Skip to main content
Log in

Adsorption of sulfur dioxide and mixtures with nitrogen at carbon nanotubes and graphene: molecular dynamics simulation and gravimetric adsorption experiments

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The adsorption of sulfur dioxide (SO\(_{2}\)), nitrogen (N\(_{2}\)) and mixtures of both on carbon nanotubes (CNTs) and graphene was studied by molecular dynamic simulation. Experimental results from gravimetric adsorption of SO\(_{2}\) and N\(_{2}\) on CNTs are compared to simulated data. CNTs with a rigid and a flexible model and the diameters 1.48 and 2.69 nm were simulated. For graphene, SO\(_{2}\) and N\(_{2}\) rigid models were applied. Besides the CNT diameters, different system temperatures, compositions of SO\(_{2}\)/N\(_{2}\) mixtures were considered for selected cases of CNTs and graphene. By examining the local SO\(_{2}\) and N\(_{2}\) densities on the CNTs and graphene, adsorption could be observed. SO\(_{2}\) shows an enhanced adsorption compared to N\(_{2}\) on both CNTs and graphene. By varying the starting configurations of the simulation, different system pressures could be achieved, which allowed the determination of adsorption isotherms at different temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. For the sake of simplicity SWCNTs are often simply named CNTs in this paper.

  2. In the very beginning of the simulation a significant drop in density in the compartments inside the tube can be seen. This is due to the way the SO\(_{2}\) lattice was set up. At the beginning a liquid-like SO\(_{2}\) bulk was placed there. This was done as mentioned to keep the system size to reasonable values and to apply enough SO\(_{2}\) molecules for adsorption.

References

  • Alexiadis, A., Kassinos, S.: Molecular dynamic simulations of carbon nanotubes in CO\(_2\) atmosphere. Chem. Phys. Lett. 460(4–6), 512–516 (2008). doi:10.1016/j.cplett.2008.06.050

    Article  CAS  Google Scholar 

  • Arora, G., Sandler, S.I.: Mass transport of O\(_2\) and N\(_2\) in nanoporous carbon (C\(_{168}\) schwarzite) using a quantum mechanical force field and molecular dynamics simulations. Langmuir 22(10), 4620–4628 (2006). doi:10.1021/la053062h

    Article  CAS  Google Scholar 

  • Babu, D.J., Lange, M., Cherkashinin, G., Issanin, A., Staudt, R., Schneider, J.J.: Gas adsorption studies of CO\(_2\) and N\(_2\) in spatially aligned double-walled carbon nanotube arrays. Carbon 61, 616–623 (2013). doi:10.1016/j.carbon.2013.05.045

    Article  CAS  Google Scholar 

  • Berthelot, D.M., Becquerel, M.: Sur le mélange des gaz. Physique 126, 1703–1706 (1898)

    Google Scholar 

  • Bienfait, M., Zeppenfeld, P., Dupont-Pavlovsky, N., Muris, M., Johnson, M., Wilson, T., DePies, M., Vilches, O.: Thermodynamics and structure of hydrogen, methane, argon, oxygen, and carbon dioxide adsorbed on single-wall carbon nanotube bundles. Phys. Rev. B 70(3), 035410 (2004). doi:10.1103/PhysRevB.70.035410

    Article  Google Scholar 

  • Boda, D., Henderson, D.: The effects of deviations from lorentz–berthelot rules on the properties of a simple mixture. Mol. Phys. 106(20), 2367–2370 (2008). doi:10.1080/00268970802471137

    Article  CAS  Google Scholar 

  • Delhommelle, J., Millié, P.: Inadequacy of the lorentz–berthelot combining rules for accurate predictions of equilibrium properties by molecular simulation. Mol. Phys. 99(8), 619–625 (2001). doi:10.1080/00268970010020041

    Article  CAS  Google Scholar 

  • Fender, B.E.F., Halsey, G.D.: Second virial coefficients of argon, krypton, and argon–krypton mixtures at low temperatures. J. Chem. Phys. 36(7), 1881 (1962). doi:10.1063/1.1701284

