  67. Tsai FM, Shyu RY, Lin SC et al (2009) Induction of apoptosis by the retinoid inducible growth regulator RIG1 depends on the NC motif in HtTA cervical cancer cells. BMC Cell Biol 10:15

    PubMed Central  PubMed  Google Scholar 

  68. Ueki S, Mahemuti G, Oyamada H et al (2008) Retinoic acids are potent inhibitors of spontaneous human eosinophil apoptosis. J Immunol 181:7689–7698

    CAS  PubMed  Google Scholar 

  69. Farooqui AA, Antony P, Ong WY et al (2004) Retinoic acid-mediated phospholipase A2 signaling in the nucleus. Brain Res Brain Res Rev 45:179–195

    CAS  PubMed  Google Scholar 

  70. Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430:631–639

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Moreira PI, Smith MA, Zhu X et al (2005) Oxidative stress and neurodegeneration. Ann N Y Acad Sci 1043:545–552

    CAS  PubMed  Google Scholar 

  72. Rao RV, Ellerby HM, Bredesen DE (2004) Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ 11:372–380

    CAS  PubMed  Google Scholar 

  73. Lindholm D, Wootz H, Korhonen L (2006) ER stress and neurodegenerative diseases. Cell Death Differ 13:385–392

    CAS  PubMed  Google Scholar 

  74. Verkhratsky A (2005) Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol Rev 85:201–279

    CAS  PubMed  Google Scholar 

  75. LaFerla F (2002) Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. Nat Rev Neurosci 3:862–872

    CAS  PubMed  Google Scholar 

  76. Katayama T, Imaizumi K, Manabe T et al (2004) Tohyama, Induction of neuronal death by ER stress in Alzheimer’s disease. J Chem Neuroanat 28:67–78

    CAS  PubMed  Google Scholar 

  77. Hitomi J, Katayama T, Eguchi Y et al (2004) Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. J Cell Biol 165:347–356

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Choi JH, Choi AY, Yoon H et al (2010) Baicalein protects HT22 murine hippocampal neuronal cells against endoplasmic reticulum stress-induced apoptosis through inhibition of reactive oxygen species production and CHOP induction. Exp Mol Med 42:811–822

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11:381–389

    CAS  PubMed  Google Scholar 

  80. Shimoke K, Sasaya H, Ikeguchi T (2011) Analysis of the role of nerve growth factor in promoting cell survival during endoplasmic reticulum stress in PC12 cells. Methods Enzymol 490:53–70

    CAS  PubMed  Google Scholar 

  81. Szegezdi E, Logue SE, Gorman AM et al (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7:880–885

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Kim I, Xu W, Reed JC (2008) Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 7:1013–1030

    CAS  PubMed  Google Scholar 

  83. Parvathinani LK, Tertysnikova S, Greco CR et al (2003) P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer’s disease. J Biol Chem 278:13309–13317

    Google Scholar 

  84. Luciano F, Zhai D, Zhu X et al (2005) Cytoprotective peptide humanin binds and inhibits proapoptotic Bcl-2/Bax family protein BimEL. J Biol Chem 280:15825–15835

    CAS  PubMed  Google Scholar 

  85. Kariya S, Hirano M, Nagai Y et al (2003) Humanin attenuates apoptosis induced by DRPLA proteins with expanded polyglutamine stretches. J Mol Neurosci 25:165–169

    Google Scholar 

  86. Sponne I, Fifre A, Koziel V et al (2004) Humanin rescues cortical neurons from prion-peptide induced apoptosis. Mol Cell Neurosci 25:95–102

    CAS  PubMed  Google Scholar 

  87. Hashimoto Y, Niikura T, Chiba T et al (2003) The cytoplasmic domain of Alzheimers amyloid-β protein precursor causes sustained apoptosis signal-regulating kinase 1/c-Jun NH2 terminal kinase-mediated neurotoxic signal via dimerization. J Pharmacol Exp Ther 306:889–902

    CAS  PubMed  Google Scholar 

  88. Hashimoto Y, Kurita M, Aiso S et al (2009) Humanin inhibits neuronal cell death by interacting with a cytokine receptor complex or complexes involving CNTF receptor α/WSX-1/gp130. Mol Biol Cell 20:2864–2873

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Niikura T, Hashimoto Y, Tajima H et al (2003) A tripartite motif protein TRIM11 binds and destabilizes humanin, a neuroprotective peptide against Alzheimers disease relevant insults. Eur J Neurosci 17:1150–1158

    PubMed  Google Scholar 

  90. Pislar AH, Kos J (2013) C-terminal peptide of γ-enolase impairs amyloid-β-induced apoptosis through p75NTR signaling. Neuromolecular Med 15:623–635

