Skip to main content
Log in

Natural gas storage on silicon, carbon, and silicon carbide nanotubes: a combined quantum mechanics and grand canonical Monte Carlo simulation study

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Grand canonical Monte Carlo (GCMC) simulation combined with ab initio quantum mechanics calculations were employed to study methane storage in homogeneous armchair open-ended single-walled silicon nanotubes (SWSiNTs), single-walled carbon nanotubes (SWCNTs), and single-walled silicon carbide nanotubes (SWSiCNTs) in triangular arrays. Two different groups of nanotubes were studied: the first were (12,12) SiNTs, (19,19) CNTs, and (15,15) SiCNTs and the second were (7,7) SiNTs, (11,11) CNTs, and (9,9) SiCNTs with the diameters of 26 and 15 Å for the first and second groups, respectively. The simulations were carried out at different thermodynamic states. The potential energy functions were calculated using ab initio quantum mechanics and then fitted with (12,6) Lennard–Jones potential model as a bridge between first-principles calculations and GCMC simulations. The absolute, excess, and delivery adsorption isotherms of methane were calculated for two groups of nanotubes. The specific surface area and the isosteric heat of adsorption were computed. The radial distribution functions for the adsorbed molecules on different nanotubes were also calculated. Different isotherm models were fitted with the simulation adsorption data. According to the results, the excess uptake value of methane adsorption in (11,11) CNT array exceeded the US Department of Energy target (180 V/V at 298 K and 35 bar). The results also indicate that SiNTs and SiCNTs are not desirable materials compared with corresponding CNTs for natural gas storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Adisa OO, Cox BJ, Hill JM (2010) Encapsulation of methane in nanotube bundles. Micro Nano Lett IET 5(5):291–295. doi:10.1049/mnl.2010.0075

    Article  CAS  Google Scholar 

  • Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Clarendon, Oxford

    Google Scholar 

  • Arab M, Picaud F, Devel M, Ramseyer C, Girardet C (2004) Molecular selectivity due to adsorption properties in nanotubes. Phys Rev B 69(16):165401

    Article  CAS  Google Scholar 

  • Arora G, Wagner NJ, Sandler SI (2004) Adsorption and diffusion of molecular nitrogen in single wall carbon nanotubes. Langmuir 20(15):6268–6277. doi:10.1021/la036432f

    Article  CAS  Google Scholar 

  • Bai J, Zeng XC, Tanaka H, Zeng JY (2004) Metallic single-walled silicon nanotubes. Proc Natl Acad Sci USA 101(9):2664–2668

    Article  CAS  Google Scholar 

  • Balilehvand S, Hashemianzadeh S, Razavi S, Karimi H (2012) Investigation of hydrogen and methane adsorption/separation on silicon nanotubes: a hierarchical multiscale method from quantum mechanics to molecular simulation. Adsorption 18(1):13–22. doi:10.1007/s10450-011-9375-x

    Article  CAS  Google Scholar 

  • Barnard AS, Russo SP (2003) Structure and energetics of single-walled armchair and zigzag silicon nanotubes. J Phys Chem B 107(31):7577–7581. doi:10.1021/jp0347421

    Article  CAS  Google Scholar 

  • Bekyarova E, Murata K, Yudasaka M, Kasuya D, Iijima S, Tanaka H, Kahoh H, Kaneko K (2003) Single-wall nanostructured carbon for methane storage. J Phys Chem B 107(20):4681–4684. doi:10.1021/jp0278263

    Article  CAS  Google Scholar 

  • Bienfait M, Zeppenfeld P, Dupont-Pavlovsky N, Muris M, Johnson MR, Wilson T, DePies M, Vilches OE (2004) Thermodynamics and structure of hydrogen, methane, argon, oxygen, and carbon dioxide adsorbed on single-wall carbon nanotube bundles. Phys Rev B 70(3):035410

    Article  CAS  Google Scholar 

  • Blase X, Broyer M, Kéghélian P, Lermé J, Mélinon P, Pellarin M, Perez A, Ray C, Vialle JL (1999) Production and stability of silicon-doped heterofullerenes. Eur Phys J D 9(1):49–54. doi:10.1007/s100530050398

