Skip to main content
Log in

TiO2 nanotube arrays: hydrothermal fabrication and photocatalytic activities

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Titanium dioxide nanotube arrays (TiO2 NTAs) with rutile phase have been fabricated successfully via a two-step hydrothermal method. TiO2 nanorod arrays (TiO2 NRAs) are first hydrothermally grown on FTO substrate. Then the TiO2 NTAs can be obtained by controlling the HCl concentration of the hydrothermal etching process. The TiO2 NTAs have been characterized by X-ray diffractometer, scanning electron microscope, transmission electron microscopy, X-ray photoelectron spectroscopy, and ultraviolet–visible spectroscope. Evolution of TiO2 nanoarrays are accompanied by enhanced of the surface area and optical properties. Compared with TiO2 NRAs, the prepared TiO2 NTAs is more efficient in the photodegradation of methyl orange. These results reveal that the hydrothermal chemical etching provide a flexible and straightforward route for design and preparation of TiO2 NTAs, promising for new opportunities in photocatalysts and other fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Fujishima, K. Honda, Nature 238, 37 (1972)

    Article  Google Scholar 

  2. M.Y. Wang, D.J. Zheng, M.D. Ye, C.C. Zhang, B.B. Xu, C.J. Lin, L. Sun, Z.Q. Lin, Small 11, 1436 (2015)

    Article  Google Scholar 

  3. W. Zhou, H. Liu, R.I. Boughton, G. Du, J. Lin, J. Wang, D. Liu, J. Mater. Chem. 20, 5993 (2010)

    Article  Google Scholar 

  4. C.J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Grätzel, J. Am. Ceram. Soc. 80, 3157 (1997)

    Article  Google Scholar 

  5. Q.F. Zhang, S. Yodyingyong, J.T. Xi, D. Myers, G.Z. Cao, Nanoscale 4, 1436 (2012)

    Article  Google Scholar 

  6. S. Liu, A. Chen, Langmuir 21, 8409 (2005)

    Article  Google Scholar 

  7. J. Gong, Y. Li, Z. Hu, Y. Deng, J. Phys. Chem. C 114, 9970 (2010)

    Article  Google Scholar 

  8. Z.Y. Liu, M. Misra, ACS Nano 4, 2196 (2010)

    Article  Google Scholar 

  9. R. Dhabbe, A. Kadam, P. Korake, M. Kokate, P. Waghmare, K. Garadkar, J. Mater. Sci. 26, 554 (2015)

    Google Scholar 

  10. C.C. Tai, C.Y. Chie, Anal. Chem. 77, 5912 (2005)

    Article  Google Scholar 

  11. L.R. Zheng, Y.H. Zheng, C.Q. Chen, Y.Y. Zhan, X.Y. Lin, Q. Zheng, K.M. Wei, J.F. Zhu, Inorg. Chem. 48, 1819 (2009)

    Article  Google Scholar 

  12. H. Zhou, Y. Qu, T. Zeid, X. Duan, Energy Environ. Sci. 5, 6732 (2012)

    Article  Google Scholar 

  13. Z. Zheng, X.X. Liu, W.P. Wang, X.J. Wang, C. Liu, Q. Xie, Z.C. Li, Z.J. Zhang, Nano Energy 11, 400 (2015)

    Article  Google Scholar 

  14. J.H. Bang, P.V. Kamat, Adv. Funct. Mater. 20, 1970 (2010)

    Article  Google Scholar 

  15. M. Yu, Y.Z. Long, B. Sun, Z. Fan, Nanoscale 4, 2783 (2012)

    Article  Google Scholar 

  16. I.S. Cho, Z. Chen, A.J. Forman, D.R. Kim, P.M. Rao, T.F. Jaramillo, X. Zheng, Nano Lett. 11, 4978 (2011)

    Article  Google Scholar 

  17. S.X. Dai, Y.Q. Wu, T. Sakai, Z.L. Du, H. Sakai, M. Abe, Nanoscale Res. Lett. 5, 1829 (2010)

    Article  Google Scholar 

  18. A.S. Susha, A.A. Lutich, C. Liu, H. Xu, R. Zhang, Y. Zhong, K.S. Wong, S. Yang, A.L. Rogach, Nanoscale 5, 1465 (2013)

    Article  Google Scholar 

  19. X. Feng, K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa, C.A. Grimes, Nano Lett. 8, 3781 (2008)

    Article  Google Scholar 

  20. B. Liu, E.S. Aydil, J. Am. Chem. Soc. 131, 3985 (2009)

    Article  Google Scholar 

  21. F. Zhu, H. Dong, Y. Wang, D.P. Wu, J.M. Li, J.L. Pan, Q. Li, X.C. Ai, J.P. Zhang, D.S. Xu, Phys. Chem. Chem. Phys. 15, 17798 (2013)

    Article  Google Scholar 

  22. X.M. Huang, L.L. Meng, M. Du, Y.L. Li, J. Mater. Sci. 27, 7222 (2016)

    Google Scholar 

  23. X. Zhang, H. Tian, X.Y. Wang, G.G. Xue, Z.P. Tian, J.Y. Zhang, S.K. Yuan, T. Yu, Z.G. Zou, Mater. Lett. 100, 51 (2013)

    Article  Google Scholar 

  24. Z.Y. Liu, X.T. Zhang, S. Nishimoto, M. Jin, D.A. Tryk, T. Murakami, A. Fujishima, J. Phys. Chem. C 112, 253 (2008)

    Article  Google Scholar 

  25. J.A.T. Antonio, M.A.C. Jacome, S.L.O. Cerros, E.M. Palacios, R.S. Parra, C.A. Chavez, J. Navarete, E.L. Salinas, Appl. Catal. B 100, 47 (2010)

    Article  Google Scholar 

  26. S. Thennarasu, K. Rajasekar, K.B. Ameen, J. Mol. Struct. 1049, 446 (2013)

    Article  Google Scholar 

  27. W.T. Sun, Y. Yu, H.Y. Pan, X.F. Gao, Q. Chen, L.M. Peng, J. Am. Chem. Soc. 130, 1124 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Anhui Provincial Natural Science Foundation (1608085ME95), the Anhui University Provincial Natural Science Research Project, China (KJ2016A524 and KJ2015A153), the Higher Education Excellent Youth Talents Foundation of Anhui Province (gxyqZD2016328 and gxyqZD2016329), and the Research Project of Chuzhou University (2015qd04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xishun Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Lin, Q., Zhang, Y. et al. TiO2 nanotube arrays: hydrothermal fabrication and photocatalytic activities. J Mater Sci: Mater Electron 28, 12509–12513 (2017). https://doi.org/10.1007/s10854-017-7073-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7073-5

Keywords

Navigation