    Article  CAS  Google Scholar 

  • Guldi, D.M., Martin, N.: Carbon Nanotubes and Related Structures: Synthesis, Characterization, Functionalization, and Applications. Wiley, Weinheim (2010)

    Book  Google Scholar 

  • Hoover, W.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31(3), 1695–1697 (1985). doi:10.1103/PhysRevA.31.1695

    Article  CAS  Google Scholar 

  • Iijima, S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991). doi:10.1038/354056a0

    Article  CAS  Google Scholar 

  • Joshi, R., Engstler, J., Houben, L., BarSadan, M., Weidenkaff, A., Mandaliev, P., Issanin, A., Schneider, J.J.: Catalyst composition, morphology and reaction pathway in the growth of “super-long” carbon nanotubes. ChemCatChem 2(9), 1069–1073 (2010). doi:10.1002/cctc.201000037

    Article  CAS  Google Scholar 

  • Keller, J.U., Staudt, R.: Gas Adsorption Equilibria: Experimental Methods and Adsorptive Isotherms. Springer, New York (2005)

    Google Scholar 

  • Kholmurodov, K.: Molecular dynamics simulations of the interaction of carbon nanotube and a carbon disulfide solvent. Nat. Sci. 02(08), 902–910 (2010). doi:10.4236/ns.2010.28111

    CAS  Google Scholar 

  • Kong, C.L.: Combining rules for intermolecular potential parameters. ii. Rules for the Lennard-Jones (12–6) potential and the morse potential. J. Chem. Phys. 59(5), 2464 (1973). doi:10.1063/1.1680358

    Article  CAS  Google Scholar 

  • Kovalev, V.L., Yakunchikov, A.N.: Simulation of hydrogen adsorption in carbon nanotubes. Fluid Dyn. 44(3), 475–479 (2009). doi:10.1134/S0015462809030168

    Article  CAS  Google Scholar 

  • Krätschmer, W., Lamb, L.D., Fostiropoulos, K., Huffman, D.R.: Solid C\(_{60}\): a new form of carbon. Nature 347(6291), 354–358 (1990). doi:10.1038/347354a0

    Article  Google Scholar 

  • Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., Smalley, R.E.: C\(_{60}\): Buckminsterfullerene. Nature 318(6042), 162–163 (1985). doi:10.1038/318162a0

    Article  CAS  Google Scholar 

  • Lee, J., Aluru, N.R.: Separation of gases from gas–water mixtures using carbon nanotubes. Appl. Phys. Lett. 96(13), 133108 (2010). doi:10.1063/1.3374363

    Article  Google Scholar 

  • Lorentz, H.A.: Ueber die anwendung des satzes vom virial in der kinetischen theorie der gase. Ann. Phys. 248(1), 127–136 (1881). doi:10.1002/andp.18812480110

    Article  Google Scholar 

  • Malek, K., Sahimi, M.: Molecular dynamics simulations of adsorption and diffusion of gases in silicon-carbide nanotubes. J. Chem. Phys 132(1), 014310 (2010). doi:10.1063/1.3284542

    Article  Google Scholar 

  • Nist chemistry webbook. http://webbook.nist.gov/

  • Novoselov, K.S.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). doi:10.1126/science.1102896

    Article  CAS  Google Scholar 

  • Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.S., Cheatham, T.E., DeBolt, S., Ferguson, D., Seibel, G., Kollman, P.: Amber, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput. Phys. Commun. 91(1–3), 1–41 (1995). doi:10.1016/0010-4655(95)00041-D

    Article  CAS  Google Scholar 

  • Peigney, A., Laurent, C., Flahaut, E., Bacsa, R.R., Rousset, A.: Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39(4), 507–514 (2001). doi:10.1016/S0008-6223(00)00155-X

    Article  CAS  Google Scholar 

  • Peng, X., Cao, D.: Computational screening of porous carbons, zeolites, and metal organic frameworks for desulfurization and decarburization of biogas, natural gas, and flue gas. AIChE J. 59(8), 2928–2942 (2013). doi:10.1002/aic.14046