    Article  Google Scholar 

  • Bradbury WL, Olevsky EA (2011) Synthesis of carbide nanostructures on monolithic agricultural-waste biomass-activated carbon templates. Int J Appl Ceram Technol 8(4):947–952

    Article  CAS  Google Scholar 

  • Buckingham AD, Fowler PW, Hutson JM (1988) Theoretical studies of van der Waals molecules and intermolecular forces. Chem Rev 88(6):963–988. doi:10.1021/cr00088a008

    Article  CAS  Google Scholar 

  • Calbi MM, Cole MW, Gatica SM, Bojan MJ, Stan G (2001) Condensed phases of gases inside nanotube bundles. Rev Mod Phys 73(4):857–865

    Article  CAS  Google Scholar 

  • Cao D, Zhang X, Chen J, Wang W, Yun J (2003) Optimization of single-walled carbon nanotube arrays for methane storage at room temperature. J Phys Chem B 107(48):13286–13292. doi:10.1021/jp036094r

    Article  CAS  Google Scholar 

  • Castrucci P, Scarselli M, De Crescenzi M, Diociaiuti M, Chaudhari PS, Balasubramanian C, Bhave TM, Bhoraskar SV (2006) Silicon nanotubes: synthesis and characterization. Thin Solid Films 508(1–2):226–230. doi:10.1016/j.tsf.2005.07.348

    Article  CAS  Google Scholar 

  • Chen YW, Tang YH, Pei LZ, Guo C (2005) Self-assembled silicon nanotubes grown from silicon monoxide. Adv Mater 17(5):564–567

    Article  CAS  Google Scholar 

  • Cheng HM, Li F, Su G, Pan HY, He LL, Sun X, Dresselhaus MS (1998) Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons. Appl Phys Lett 72(25):3282–3284

    Article  CAS  Google Scholar 

  • Cheng H, Cooper AC, Pez GP, Kostov MK, Piotrowski P, Stuart SJ (2005) Molecular dynamics simulations on the effects of diameter and chirality on hydrogen adsorption in single walled carbon nanotubes. J Phys Chem B 109(9):3780–3786. doi:10.1021/jp045358m

    Article  CAS  Google Scholar 

  • Cruz FJAL, Esteves IAAC, Mota JPB (2010) Adsorption of light alkanes and alkenes onto single-walled carbon nanotube bundles: Langmuirian analysis and molecular simulations. Colloids Surf A 357(1–3):43–52. doi:10.1016/j.colsurfa.2009.09.002

    Article  CAS  Google Scholar 

  • Dai L (2005) Low-temperature, controlled synthesis of carbon nanotubes. Small 1(3):274–276

    Article  CAS  Google Scholar 

  • Darkrim F, Levesque D (1998) Monte Carlo simulations of hydrogen adsorption in single-walled carbon nanotubes. J Chem Phys 109(12):4981–4984

    Article  CAS  Google Scholar 

  • Darkrim FL, Malbrunot P, Tartaglia GP (2002) Review of hydrogen storage by adsorption in carbon nanotubes. Int J Hydrogen Energy 27(2):193–202. doi:10.1016/s0360-3199(01)00103-3

    Article  CAS  Google Scholar 

  • De Crescenzi M, Castrucci P, Scarselli M, Diociaiuti M, Chaudhari PS, Balasubramanian C, Bhave TM, Bhoraskar SV (2005) Experimental imaging of silicon nanotubes. Appl Phys Lett 86(23):231901–231903

    Article  CAS  Google Scholar 

  • Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386(6623):377–379

    Article  CAS  Google Scholar 

  • Du Z, Manos G, Vlugt TJH, Smit B (1998) Molecular simulation of adsorption of short linear alkanes and their mixtures in silicalite. AIChE J 44(8):1756–1764

