Skip to main content

Advertisement

Log in

Precise control the microstructural, optical, photocatalytic, and photoelectrochemical properties of TiO2 nanoarrays through changing with growth substrate via hydrothermal method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of TiO2 nanostructures with rutile phase were synthesized on arbitrary substrates of conductive transparent fluorine-doped tin oxide (FTO), tin-doped indium oxide (ITO), and glass at the low temperature of 150 °C by the hydrothermal method. The samples were characterized by XRD, SEM, TEM, XPS, UV–Vis absorption, and micro-Raman spectroscopy. The effects of growth substrates on the morphologies and optical properties of nanostructures were investigated. TiO2 nanorods were grown on the FTO substrate, while TiO2 nanoflowers were grown on the ITO and glass substrates, and the growth mechanism for these different nanostructures is discussed in detail. The results show that the TiO2 nanorods can improve photocatalytic properties and photoelctrochemical (PEC) performance for its unique structure and optical properties. The TiO2 nanorods exhibited a maximal photocatalytic rate of 4.42 min−1 and photocurrent density of 0.049 mA/cm2, which is about 1.52 and 3.03 times higher than those of TiO2 nanoflowers grown on the ITO substrates, respectively. These findings are quite promising and encouraging for the use of TiO2 nanoarrays in photocatalysis and energy applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Karch, R. Birriger, H. Gleiter, Nature 10, 556 (1987)

    Article  Google Scholar 

  2. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)

