Skip to main content
Log in

Fabrication, characterization, and photocatalytic properties of anatase TiO2 nanoplates with exposed {001} facets

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Anatase TiO2 nanoplates, with average side length ranging from 90 to 200 nm and average thickness ranging from 20 to 60 nm, were successfully fabricated by annealing anodized TiO2 nanotubes with different heating rates. The as-synthesized TiO2 nanoplates and nanotubes were analyzed by field-emission scanning electron microscopy, X-ray diffraction, X-ray fluorescence spectroscopy, and transmission electron microscopy. To investigate the growth mechanism of the TiO2 nanoplates dominated by highly reactive {001} facets, different heating rates were applied appropriately during the thermal treatment. The results revealed that the heating rate during thermal treatment is critical in determining the nanostructure of anatase TiO2. The fast heating rate (samples were annealed when the temperature heated up to 450 °C) and the brittle property are the main reasons for the collapse of the anodized TiO2 nanotubes. The nanosized TiO2 species grow into TiO2 nanoplates with the exposed 60 % of {001} facets because the fluorated surface of TiO2 species can direct the formation of TiO2 nanoplates with exposed {001} facets. The photoactivity of the TiO2 nanoplates is higher than that of TiO2 nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Berger S, Kunze J, Schmuki P, Valota AT, LeClere DJ, Skeldon P, Thompson GE (2010) Influence of water content on the growth of anodic TiO2 nanotubes in fluorine-containing ethylene glycol electrolytes. J Electrochem Soc 157:18–23

    Article  Google Scholar 

  • Cochran RE, Shyue JJ, Padture NP (2007) Template-based, near-ambient synthesis of crystalline metal-oxide nanotubes, nanowires and coaxial nanotubes. Acta Mater 55:3007–3014

    Article  Google Scholar 

  • Crawford GA, Chawla N (2009) Porous hierarchical TiO2 nanostructures: processing and microstructure relationships. Acta Mater 57:854–867

    Article  Google Scholar 

  • Formo E, Lee E, Campbell D, Xia YN (2008) Functionalization of electrospun TiO2 nanofibers with Pt nanoparticles and nanowires for catalytic applications. Nano Lett 8:668–672

    Article  Google Scholar 

  • Grimes CA (2007) Synthesis and application of highly ordered arrays of TiO2 nanotubes. J Mater Chem 17:1451–1457

    Article  Google Scholar 

  • Han XG, Kuang Q, Jin MS, Xie ZX, Zheng LS (2009) Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J Am Chem Soc 131:3152–3153

    Article  Google Scholar 

  • Hirakata H, Ito KJ, Yonezu A, Tsuchiya H, Fujimoto SJ, Minoshima KJ (2010) Strength of self-organized TiO2 nanotubes arrays. Acta Mater 58:4956–4967

    Article  Google Scholar 

  • Koo HJ, Kim YJ, Lee YH, Lee WI, Kim YK, Park NG (2008) Nano-embossed hollow spherical TiO2 as bifunctional material for high-efficiency dye-sensitized solar cells. Adv Mater 20:195–199

    Article  Google Scholar 

  • Kumar A, Jose R, Fujihara K, Wang J, Ramakrishna S (2007) Structural and optical properties of electrospun TiO2 nanofibers. Chem Mater 19:6536–6542

    Article  Google Scholar 

  • Liu SW, Yu JG, Jaroniec M (2011) Anatase TiO2 with dominant high-energy 001 facets: synthesis, properties, and applications. Chem Mater 23:4085–4093

    Article  Google Scholar 

  • Macak JM, Zlamal M, Krysa J, Schmuki P (2007) Self-organized TiO2 nanotube layers as highly efficient photocatalysts. Small 3:300–304

    Article  Google Scholar 

  • Park JH, Lee TW, Kang MG (2008) Growth, detachment and transfer of high-ordered TiO2 nanotubes arrays: use in dye-sensitized solar cells. Chem Commun 25:2867–2869

    Article  Google Scholar 

  • Regonini D, Jaroenworaluck A, Stevens R, Bowen CR (2010) Effect of heat treatment on the properties and structure of TiO2 nanotubes: phase composition and chemical composition. Surf Interface Anal 42:139–144

    Article  Google Scholar 

  • Robel I, Kuno M, Kamat PV (2007) Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. J Am Chem Soc 129:4136–4137

    Article  Google Scholar 

  • Roy P, Kim D, Lee K, Spiecker E, Schmuki P (2009) TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale 2:45–59

    Article  Google Scholar 

  • Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed 50:2904–2939

    Article  Google Scholar 

  • Shokuhfar T, Arumugam GK, Heiden PA, Yassar RS, Friedrich C (2009) Direct compressive measurements of individual titanium dioxide nanotubes. ACS Nano 3:3098–3102

    Article  Google Scholar 

  • Stein FS, Thiemann S, Berger S, Hahn R, Schmuki P (2010) Mechanical properties of anatase and semi-metallic TiO2 nanotubes. Acta Mater 58:6317–6323