    CAS  PubMed  Google Scholar 

  91. Kim IK, Lee KJ, Rhee S et al (2013) Protective effects of peroxiredoxin 6 overexpression on amyloid β-induced apoptosis in PC12 cells. Free Radic Res 47:836–846

    CAS  PubMed  Google Scholar 

  92. Le Y, Gong W, Tiffany HL (2001) Amyloid β42 activates a G-protein-coupled chemoattractant receptor, FPR-like-1. J Neurosci 21:RC123

  93. Ramirez C, Tercero I, Pineda A et al (2011) Simvastatin is the statin that most efficiently protects against kainate-induced excitotoxicity and memory impairment. J Alzheimers Dis 24:161–174

    CAS  PubMed  Google Scholar 

  94. Li X, Darzynkiewicz Z (2000) Cleavage of poly(ADP-ribose) polymerase measured in situ in individual cells: relationship to DNA fragmentation and cell cycle position during apoptosis. Exp Cell Res 255:125–132

    CAS  PubMed  Google Scholar 

  95. Song J, Park KA, Lee WT et al (2014) Apoptosis signal regulating kinase 1 (ASK1): potential as a therapeutic target for Alzheimer’s disease. Int J Mol Sci 15:2119–2129

    PubMed Central  PubMed  Google Scholar 

  96. Mishra M, Heese K et al (2010) P60TRP interferes with the GPCR/secretase pathway to mediate neuronal survival and synaptogenesis. J Cell Mol Med 15:2462–2477

    Google Scholar 

  97. Hoarau JJ, Krejbich-Trotot MC, Jaffar-Bandjee T et al (2010) Activation and control of CNS innate immune responses in health and diseases: a balancing act finely tuned by neuroimmune regulators (NIReg). CNS Neurol Disord Drug Targets 10:25–43

    Google Scholar 

  98. Ha S, Furukawa R, Fechheimer M (2011) Association of AICD and Fe65 with Hirano bodies reduces transcriptional activation and initiation of apoptosis. Neurobiol Aging 32:2287–2298

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Oules B, Del Prete D, Greco B et al (2012) Ryanodine receptor blockade reduces amyloid-β load and memory impairments in Tg2576 mouse model of Alzheimer disease. J Neurosci 32:11820–11834

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Chang WH, Chen CH, Gau RJ et al (2002) Effect of baicalein on apoptosis of the human Hep G2 cell line was induced by mitochondrial dysfunction. Planta Med 8:302–306

    Google Scholar 

  101. Wang J, Yu Y, Hashimoto F et al (2004) Baicalein induces apoptosis through ROS-mediated mitochondrial dysfunction pathway in HL-60 cells. Int J Mol Med 14:627–632

    PubMed  Google Scholar 

  102. Pidgeon GP, Kandouz M, Meram A et al (2002) Mechanisms controlling cell cycle arrest and induction of apoptosis after 12-lipoxygenase inhibition in prostate cancer cells. Cancer Res 62:2721–2727

    CAS  PubMed  Google Scholar 

  103. Lin HY, Shen SC, Lin CW et al (2007) Baicalein inhibition of hydrogen peroxide-induced apoptosis via ROS-dependent heme oxygenase 1 gene expression. Biochim Biophys Acta 1773:1073–1086

    CAS  PubMed  Google Scholar 

  104. Li WW, Gao XM, Wang XM et al (2011) Icariin inhibits hydrogen peroxide-induced toxicity through inhibition of phosphorylation of JNK/p38 MAPK and p53 activity. Mutat Res 708:1–10

    CAS  PubMed  Google Scholar 

  105. Lu J, Wu DM, Zheng ZH et al (2011) Troxerutin protects against high cholesterol-induced cognitive deficits in mice. Brain 134:783–797

    PubMed  Google Scholar 

  106. Anekonda TS (2006) Resveratrol—a boon for treating Alzheimer’s disease? Brain Res Rev 52:316–326

    CAS  PubMed  Google Scholar 

  107. Lavu S, Boss O, Elliott PJ et al (2008) Sirtuins-novel therapeutic targets to treat age-associated diseases. Nat Rev Drug Discov 7:841–853

    CAS  PubMed  Google Scholar 

  108. Julien C, Tremblay C, Emond V et al (2009) Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J Neuropathol Exp Neurol 68:48–58

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Anekonda TS, Wadsworth TL, Sabin R et al (2011) Phytic acid as a potential treatment for Alzheimer’s pathology: evidence from animal and in vitro models. J Alzheimers Dis 23:21–35

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Qin W, Yang T, Ho L et al (2006) Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem 281:21745–21754

