Skip to main content
Log in

Enhanced thermal stability and photocatalytic property of highly ordered anodized TiO2 nanotube arrays with interstitial nitrogen as dominant point defect

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Highly regular TiO2 nanotube arrays (TNTs) with interstitial nitrogen as the dominant point defect have been successfully prepared by annealing the as-anodized TNTs in N2 in a temperature range of 400–650 °C. Using analysis methods that include field emission scanning electron microscopy, X-ray diffraction patterns, and Raman spectroscopy, the thermal stability of TNTs annealed in N2 was found to be higher than that of TNTs annealed in O2. The interstitial nitrogen is considered as the dominant point defect in TNTs annealed in N2, which results in the notably improved thermal stability of the highly ordered TNTs. However, the content of hydroxyl oxygen on the surface of TNTs is significantly influenced by annealing temperature, which is closely related to photocatalytic activity. Optimized photocatalytic property of photodegradation of MO with a pseudo-first-order reaction constant k value of (5.065 ± 0.139) × 10–2 h−1 is achieved for TNTs annealed in N2 at 600 °C. These findings serve to provide simple and versatile guidelines to fabricate highly ordered TNTs with controllable point defects, enhanced thermal stability, and a high level of photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Manuel, A. Kirkey, N. Mahdi, K. Shankar, Plexcitonics—fundamental principles and optoelectronic applications. J. Mater. Chem. C 7(7), 1821–1853 (2019)

    CAS  Google Scholar 

  2. N. Sinitha, J.K. Aijo, R. Hilal, A.J. Julie, K.R. Stephen, R.P. Rachel, Aluminium doping—a cost effective and super-fast method for low temperature crystallization of TiO2 nanotubes. CrystEngComm 21(1), 128–134 (2019)

    Google Scholar 

  3. V. Galstyan, A. Ponzoni, I. Kholmanov, M.M. Natile, E. Comini, S. Nematov, G. Sberveglieri, Investigation of reduced graphene oxide and a Nb-doped TiO2 nanotube hybrid structure to improve the gas-sensing response and selectivity. ACS Sens. 4(8), 2094–2100 (2019)

    CAS  Google Scholar 

  4. A. Burns, G. Hayes, W. Li, J. Hirvonen, J.D. Demaree, S.I. Shah, Neodymium ion dopant effects on the phase transformation in sol-gel derived titania nanostructures. Mater. Sci. Eng. B 111(2–3), 150–155 (2004)

    Google Scholar 

  5. A. Valeeva, I.B. Dorosheva, E.A. Kozlova, R.V. Kamalov, A.S. Vokhmintsev, D.S. Selishchev, A.A. Saraev, E.Y. Gerasimov, I.A. Weinstein, A.A. Rempel, Influence of calcination on photocatalytic properties of nonstoichiometric titanium dioxide nanotubes. J. Alloy. Compd. 796, 293–299 (2019)

    CAS  Google Scholar 

  6. H.C. Yang, J.J. Chen, Y. Zuo, M. Zhang, G. He, Z.Q. Sun, Enhancement of photocatalytic and photoelectrochemical properties of BiOI nanosheets and silver quantum dots co-modified TiO2 nanorod arrays. J. Am. Ceram. Soc. 102(10), 5873–5880 (2019)

    Google Scholar 

  7. W.Y. Choi, A. Termin, M.R. Hoffmann, The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 98(51), 13669–13679 (1994)

    Google Scholar 

  8. J. He, P.W. Wu, L.J. Lu, H.P. Liu, H.Y. Liu, M.Q. He, Q.D. Jia, M.Q. Hua, W.S. Zhu, H.M. Li, Lattice-refined transition-metal oxides via ball milling for boosted catalytic oxidation performance. ACS Appl. Mater. Interfaces 11(40), 36666–36675 (2019)

    CAS  Google Scholar 

  9. F.G. Cai, X. Chen, L.X. Qiu, L.L. Jiang, S.D. Ma, Q.Y. Zhang, Y. Zhao, Controlled hydrothermal synthesis and photoelectrochemical properties of Bi2S3/TiO2 nanotube arrays heterostructure. J. Alloys Compd. 808, 151770 (2019)