    Article  CAS  Google Scholar 

  • Düren T, Sarkisov L, Yaghi OM, Snurr RQ (2004) Design of new materials for methane storage. Langmuir 20(7):2683–2689. doi:10.1021/la0355500

    Article  CAS  Google Scholar 

  • Ellison MD, Crotty MJ, Koh D, Spray RL, Tate KE (2004) Adsorption of NH3 and NO2 on single-walled carbon nanotubes. J Phys Chem B 108(23):7938–7943. doi:10.1021/jp049356d

    Article  CAS  Google Scholar 

  • Fagan SB, Mota R, Baierle RJ, Paiva G, da Silva AJR, Fazzio A (2001) Stability investigation and thermal behavior of a hypothetical silicon nanotube. J Mol Struct (Thoechem) 539(1–3):101–106. doi:10.1016/s0166-1280(00)00777-6

    Article  CAS  Google Scholar 

  • Frenkel D, Smit B (2002) Understanding molecular simulations, from algorithms to applications, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision B.01. Wallingford. citeulike-article-id:9096580

  • Ganji MD, Seyed-aghaei N, Taghavi MM, Rezvani M, Kazempour F (2011) Ammonia adsorption on SiC nanotubes: a density functional theory investigation. Fullerenes, Nanotubes, Carbon Nanostruct 19(4):289–299. doi:10.1080/15363831003721740

    Article  CAS  Google Scholar 

  • Gao G, Park SH, Kang HS (2009) A first principles study of NO2 chemisorption on silicon carbide nanotubes. Chem Phys 355(1):50–54. doi:10.1016/j.chemphys.2008.10.049

    Article  CAS  Google Scholar 

  • George EF (2002) Hydrogen interaction with carbon nanotubes: a review of ab initio studies. J Phys: Condens Matter 14(17):R453

    Article  Google Scholar 

  • Ghoufi A, Gaberova L, Rouquerol J, Vincent D, Llewellyn PL, Maurin G (2009) Adsorption of CO2, CH4 and their binary mixture in Faujasite NaY: a combination of molecular simulations with gravimetry–manometry and microcalorimetry measurements. Microporous Mesoporous Mater 119(1–3):117–128. doi:10.1016/j.micromeso.2008.10.014

    Article  CAS  Google Scholar 

  • Gordillo MC, Brualla L, Fantoni S (2004) Neon adsorbed in carbon nanotube bundles. Phys Rev B 70(24):245420

    Article  CAS  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43(24):9216–9222. doi:10.1021/es9015553

    Article  CAS  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2010) Possibilities and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis. Environ Toxicol Chem 29(5):1036–1048

    CAS  Google Scholar 

  • Guo C, Tang Y-h, Pei L-z, Zhagn Y (2011) Silicon carbide nanotubes with special morphology prepared by super critical hydrothermal method and photoluminescence character. J Shanghai Univ (English Edition) 15(6):538–541. doi:10.1007/s11741-011-0782-3

    Article  CAS  Google Scholar 

  • Gupta A, Chempath S, Sanborn MJ, Clark LA, Snurr RQ (2003) Object-oriented programming paradigms for molecular modeling. Mol Simul 29:29–46

    Article  CAS  Google Scholar 

  • Habenschuss A, Johnson E, Narten AH (1981) X-ray diffraction study and models of liquid methane at 92 K. J Chem Phys 74(9):5234–5241

    Article  CAS  Google Scholar 

  • Heyden A, Düren T, Keil FJ (2002) Study of molecular shape and non-ideality effects on mixture adsorption isotherms of small molecules in carbon nanotubes: a grand canonical Monte Carlo simulation study. Chem Eng Sci 57(13):2439–2448. doi:10.1016/s0009-2509(02)00131-8

    Article  CAS  Google Scholar 

  • Hobza P, šponer J, Reschel T (1995) Density functional theory and molecular clusters. J Comput Chem 16(11):1315–1325

    Article  CAS  Google Scholar 

  • Holland BT, Blanford CF, Stein A (1998) Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science 281(5376):538–540

    Article  CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  CAS  Google Scholar 