    Article  CAS  Google Scholar 

  • Pitzer, K.S., Lippmann, D.Z., Curl, R.F., Huggins, C.M., Petersen, D.E.: The volumetric and thermodynamic properties of fluids. ii. Compressibility factor, vapor pressure and entropy of vaporization. J. Am. Chem. Soc. 77(13), 3433–3440 (1955). doi:10.1021/ja01618a002

    Article  CAS  Google Scholar 

  • Poling, B.E., Prausnitz, J.M., O’Connell, J.P.: The properties of gases and liquids, 5th edn. McGraw-Hill, New York (2001)

    Google Scholar 

  • Rahimi, M., Singh, J.K., Babu, D.J., Schneider, J.J., Müller-Plathe, F.: Understanding carbon dioxide adsorption in carbon nanotube arrays: molecular simulation and adsorption measurements. J. Phys. Chem. C 117(26), 13492–13501 (2013). doi:10.1021/jp403624c

    Article  CAS  Google Scholar 

  • Sadus, R.J.: Influence of combining rules and molecular shape on the high pressure phase equilibria of binary fluid mixtures. J. Phys. Chem. 97(9), 1985–1992 (1993). doi:10.1021/j100111a042

    Article  CAS  Google Scholar 

  • Skoulidas, A., Ackerman, D., Johnson, J., Sholl, D.: Rapid transport of gases in carbon nanotubes. Phys. Rev. Lett. 89(18), 185901 (2002). doi:10.1103/PhysRevLett.89.185901

    Article  Google Scholar 

  • Skoulidas, A.I., Sholl, D.S., Johnson, J.K.: Adsorption and diffusion of carbon dioxide and nitrogen through single-walled carbon nanotube membranes. J. Chem. Phys. 124(5), 054708 (2006). doi:10.1063/1.2151173

    Article  Google Scholar 

  • Smith, W., Forester, T., Todorov, I.: The DL Poly 2 User Manual, Version 2.19. STFC Daresbury Laboratory Daresbury, Warrington (2008)

    Google Scholar 

  • Sokolic, F., Guissani, Y., Guillot, B.: Computer simulation of liquid sulfur dioxide: comparison of model potentials. J. Phys. Chem. 89(14), 3023–3026 (1985). doi:10.1021/j100260a014

    Article  CAS  Google Scholar 

  • Song, W., Rossky, P.J., Maroncelli, M.: Modeling alkane + perfluoroalkane interactions using all-atom potentials: failure of the usual combining rules. J. Chem. Phys. 119(17), 9145 (2003). doi:10.1063/1.1610435

    Article  CAS  Google Scholar 

  • Tersoff, J.: Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys. Rev. B 39(8), 5566–5568 (1989). doi:10.1103/PhysRevB.39.5566

    Article  CAS  Google Scholar 

  • Tersoff, J.: Erratum: modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys. Rev. B 41(5), 3248 (1990). doi:10.1103/PhysRevB.41.3248.2

    Article  CAS  Google Scholar 

  • Todorov, I.T., Smith, W., Trachenko, K., Dove, M.T.: Dl_poly_3: new dimensions in molecular dynamics simulations via massive parallelism. J. Mater. Chem. 16(20), 1911 (2006). doi:10.1039/b517931a

    Article  CAS  Google Scholar 

  • Waldman, M., Hagler, A.: New combining rules for rare gas van der waals parameters. J. Comput. Chem. 14(9), 1077–1084 (1993). doi:10.1002/jcc.540140909

    Article  CAS  Google Scholar 

  • Wang, W., Peng, X., Cao, D.: Capture of trace sulfur gases from binary mixtures by single-walled carbon nanotube arrays: a molecular simulation study. Environ. Sci. Technol. 45(11), 4832–4838 (2011). doi:10.1021/es1043672

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors kindly thank the group of Prof. Schneider, Chemistry Department TU Darmstadt, for providing the BET measurements of the industrial grade CNTs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank G. Kühl.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 221 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kühl, F.G., Kazdal, T.J., Lang, S. et al. Adsorption of sulfur dioxide and mixtures with nitrogen at carbon nanotubes and graphene: molecular dynamics simulation and gravimetric adsorption experiments. Adsorption 23, 293–301 (2017). https://doi.org/10.1007/s10450-016-9850-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-016-9850-5

Keywords

Navigation