    CAS  Google Scholar 

  10. A. Naldoni, U. Guler, Z.X. Wang, M. Marelli, F. Malara, X.G. Meng, L.V. Besteiro, A.O. Govorov, A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Broadband hot-electron collection for solar water splitting with plasmonic titanium nitride. Adv. Opt. Mater. 5(15), 1601031 (2019)

    Google Scholar 

  11. B. Shen, Q.Q. Liu, G.J. Wei, J.H. Wang, X.Y. Yu, X. Li, H.B. Wu, Synthesis of CoSe2 nanoparticles embedded in N-doped carbon with conformal TiO2 shell for sodium-ion batteries. Chem. Eng. J. 378, 122206 (2019)

    Google Scholar 

  12. S. Kenmoe, E. Spohr, Photooxidation of water on pristine, S- and N-doped TiO2(001) nanotube surfaces: A DFT plus U study. J. Phys. Chem. C 123(37), 22691–22698 (2019)

    CAS  Google Scholar 

  13. J. Han, X.G. Hou, H.L. Liu, J. Li, J.H. Yao, D.J. Li, P. Wu, Photocurrent enhancement on TiO2 nanotubes co-modified by N+ implantation and combustion of graphene. Mater. Lett. 238, 77–80 (2019)

    CAS  Google Scholar 

  14. M. Bencina, I. Junkar, R. Zaplotnik, M. Valant, A. Iglic, M. Mozetic, Plasma-induced crystallization of TiO2 nanotubes. Materials 12(4), 626 (2019)

    CAS  Google Scholar 

  15. M.H. Zhang, K.B. Yin, Z.D. Hood, Z.H. Bi, C.A. Bridges, S. Dai, Y.S. Meng, M.P. Paranthaman, M.F. Chi, In situ TEM observation of the electrochemical lithiation of N-doped anatase TiO2 nanotubes as anodes for lithium-ion batteries. J. Mater. Chem. A 5(39), 20651–20657 (2019)

    Google Scholar 

  16. R.D. Shannon, Phase transformation studies in TiO2 supporting different defect mechanisms in vacuum-reduced and hydrogen-reduced rutile. J. Appl. Phys. 35(11), 3414–3416 (1964)

    CAS  Google Scholar 

  17. S.J. Liu, Q. Ma, F. Gao, S.H. Song, S. Gao, Relationship between N-doping induced point defects by annealing in ammonia and enhanced thermal stability for anodized titania nanotube arrays. J. Alloys Compd. 543, 71–78 (2012)

    CAS  Google Scholar 

  18. Y. Zhao, S. Farsinezhad, B.D. Wiltshire, R. Kisslinger, P. Kar, K. Shankar, Optical anisotropy in vertically oriented TiO2 nanotube arrays. Nanotechnology 28(37), 374001 (2017)

    Google Scholar 

  19. G.K. Mor, O.K. Varghese, M. Paulose, C.A. Grimes, Transparent highly ordered TiO2 nanotube arrays via anodization of Titanium thin films. Adv. Funct. Mater. 15(15), 1291–1296 (2005)

    CAS  Google Scholar 

  20. Y.K. Lai, J.Y. Huang, H.F. Zhang, V.P. Subramaniam, Y.X. Tang, D.G. Gong, L. Sundar, L. Sun, Z. Chen, C.J. Lin, Nitrogen-doped TiO2 nanotube arrays films with enhanced photocatalytic activity under various light sources. J. Hazard. Mater. 184(1–3), 855–863 (2010)

    CAS  Google Scholar 

  21. K. Varghese, D.W. Gong, M. Paulose, C.A. Grimes, E.C. Dickey, Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. J. Mater. Res. 18(1), 156–165 (2003)

    CAS  Google Scholar 

  22. S. Sreekantan, R. Hazan, Z. Lockman, Photoactivity of anatase-rutile TiO2 nanotubes formed by anodization method. Thin Solid Films 518(1), 16–21 (2009)