    Article  Google Scholar 

  • Stergiopoulos T, Ghicov A, Likodimos V, Tsoukleris DS, Kunze J, Schmuki P, Falaras P (2008) Dye-sensitized solar cells based on thick highly ordered TiO2 nanotubes produced by controlled anodic oxidation in non-aqueous electrolytic media. Nanotechnology 19:235602–235609

    Article  Google Scholar 

  • Tang J, Redl F, Zhu YM, Siegrist T, Brus LE, Steigerwald ML (2005) An organometallic synthesis of TiO2 nanoparticles. Nano Lett 5:543–548

    Article  Google Scholar 

  • Taveira LV, Macak JM, Tsuchiya H, Dick LFP, Schmuki P (2005) Initiation and growth of self-organized TiO2 nanotubes anodically formed in NH4F/(NH4)2SO4 electrolytes. J Electrochem Soc 152:B405–B410

    Article  Google Scholar 

  • Wang CY, Bahnemann DW, Dohrmann JK (2000) A novel preparation of iron-doped TiO2 nanoparticles with enhanced photocatalytic activity. Chem Commun 16:1539–1540

    Article  Google Scholar 

  • Wang D, Liu Y, Yu B, Zhou F, Liu WM (2009a) TiO2 Nanotubes with tunable morphology, diameter, and length: synthesis and photo-electrical/catalytic performance. Chem Mater 21:1198–1206

    Article  Google Scholar 

  • Wang D, Yu B, Wang CW, Zhou F, Liu WM (2009b) A novel protocol toward perfect alignment of anodized TiO2 nanotubes. Adv Mater 21:1964–1967

    Article  Google Scholar 

  • Xiang QJ, Lv KG, Yu JG (2010) Pivotal role of fluorine in enhanced photocatalytic activity of anatase TiO2 nanosheets with dominant (001) facets for the photocatalytic degradation of acetone in air. Appl Catal B 96:557–564

    Article  Google Scholar 

  • Xiang QJ, Yu JG, Wang WG, Jaroniec M (2011) Nitrogen self-doped nanosized TiO2 sheets with exposed 001 facets for enhanced visible-light photocatalytic activity. Chem Commun 47:6906–6908

    Article  Google Scholar 

  • Yan JF, Zhou F (2011) TiO2 nanotubes: structure optimization for solar cells. J Mater Chem 21:9406–9418

    Article  Google Scholar 

  • Yang HG, Sun CH, Qiao SZ, Zou J, Liu G, Smith SC, Jin Z, Cheng HM, Lu GQ (2008) Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453:06964–06968

    Google Scholar 

  • Yang HG, Liu G, Qiao SZ, Sun CH, Jin YG, Smith SC, Cheng HM, Lu GQ (2009) Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant 001 facets. J Am Chem Soc 131:4078–4083

    Article  Google Scholar 

  • Yang WG, Li JM, Wang YL, Zhu F, Shi WM, Wan FR, Xu DS (2011a) A facile synthesis of anatase TiO2 nanosheets-based hierarchical spheres with over 90% 001 facets for dye-sensitized solar cells. Chem Commun 47:1809–1811

    Article  Google Scholar 

  • Yang XH, Li Z, Liu G, Xing J, Sun CH, Yang HG, Li CZ (2011b) Ultra-thin anatase TiO2 nanosheets dominated with 001 facets: thickness-controlled synthesis, growth mechanism and water-splitting properties. Cryst Eng Comm 13:1378–1383

    Article  Google Scholar 

  • Yu JG, Fan JJ, Lv K (2010) Anatase TiO2 nanosheets with exposed (001) facets: improved photoelectric conversion efficiency in dye-sensitized solar cells. Nanoscale 2:2144–2149

    Article  Google Scholar 

  • Yu JG, Dai GP, Xiang QJ, Jaroniec M (2011a) Fabrication and enhanced visible-light photocatalytic activity of carbon self-doped TiO2 sheets with exposed 001 facets. J Mater Chem 21:1049–1057

    Article  Google Scholar 

  • Yu JG, Fan JJ, Cheng B (2011b) Dye-sensitized solar cells based on anatase TiO2 hollow spheres/carbon nanotube composite films. J Power Sources 196:7891–7898

    Article  Google Scholar 

  • Zheng Q, Zhou BX, Bai J, Li LH, Jin ZJ, Zhang JL, Li JH, Liu YB, Cai WM, Zhu XY (2008) Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand. Adv Mater 20:1044–1049

    Article  Google Scholar 

Download references

Acknowledgments

Financial support by the National Natural Science Foundation of China (51172159) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianjin Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2643 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Z., Cui, Z., Zhu, S. et al. Fabrication, characterization, and photocatalytic properties of anatase TiO2 nanoplates with exposed {001} facets. J Nanopart Res 16, 2191 (2014). https://doi.org/10.1007/s11051-013-2191-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2191-3

Keywords

Navigation