  • Jakobtorweihen S, Hansen N, Keil FJ (2006) Combining reactive and configurational-bias Monte Carlo: confinement influence on the propene metathesis reaction system in various zeolites. J Chem Phys 125(22):224709

    Article  CAS  Google Scholar 

  • Jeong SY, Kim JY, Yang HD, Yoon BN, Choi SH, Kang HK, Yang CW, Lee YH (2003) Synthesis of silicon nanotubes on porous alumina using molecular beam epitaxy. Adv Mater 15(14):1172–1176

    Article  CAS  Google Scholar 

  • Jiang J, Sandler SI (2003) Nitrogen adsorption on carbon nanotube bundles: role of the external surface. Phys Rev B 68(24):245412

    Article  CAS  Google Scholar 

  • Jiang J, Sandler SI, Smit B (2004a) Capillary phase transitions of n-alkanes in a carbon nanotube. Nano Lett 4(2):241–244. doi:10.1021/nl034961y

    Article  CAS  Google Scholar 

  • Jiang J, Wagner NJ, Sandler SI (2004b) A Monte Carlo simulation study of the effect of carbon topology on nitrogen adsorption on graphite, a nanotube bundle, C60 fullerite, C168 schwarzite, and a nanoporous carbon. Phys Chem Chem Phys 6(18):4440–4444

    Article  CAS  Google Scholar 

  • Jiang J, Sandler SI, Schenk M, Smit B (2005) Adsorption and separation of linear and branched alkanes on carbon nanotube bundles from configurational-bias Monte Carlo simulation. Phys Rev B 72(4):045447

    Article  CAS  Google Scholar 

  • Johnson ER, Mackie ID, DiLabio GA (2009) Dispersion interactions in density-functional theory. J Phys Org Chem 22(12):1127–1135

    Article  CAS  Google Scholar 

  • Kazachkin DV, Nishimura Y, Irle S, Feng X, Vidic R, Borguet E (2010) Temperature and pressure dependence of molecular adsorption on single wall carbon nanotubes and the existence of an “adsorption/desorption pressure gap”. Carbon 48(7):1867–1875. doi:10.1016/j.carbon.2009.11.018

    Article  CAS  Google Scholar 

  • Klontzas E, Mavrandonakis A, Froudakis GE, Carissan Y, Klopper W (2007) Molecular hydrogen interaction with IRMOF-1: a multiscale theoretical study. J Phys Chem C 111(36):13635–13640. doi:10.1021/jp075420q

    Article  CAS  Google Scholar 

  • Kondratyuk P, Wang Y, Johnson JK, Yates JT (2005) Observation of a one-dimensional adsorption site on carbon nanotubes: adsorption of alkanes of different molecular lengths. J Phys Chem B 109(44):20999–21005. doi:10.1021/jp0582078

    Article  CAS  Google Scholar 

  • Krasheninnikov AV, Banhart F, Li JX, Foster AS, Nieminen RM (2005) Stability of carbon nanotubes under electron irradiation: role of tube diameter and chirality. Phys Rev B 72(12):125428

    Article  CAS  Google Scholar 

  • Kristyán S, Pulay P (1994) Can (semi)local density functional theory account for the London dispersion forces? Chem Phys Lett 229(3):175–180. doi:10.1016/0009-2614(94)01027-7

    Article  Google Scholar 

  • Lan J, Cheng D, Cao D, Wang W (2008) Silicon nanotube as a promising candidate for hydrogen storage: from the first principle calculations to grand canonical Monte Carlo simulations. J Phys Chem C 112(14):5598–5604. doi:10.1021/jp711754h

    Article  CAS  Google Scholar 

  • Lan J, Cao D, Wang W (2009) High uptakes of methane in Li-doped 3D covalent organic frameworks. Langmuir 26(1):220–226. doi:10.1021/la9020383

    Article  CAS  Google Scholar 

  • Lasjaunias JC, Biljaković K, Sauvajol JL, Monceau P (2003) Evidence of 1D behavior of He4 confined within carbon-nanotube bundles. Phys Rev Lett 91(2):025901