    CAS  Google Scholar 

  23. Y. Yang, X.H. Wang, L.T. Li, Crystallization and phase transition of titanium oxide nanotube arrays. J. Am. Ceram. Soc. 91(2), 632–635 (2008)

    CAS  Google Scholar 

  24. Q. Ma, S.J. Liu, L.Q. Weng, Y. Liu, B. Liu, Growth, structure and photocatalytic properties of hierarchical Cu-Ti-O nanotube arrays by anodization. J. Alloys and Compd 501(2), 333–338 (2010)

    CAS  Google Scholar 

  25. J. Georgieva, E. Valova, S. Armyanov, D. Tatchev, S. Sotiropoulos, I. Avramova, N. Dimitrova, A. Hubind, O. Steenhaut, A simple preparation method and characterization of B and N co-doped TiO2 nanotube arrays with enhanced photoelectrochemical performance. Appl. Surf. Sci. 413, 284–291 (2017)

    CAS  Google Scholar 

  26. Y. Huo, Y. Jin, J. Zhu, H. Li, Highly active TiO2-x-yNxFy visible photocatalyst prepared under supercritical conditions in NH4F/EtOH fluid. Appl. Catal. B 89(3–4), 543–550 (2009)

    CAS  Google Scholar 

  27. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238(238), 37–38 (1972)

    CAS  Google Scholar 

  28. X. Hou, C.W. Wang, W.D. Zhu, X.Q. Wang, Y. Li, J. Wang, J.B. Chen, T. Gan, H.Y. Hu, F. Zhou, Preparation of nitrogen-doped anatase TiO2 nanoworm/nanotube hierarchical structures and its photocatalytic effect. Solid State Sci. 29(3), 27–33 (2014)

    CAS  Google Scholar 

  29. S. Sakthivel, M. Janczarek, H. Kisch, Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2. J. Phys. Chem. B. 108(50), 19384–19387 (2004)

    CAS  Google Scholar 

  30. R. Nakamura, T. Tanaka, Y. Nakatio, Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes. J. Phys. Chem. B 108(30), 10617–10620 (2004)

    CAS  Google Scholar 

  31. S.S. Zhang, F. Peng, H.J. Wang, H. Yu, S.Q. Zhang, J. Yang, H.J. Zhao, Electrodeposition preparation of Ag loaded N-doped TiO2 nanotube arrays with enhanced visible light photocatalytic performance. Cata. Commun. 12(8), 689–693 (2011)

    CAS  Google Scholar 

  32. K.L. Schulte, P.A. Desario, K.A. Gray, Effect of crystal phase composition on the reductive and oxidative abilities of TiO2 nanotubes under UV and visible light. Appl. Catal. B 97(3–4), 354–360 (2010)

    CAS  Google Scholar 

  33. Y.K. Lai, L. Sun, Y.C. Chen, H.F. Zhuang, C.J. Lin, Y.W. Chin, Effects of the structure of TiO2 nanotube array on Ti substrate on its photocatalytic activity. J. Electrochem. Soc. 153(7), 123–127 (2006)

    Google Scholar 

  34. K. Shankar, M. Paulose, G.K. Mor, O.K. Varghese, C.A. Grimes, A study on the spectral photo response and photoelectrochemical properties of flame-annealed titania nanotube-arrays. J. Phys. D 38(18), 3543–3549 (2005)

    CAS  Google Scholar 

  35. R. Katoh, A. Furube, K. Yamanaka, T. Morikawa, Charge separation and trapping in N-doped TiO2 photocatalysts: a time-resolved microwave conductivity study. J. Phys. Chem. Lett. 1(22), 3261–3265 (2010)

    CAS  Google Scholar 

  36. K. Yamanaka, T. Morikawa, Charge-carrier dynamics in nitrogen-Doped TiO2 powder studied by femtosecond time-resolved diffuse reflectance spectroscopy. J. Phys. Chem. C 116(1), 1286–1292 (2012)

    CAS  Google Scholar 

  37. D. Chen, A.K. Ray, Photodegradation kinetics of 4-nitrophenol in TiO2 suspension. Water Res. 32(11), 3223–3234 (1998)