    Article  Google Scholar 

  3. W.L. Yu, D.F. Xu, T.Y. Peng, J. Mater. Chem. A 3, 19936 (2015)

    Article  Google Scholar 

  4. Y.N. Liu, R.X. Wang, Z.K. Yang, H. Du, Y.F. Jiang, C.C. Shen, K. Liang, A.W. Xu, Chin. J. Catal. 36, 2135 (2015)

    Article  Google Scholar 

  5. K.Z. Qi, B. Cheng, J.G. Yu, W. Ho, J. Alloys Compd. 727, 792 (2017)

    Article  Google Scholar 

  6. J.J. Kong, X.D. Lai, Z.B. Rui, H.B. Ji, S.F. Ji, Chin. J. Catal. 37, 869 (2016)

    Article  Google Scholar 

  7. J.Y. Liao, B.X. Lei, H.Y. Chen, D.B. Kuang, C.Y. Su, Energy Environ. Sci. 5, 5750 (2012)

    Article  Google Scholar 

  8. X. Zhang, V. Thavasi, S.G. Mhaisalkar, S. Ramakrishna, Nanoscale 4, 1707 (2012)

    Article  Google Scholar 

  9. J.M. Wu, T.W. Zhang, Y.W. Zeng, H. Satoshi, K. Tsuru, A. Osaka, Langmuir 21, 6995 (2005)

    Article  Google Scholar 

  10. H.L. Tan, R. Amal, Y.H. Ng, J. Mater. Chem. A 5, 16498 (2017)

    Article  Google Scholar 

  11. X.Y. Wang, Y. Liu, X. Zhou, B.J. Li, H. Wang, W.X. Zhao, H. Huang, C.L. Liang, J. Mater. Chem. 22, 17531 (2012)

    Article  Google Scholar 

  12. X. Feng, K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa, C.A. Grimes, Nano Lett. 8, 3781 (2008)

    Article  Google Scholar 

  13. Y.B. Mao, S.S. Wong, J. Am. Chem. Soc. 128, 8217 (2006)

    Article  Google Scholar 

  14. J. Zhang, X. Tang, D. Li, J. Phys. Chem. C 115, 21529 (2011)

    Article  Google Scholar 

  15. H. Huang, L. Pan, C.K. Lim, H. Gong, J. Guo, M.S. Tse, O.K. Tan, Small 9, 3153 (2013)

    Article  Google Scholar 

  16. G.T. Delgado, C.I.Z. Romero, S.A.M. Hernández, R.C. Pérez, O.Z. Angel, Sol. Energy Mater. Sol. Cells 93, 55 (2009)

    Article  Google Scholar 

  17. C.L. Cao, C.J. Hu, W.D. Shen, S.X. Wang, Y.S. Tian, X. Wang, J. Alloy. Compd. 523, 139 (2012)

    Article  Google Scholar 

  18. C. Chen, M.D. Ye, M.Q. Lv, C. Gong, W.X. Guo, C.J. Lin, Electrochim. Acta 121, 175 (2014)

    Article  Google Scholar 

  19. B.H. Kim, J.W. Kwon, Sci. Rep. 4, 4379 (2014)

    Article  Google Scholar 

  20. Z.H. Fan, F.M. Meng, J.F. Gong, H.J. Li, A.X. Li, Ceram. Int. 42, 6282 (2016)

    Article  Google Scholar 

  21. M. Chen, X. Wang, Y.H. Yu, Z.I. Pei, X.D. Bai, C. Sun, R.F. Huang, L.S. Wen, J. Appl. Surf. Sci. 158, 134 (2000)

    Article  Google Scholar 

  22. H. Zhou, Y.R. Zhang, J. Phys. Chem. C 118, 5626 (2014)

    Article  Google Scholar 

  23. J.M. Wu, B. Qi, J. Am. Chem. Soc. 91, 3961 (2008)

    Google Scholar 

  24. L.S. Zhong, J.S. Hu, H.P. Liang, A.M. Cao, W.G. Song, L.J. Wang, Adv. Mater. 18, 2426 (2006)

    Article  Google Scholar 

  25. F. Zhu, H. Dong, Y. Wang, D.P. Wu, J.M. Li, J.L. Pan, Q. Li, X.C. Ai, J.P. Zhang, D.S. Xu, Phys. Chem. Chem. Phys. 15, 17798 (2013)

    Article  Google Scholar 

  26. M. Rajabi, S. Shogh, A. Irajizad, J. Lumin. 157, 235 (2015)

    Article  Google Scholar 

  27. J.L. Xie, Y.F. Yang, H.P. He, D. Cheng, M.M. Mao, Q.X. Jiang, L.X. Song, J.M. Xiong, Appl. Surf. Sci. 355, 921 (2015)

    Article  Google Scholar 

  28. E.Z. Liu, L.L. Qi, J.J. Bian, Y.H. Chen, X.Y. Hu, J. Fan, H.C. Liu, C.J. Zhu, Q.P. Wang, Mater. Bull. Res. 68, 203 (2015)

    Article  Google Scholar 

  29. G.H. Liu, M. Zhang, D.Z. Zhang, X.H. Gu, F.X. Meng, S.P. Wen, Y. Chen, S.P. Ruan, Appl. Surf. Sci. 315, 55 (2014)

    Article  Google Scholar 

  30. F. Zhang, K. Saito, T. Tanaka, M. Nishio, M. Arita, Q.I. Guo, Appl. Phys. Lett. 105, 162107 (2014)

    Article  Google Scholar 

  31. H. Cai, P.P. Liang, R. Hubner, S.Q. Zhou, Y.L. Li, J. Sun, N. Xu, J.D. Wu, J. Mater. Chem. C 3, 5307 (2015)

    Article  Google Scholar 

  32. H. Frenzel, A. Lajn, H.V. Wenckstern, M. Lorenz, F. Schein, Z. Zhang, M. Grundmann, Adv. Mater. 22, 5332 (2010)

    Article  Google Scholar 

  33. M. Abd-Lefdil, R. Diaz, H. Bihri, M. Ait Aouaj, F. Rueda, Eur. Phys. J. Appl. Phys. 38, 217 (2007)

    Article  Google Scholar 

  34. C. Howard, T. Sabine, F. Dickson, Acta Crystallogr. B 47, 462 (1991)

    Article  Google Scholar 

  35. B. Liu, E.S. Aydil, J. Am. Chem. Soc. 131, 3985 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 51772003), Anhui Provincial Natural Science Foundation (1608085ME95), the State Key Laboratory of Metastable Materials Science and Technology, China (2018014), the Anhui University Provincial Natural Science Research Project, China (KJ2016A524 and KJ2017B04), the Higher Education Excellent Youth Talents Foundation of Anhui Province (gxyqZD2016328), and the Research Project of Chuzhou University (2017qd06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xishun Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., He, W., Zheng, S. et al. Precise control the microstructural, optical, photocatalytic, and photoelectrochemical properties of TiO2 nanoarrays through changing with growth substrate via hydrothermal method. J Mater Sci: Mater Electron 30, 11108–11116 (2019). https://doi.org/10.1007/s10854-019-01453-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01453-3

Navigation