    Article  CAS  Google Scholar 

  • Lee JS, Jhung SH, Yoon JW, Hwang YK, Chang J-S (2009) Adsorption of methane on porous metal carboxylates. J Ind Eng Chem 15(5):674–676. doi:10.1016/j.jiec.2009.09.043

    Article  CAS  Google Scholar 

  • Li L, Xing Y (2008) Electrochemical durability of carbon nanotubes at 80 °C. J Power Sources 178(1):75–79. doi:10.1016/j.jpowsour.2007.12.002

    Article  CAS  Google Scholar 

  • Lithoxoos GP, Samios J, Carissan Y (2008) Investigation of silicon model nanotubes as potential candidate nanomaterials for efficient hydrogen storage: a combined ab initio/grand canonical Monte Carlo simulation study. J Phys Chem C 112(43):16725–16728. doi:10.1021/jp805559a

    Article  CAS  Google Scholar 

  • Llewellyn PL, Maurin G (2005) Gas adsorption microcalorimetry and modelling to characterise zeolites and related materials. C R Chim 8(3–4):283–302. doi:10.1016/j.crci.2004.11.004

    Article  CAS  Google Scholar 

  • López MJ, Cabria I, March NH, Alonso JA (2005) Structural and thermal stability of narrow and short carbon nanotubes and nanostrips. Carbon 43(7):1371–1377. doi:10.1016/j.carbon.2005.01.006

    Article  CAS  Google Scholar 

  • Lyu SC, Liu BC, Lee SH, Park CY, Kang HK, Yang CW, Lee CJ (2004) Large-scale synthesis of high-quality single-walled carbon nanotubes by catalytic decomposition of ethylene. J Phys Chem B 108(5):1613–1616

    Google Scholar 

  • Mahdizadeh S, Tayyari S (2011) Influence of temperature, pressure, nanotube’s diameter and intertube distance on methane adsorption in homogeneous armchair open-ended SWCNT triangular arrays. Theor Chem Acc Theory Comput Model (Theor Chim Acta) 128(2):231–240. doi:10.1007/s00214-010-0836-1

    CAS  Google Scholar 

  • Mahdizadeh S, Tayyari S (2012) Methane storage in homogeneous armchair open-ended single-walled boron nitride nanotube triangular arrays: a grand canonical Monte Carlo simulation study. J Mol Model 18(6):2699–2708. doi:10.1007/s00894-011-1246-6

    Article  CAS  Google Scholar 

  • Makogon YF (2010) Natural gas hydrates—a promising source of energy. J Nat Gas Sci Eng 2(1):49–59

    Article  CAS  Google Scholar 

  • Malek K, Sahimi M (2010) Molecular dynamics simulations of adsorption and diffusion of gases in silicon-carbide nanotubes. J Chem Phys 132(1):014310

    Article  CAS  Google Scholar 

  • Marcone B, Orlandini E, Toigo F, Ancilotto F (2006) Condensation of helium in interstitial sites of carbon nanotubes bundles. Phys Rev B 74(8):085415

    Article  CAS  Google Scholar 

  • Martin MG, Siepmann JI (1998) Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. J Phys Chem B 102(14):2569–2577. doi:10.1021/jp972543+

    Article  CAS  Google Scholar 

  • Masoud Darvish G, Amir M, Ali N (2010) Theoretical investigation of methane adsorption onto boron nitride and carbon nanotubes. Sci Technol Adv Mater 11(4):045001

    Article  CAS  Google Scholar 

  • Maurin G, Bourrelly S, Llewellyn PL, Bell RG (2006) Simulation of the adsorption properties of CH4 in faujasites up to high pressure: comparison with microcalorimetry. Microporous Mesoporous Mater 89(1–3):96–102. doi:10.1016/j.micromeso.2005.09.024

    Article  CAS  Google Scholar 

  • Mavrandonakis A, Froudakis GE, Schnell M, Mühlhäuser M (2003) From pure carbon to silicon–carbon nanotubes: an ab-initio study. Nano Lett 3(11):1481–1484. doi:10.1021/nl0343250