    CAS  PubMed  Google Scholar 

  111. Azmi NH, Azmi N, Ismail MU et al (2013) Ethyl acetate extract of germinated brown rice attenuates hydrogen peroxide-induced oxidative stress in human SH-SY5Y neuroblastoma cells: role of anti-apoptotic, pro-survival and antioxidant genes. BMC Complement Altern Med 13:177

    PubMed Central  PubMed  Google Scholar 

  112. Hong SY, Jeong WS, Jun M (2012) Protective effects of the key compounds isolated from Corni fructus against β-amyloid induced neurotoxicity in PC 12 cells. Molecules 17:10831–10845

    CAS  PubMed  Google Scholar 

  113. Virmani A, Pinto L, Binienda Z et al (2013) Food, nutrigenomics, and neurodegeneration—neuroprotection by what you eat! Mol Neurobiol 48:353–362

    CAS  PubMed  Google Scholar 

  114. Qin W, Zhao W, Ho L et al (2008) Regulation of forkhead transcription factor FoxO3a contributes to calorie restriction-induced prevention of Alzheimer’s disease-type amyloid neuropathology and spatial memory deterioration. Ann N Y Acad Sci 1147:335–347

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Zhou Y, Qu ZQ, Zeng YS et al (2011) Neuroprotective effect of preadministration with Ganoderma lucidum spore on rat hippocampus. Exp Toxicol Pathol 64:673–680

    PubMed  Google Scholar 

  116. Lee C, Park GH, Lee SR et al (2013) Attenuation of β-amyloid-induced oxidative cell death by sulforaphane via activation of NF-E2-related factor 2. Oxid Med Cell Longev 2013:313510

    PubMed Central  PubMed  Google Scholar 

  117. Chen X, Zhang J, Chen C (2011) Endocannabinoid 2-arachidonoylglycerol protects neurons against β-amyloid insults. Neuroscience 178:159–168

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Sakai K, Yamada M (2013) Aβ immunotherapy for Alzheimer’s disease. Brain Nerve 65:461–468

    CAS  PubMed  Google Scholar 

  119. Geng J, Li M, Wu L et al (2012) Mesoporous silica nanoparticle-based H2O2 responsive controlled-release system used for Alzheimer’s disease treatment. Adv Healthc Mater 1:332–336

    CAS  PubMed  Google Scholar 

  120. Sureda FX, Junyent F, Verdaguer E et al (2011) Antiapoptotic drugs: a therapeutic strategy for the prevention of neurodegenerative diseases. Curr Pharm Des 17:230–245

    CAS  PubMed  Google Scholar 

  121. Cavallucci V, D’Amelio M (2011) Matter of life and death: the pharmacological approaches targeting apoptosis in brain diseases. Curr Pharm Des 17:215–229

    CAS  PubMed  Google Scholar 

  122. Cui B, Li K (2013) Chronic noise exposure and Alzheimer disease: Is there an etiological association? Med Hypotheses 81:623–626

    CAS  PubMed  Google Scholar 

  123. Zhang H, Wu S, Xing D (2011) YAP accelerates Aβ(25–35)-induced apoptosis through upregulation of Bax expression by interaction with p73. Apoptosis 16:808–821

    CAS  PubMed  Google Scholar 

  124. Hong YK, Park SH, Lee S et al (2011) Neuroprotective effect of SuHeXiang Wan in Drosophila models of Alzheimer’s disease. J Ethnopharmacol 134:1028–1032

    PubMed  Google Scholar 

  125. Obulesu M, Rao Dowlathabad Muralidhara (2011) Effect of plant extracts on Alzheimer’s disease: an insight into therapeutic avenues. J Neurosci Rural Pract 2:56–61

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Obulesu M, Dowlathabad MR, Bramhachari PV (2011) Carotenoids and Alzheimer’s disease: an insight into therapeutic role of retinoids in animal models. Neurochem Int 59:535–541

    CAS  PubMed  Google Scholar 

  127. Kim EA, Cho CH, Hahn HG (2014) 2-Cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride protects against beta-amyloid-induced activation of the apoptotic cascade in cultured cortical neurons. Cell Mol Neurobiol 34:963–972

Download references

Acknowledgments

Authors sincerely thank Professor Dr. Yukio Nagasaki, Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan for this generous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Obulesu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obulesu, M., Lakshmi, M.J. Apoptosis in Alzheimer’s Disease: An Understanding of the Physiology, Pathology and Therapeutic Avenues. Neurochem Res 39, 2301–2312 (2014). https://doi.org/10.1007/s11064-014-1454-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1454-4

Keywords

Navigation