    CAS  Google Scholar 

  38. Z.Y. Liu, X.T. Zhang, S. Nishimoto, M. Jin, D.A. Tryk, T. Murakami, A. Fujishima, Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol. J. Phys. Chem. C 112(1), 253–259 (2008)

    CAS  Google Scholar 

  39. M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Environmental application of semiconductor photocatalysis. Chem. Rev. 95(1), 69–96 (1995)

    CAS  Google Scholar 

  40. Y. Juang, Y. Liu, E. Nurhayati, N.T. Thuy, C. Huang, C.C. Hu, Anodic fabrication of advanced titania nanotubes photocatalysts for photoelectrocatalysis decolorization of Orange G dye. Chemosphere 144(47), 2462–2468 (2015)

    Google Scholar 

  41. A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95(3), 735–758 (1995)

    CAS  Google Scholar 

  42. H. Tada, M. Tanaka, Dependence of TiO2 photocatalytic activity upon its film thickness. Langmuir 13(2), 360–364 (1997)

    CAS  Google Scholar 

  43. J. Augustynski, The role of the surface intermediates in the photoelectrochemical behaviour of anatase and rutile TiO2. Electrochim. Acta 38(1), 43–46 (1993)

    CAS  Google Scholar 

  44. T. Ohno, K. Tokieda, S. Higashida, M. Matsumura, Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene. Appl. Catal. A 244(2), 383–391 (2003)

    CAS  Google Scholar 

  45. C. Hurum, K.A. Gray, T. Rajh, M.C. Thurnauer, Small temperature dependence of the kinetic isotope effect for the hydride transfer reaction catalyzed by Escherichia coli dihydrofolate. J. Phys. Chem. B 109(18), 977–980 (2005)

    CAS  Google Scholar 

  46. J. Zhang, Q. Xu, Z.C. Feng, M.J. Li, C. Li, Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew. Chem. 120(9), 1790–1793 (2008)

    Google Scholar 

  47. T. Kawahara, T. Ozawa, M. Iwasaki, H. Tada, S. Ito, Photocatalytic activity of rutile-anatase coupled TiO2 particles prepared by a dissolution-reprecipitation method. J. Colloid Interface Sci. 267(2), 377–381 (2003)

    CAS  Google Scholar 

  48. T. Kawahara, Y. Konishi, H. Tada, N. Tohge, J. Nishii, S. Ito, A Patterned TiO2 (Anatase)/TiO2 (Rutile) bilayer-type photocatalyst: effect of the anatase/rutile junction on the photocatalytic activity. Angew. Chem. Int. 41(15), 2811–2813 (2002)

    CAS  Google Scholar 

  49. B. Kosowska, S. Mozia, A.W. Morawski, B. Grzmil, M. Janus, K. Kalucki, The preparation of TiO2-nitrogen doped by calcination of TiO2·xH2O under ammonia atmosphere for visible light photocatalysis. Solar Energy Mater. Solar Cells 88(3), 269–280 (2005)

    CAS  Google Scholar 

  50. X. Cheng, X. Yu, Z. Xing, L. Yang, Synthesis and characterization of N-doped TiO2 mand its enhanced visible-light photocatalytic activity. Arabian J. Chem. 9, S1706–S1711 (2016)

    CAS  Google Scholar 

  51. M. Sahoo, T. Mathews, R.P. Antony, D. Nandagopala Krishna, S. Dash, A.K. Tyagi, Physico-chemical processes and kinetics of sunlight-induced hydrophobic superhydrophilic switching of transparent N-DopedmTiO2 thin films. ACS Appl. Mater. Interfaces 5, 3967–3974 (2013)

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of Shenzhen Fundamental Science Research Foundation (Grant No. JCYJ20170816152011392), International Science & Technology Cooperation Program of China (Grant No. 2014DFA53020) and National Natural Science Foundation of China (Grant No. 51302150).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Ma, Q., Gao, S. et al. Enhanced thermal stability and photocatalytic property of highly ordered anodized TiO2 nanotube arrays with interstitial nitrogen as dominant point defect. J Mater Sci: Mater Electron 31, 8403–8412 (2020). https://doi.org/10.1007/s10854-020-03375-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03375-x

Navigation