    Article  CAS  Google Scholar 

  • Mendoza-Cortés JL, Han SS, Furukawa H, Yaghi OM, Goddard WA (2010) Adsorption mechanism and uptake of methane in covalent organic frameworks: theory and experiment. J Phys Chem A 114(40):10824–10833. doi:10.1021/jp1044139

    Article  CAS  Google Scholar 

  • Meng T, Wang C-Y, Wang S-Y (2007) First-principles study of a single Ti atom adsorbed on silicon carbide nanotubes and the corresponding adsorption of hydrogen molecules to the Ti atom. Chem Phys Lett 437(4–6):224–228. doi:10.1016/j.cplett.2007.02.024

    Article  CAS  Google Scholar 

  • Menon M, Richter E, Mavrandonakis A, Froudakis G, Andriotis AN (2004) Structure and stability of SiC nanotubes. Phys Rev B 69(11):115322

    Article  CAS  Google Scholar 

  • Meregalli V, Parrinello M (2001) Review of theoretical calculations of hydrogen storage in carbon-based materials. Appl Phys A 72(2):143–146. doi:10.1007/s003390100789

    Article  CAS  Google Scholar 

  • Mpourmpakis G, Froudakis GE, Lithoxoos GP, Samios J (2006) SiC nanotubes: a novel material for hydrogen storage. Nano Lett 6(8):1581–1583. doi:10.1021/nl0603911

    Article  CAS  Google Scholar 

  • Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42(12):4447–4453. doi:10.1021/es7029637

    Article  CAS  Google Scholar 

  • Nasibulin A, Moisala A, Jiang H, Kauppinen E (2006) Carbon nanotube synthesis from alcohols by a novel aerosol method. J Nanopart Res 8(3):465–475. doi:10.1007/s11051-005-9027-8

    Article  CAS  Google Scholar 

  • Oh DH, Lee YH (1998) Stability and cap formation mechanism of single-walled carbon nanotubes. Phys Rev B 58(11):7407–7411

    Article  CAS  Google Scholar 

  • Ohashi F, Tomura S, Akaku K, Hayashi S, Wada SI (2004) Characterization of synthetic imogolite nanotubes as gas storage. J Mater Sci 39(5):1799–1801. doi:10.1023/b:jmsc.0000016188.04444.36

    Article  CAS  Google Scholar 

  • Palaria A, Klimeck G, Strachan A (2008) Structures and energetics of silicon nanotubes from molecular dynamics and density functional theory. Phys Rev B 78(20):205315

    Article  CAS  Google Scholar 

  • Paredes JI, Suárez-García F, Villar-Rodil S, Martínez-Alonso A, Tascón JMD, Bottani EJ (2003) N2 physisorption on carbon nanotubes: computer simulation and experimental results. J Phys Chem B 107(34):8905–8916. doi:10.1021/jp026662n

    Article  CAS  Google Scholar 

  • Pascoli SD, Femia A, Luzzati T (2001) Natural gas, cars and the environment. A (relatively) ‘clean’ and cheap fuel looking for users. Ecol Econ 38(2):179–189. doi:10.1016/s0921-8009(01)00174-4

    Article  Google Scholar 

  • Pei LZ, Tang YH, Chen YW, Guo C, Li XX, Yuan Y, Zhang Y (2006) Preparation of silicon carbide nanotubes by hydrothermal method. J Appl Phys 99(11):114306

    Article  CAS  Google Scholar 

  • Peigney A, Laurent C, Flahaut E, Bacsa RR, Rousset A (2001) Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39(4):507–514. doi:10.1016/s0008-6223(00)00155-x

    Article  CAS  Google Scholar 

  • Pérez-Jordá J, Becke AD (1995) A density-functional study of van der Waals forces: rare gas diatomics. Chem Phys Lett 233(1–2):134–137. doi:10.1016/0009-2614(94)01402-h

    Article  Google Scholar 

  • Pham-Huu C, Keller N, Ehret G, Ledoux MJ (2001) The first preparation of silicon carbide nanotubes by shape memory synthesis and their catalytic potential. J Catal 200(2):400–410. doi:10.1006/jcat.2001.3216

    Article  CAS  Google Scholar 

  • Pokropivnyi V, Silenko P (2006) Silicon carbide nanotubes and nanotubular fibers: synthesis, stability, structure, and classification. Theoret Exp Chem 42(1):3–15. doi:10.1007/s11237-006-0010-y

    Article  CAS  Google Scholar 

  • Poling BE, Prausnitz JM, O'Connell J (2000) The properties of gases and liquids, 5th edn. McGraw-Hill, New York

    Google Scholar 

  • Popov VN (2004) Carbon nanotubes: properties and application. Mater Sci Eng, R 43(3):61–102. doi:10.1016/j.mser.2003.10.001

    Article  CAS  Google Scholar 

  • Romero-Vargas Castrillón S, Giovambattista Ns, Aksay IA, Debenedetti PG (2009) Effect of surface polarity on the structure and dynamics of water in nanoscale confinement. J Phys Chem B 113(5):1438–1446. doi:10.1021/jp809032n

    Article  CAS  Google Scholar 

  • Ruester S, Neumann A (2008) The prospects for liquefied natural gas development in the US. Energy Policy 36(8):3160–3168. doi:10.1016/j.enpol.2008.04.030

    Article  Google Scholar 

  • Sabo K, Scitovski R, Vazler I, Zekić-Sušac M (2011) Mathematical models of natural gas consumption. Energy Convers Manage 52(3):1721–1727. doi:10.1016/j.enconman.2010.10.037

    Article  Google Scholar 

  • Salehi E, Taghikhani V, Ghotbi C, Nemati Lay E, Shojaei A (2007) Theoretical and experimental study on the adsorption and desorption of methane by granular activated carbon at 25°C. J Nat Gas Chem 16(4):415–422. doi:10.1016/s1003-9953(08)60014-6

    Article  CAS  Google Scholar 

  • Sanborn MJ, Snurr RQ (2001) Predicting membrane flux of CH4 and CF4 mixtures in Faujasite from molecular simulations. AIChE J 47(9):2032–2041

    Article  CAS  Google Scholar 

  • Sha J, Niu J, Ma X, Xu J, Zhang X, Yang Q, Yang D (2002) Silicon nanotubes. Adv Mater 14(17):1219–1221

    Article  CAS  Google Scholar 

  • Shao X, Wang W, Zhang X (2007) Experimental measurements and computer simulation of methane adsorption on activated carbon fibers. Carbon 45(1):188–195. doi:10.1016/j.carbon.2006.07.006

    Article  CAS  Google Scholar 

  • Simonyan VV, Johnson JK, Kuznetsova A, Yates JJT (2001) Molecular simulation of xenon adsorption on single-walled carbon nanotubes. J Chem Phys 114(9):4180–4185

    Article  CAS  Google Scholar 

  • Snurr RQ, Hupp JT, Nguyen ST (2004) Prospects for nanoporous metal–organic materials in advanced separations processes. AIChE J 50(6):1090–1095

    Article  CAS  Google Scholar 

  • Tanaka H, El-Merraoui M, Steele WA, Kaneko K (2002) Methane adsorption on single-walled carbon nanotube: a density functional theory model. Chem Phys Lett 352(5–6):334–341. doi:10.1016/s0009-2614(01)01486-5

    Article  CAS  Google Scholar 

  • Tang YH, Pei LZ, Chen YW, Guo C (2005) Self-assembled silicon nanotubes under supercritically hydrothermal conditions. Phys Rev Lett 95(11):116102

    Article  CAS  Google Scholar 

  • Tchouar N, Benyettou M, Kadour F (2003) Thermodynamic, structural and transport properties of Lennard–Jones liquid systems. A molecular dynamics simulations of liquid helium, neon, methane and nitrogen. Int J Mol Sci 4(12):595–606

    Article  CAS  Google Scholar 

  • Vlugt TJH, Schenk M (2002) Influence of framework flexibility on the adsorption properties of hydrocarbons in the zeolite silicalite. J Phys Chem B 106(49):12757–12763. doi:10.1021/jp0263931

    Article  CAS  Google Scholar 

  • Wang Q, Johnson JK (1999) Optimization of carbon nanotube arrays for hydrogen adsorption. J Phys Chem B 103(23):4809–4813. doi:10.1021/jp9900032

    Article  CAS  Google Scholar 

  • Wang X, Liew KM (2011a) Hydrogen storage in silicon carbide nanotubes by lithium doping. J Phys Chem C 115(8):3491–3496. doi:10.1021/jp106509g

    Article  CAS  Google Scholar 

  • Wang X, Liew KM (2011b) Silicon carbide nanotubes serving as a highly sensitive gas chemical sensor for formaldehyde. J Phys Chem C 115(21):10388–10393. doi:10.1021/jp2005937

    Article  CAS  Google Scholar 

  • Wijnhoven JEGJ, Vos WL (1998) Preparation of photonic crystals made of air spheres in titania. Science 281(5378):802–804

    Article  CAS  Google Scholar 

  • Wu H, Chan G, Choi JW, Ryu I, Yao Y, McDowell MT, Lee SW, Jackson A, Yang Y, Hu L, Cui Y (2012) Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nano 7(5):310–315

    Article  CAS  Google Scholar 

  • Xianlong W, Ming-Sheng W, Yoshio B, Dmitri G (2011) Thermal stability of carbon nanotubes probed by anchored tungsten nanoparticles. Sci Technol Adv Mater 12(4):044605

    Article  CAS  Google Scholar 

  • Xue C, Zhou Ze, Yang Q, Zhong C (2009) Enhanced methane adsorption in catenated metal–organic frameworks: a molecular simulation study. Chin J Chem Eng 17(4):580–584. doi:10.1016/s1004-9541(08)60247-5

    Article  CAS  Google Scholar 

  • Yulong W, Fei W, Guohua L, Guoqing N, Mingde Y (2008) Methane storage in multi-walled carbon nanotubes at the quantity of 80 g. Mater Res Bull 43(6):1431–1439. doi:10.1016/j.materresbull.2007.06.046

    Article  CAS  Google Scholar 

  • Zhang RQ, Lee ST, Law C-K, Li W-K, Teo BK (2002) Silicon nanotubes: why not? Chem Phys Lett 364(3–4):251–258. doi:10.1016/s0009-2614(02)01334-9

    Article  CAS  Google Scholar 

  • Zhang M, Kan YH, Zang QJ, Su ZM, Wang RS (2003) Why silicon nanotubes stably exist in armchair structure? Chem Phys Lett 379(1–2):81–86. doi:10.1016/j.cplett.2003.08.030

    Article  CAS  Google Scholar 

  • Zhang RQ, Lee H-L, Li W-K, Teo BK (2005) Investigation of possible structures of silicon nanotubes via density-functional tight-binding molecular dynamics simulations and ab initio calculations. J Phys Chem B 109(18):8605–8612. doi:10.1021/jp045682h

    Article  CAS  Google Scholar 

  • Zhou W, Wu H, Hartman MR, Yildirim T (2007) Hydrogen and methane adsorption in metal–organic frameworks: a high-pressure volumetric study. J Phys Chem C 111(44):16131–16137. doi:10.1021/jp074889i

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of this research by Ferdowsi University of Mashhad (Grant No. 3/18509).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayyed Jalil Mahdizadeh.

Appendix

Appendix

See Table 4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahdizadeh, S.J., Goharshadi, E.K. Natural gas storage on silicon, carbon, and silicon carbide nanotubes: a combined quantum mechanics and grand canonical Monte Carlo simulation study. J Nanopart Res 15, 1393 (2013). https://doi.org/10.1007/s11051-012-1393-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1393-4

Keywords

Navigation