Skip to main content
Log in

First Principles Investigation of NH3 and NO2 Adsorption on Transition Metal-Doped Single-Walled Carbon Nanotubes

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Density functional theory calculations were carried out to investigate the binding ability of transition metals (TM = Cr, Mo, W, Mn, Tc, and Re) on (5,5) armchair single-walled carbon nanotubes (SWCNTs) and their adsorption ability with ammonia (NH3) and nitrogen dioxide (NO2). The geometric, electronic, and energetic properties of pristine SWCNT doping with TM and their NH3 and NO2 adsorptions were calculated to explore their potentials as gas adsorptions and sensors. The binding abilities of TMs to the SWCNT are found to be in the order: Cr > Mo > Tc > Re > W > Mn. According to the results, compared to the pristine SWCNT, TM atom doping can significantly increase gas adsorption ability in which W-SWCNT has the strongest interaction, and the ability to absorb NO2 is higher than NH3. The density of states and orbital distributions display that the band gaps and electron delocalizations of TM-SWCNTs are significantly changed upon gas adsorption. These observations suggest that the TM-doped SWCNTs can be introduced as promising candidates in gas adsorptions and sensor devices for storage and detecting NH3 and NO2 molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.S. Varghese, S. Lonkar, K.K. Singh, S. Swaminathan, and A. Abdalad, Sens. Actuators B 218, 160 (2015).

    Article  CAS  Google Scholar 

  2. A. Abdelhalim, M. Winkler, F. Loghin, C. Zeiser, P. Lugli, and A. Abdellah, Sens. Actuators B 220, 1288 (2015).

    Article  CAS  Google Scholar 

  3. J. Kim, S.W. Choi, J.H. Lee, Y. Chung, and Y.T. Byun, Sens. Actuators B 228, 688 (2016).

    Article  CAS  Google Scholar 

  4. I.V. Zaporotskova, N.P. Boroznina, Y.N. Parkhomenko, and L.V. Kozhitov, Mod. Electron. Mater. 2, 95 (2016).

    Article  Google Scholar 

  5. Y. Gogotsi, Carbon nanomaterials (Pennsylvania: Taylor and Francis Group, LLC, 2006).

    Book  Google Scholar 

  6. M.A. Azam, M.W.A. Rashid, K. Isomura, A. Fujiwara, and T. Shimoda, Adv. Mater. Res. 620, 213 (2013).

    Article  Google Scholar 

  7. R.N.A.R. Seman, M.A. Azam, and A.A. Mohamad, Renew. Sustain. Energy Rev. 75, 644 (2017).

    Article  CAS  Google Scholar 

  8. D. Jung, M. Han, and G. Lee, Sens. Actuators A: Phys. 211, 51 (2014).

    Article  CAS  Google Scholar 

  9. M. Roberts, M. LeMieux, and Z. Bao, ACS Nano 3, 3287 (2009).

    Article  CAS  Google Scholar 

  10. X. Zhang, Y. Gui, H. Xiao, and Y. Zhang, Appl. Surf. Sci. 379, 47 (2016).

    Article  CAS  Google Scholar 

  11. X. Zhang, Z. Dai, L. Wei, N. Liang, and X. Wu, Sensors (Basel) 13, 15159 (2013).

    Article  CAS  Google Scholar 

  12. M. Yoosefian, M. Zahedi, A. Mola, and S. Naserian, Appl. Surf. Sci. 349, 864 (2015).

    Article  CAS  Google Scholar 

  13. X. Zhang, H. Cui, X. Dong, D. Chen, and J. Tang, Appl. Surf. Sci. 420, 825 (2017).

    Article  CAS  Google Scholar 

  14. Y. Chen, S. Yin, Y. Chen, W. Cen, J. Li, and H. Yin, Appl. Surf. Sci. 434, 382 (2018).

    Article  CAS  Google Scholar 

  15. T.T.H. Nguyen, V.K. Le, C.L. Minh, and N.H. Nguyen, Comput. Theor. Chem. 1100, 46 (2017).

    Article  CAS  Google Scholar 

  16. M.A. Azam, F.M. Alias, L.W. Tack, R.N.A.R. Seman, and M.F.M. Tai, J. Mol. Graph. Model. 75, 85 (2017).

    Article  CAS  Google Scholar 

  17. W. Li, X.M. Lu, G.Q. Li, J.J. Ma, P.Y. Zeng, J.F. Chen, Z.L. Pan, and Q.Y. He, Appl. Surf. Sci. 364, 560 (2016).

    Article  CAS  Google Scholar 

  18. H.Y. Abdullah, Results Phys. 6, 1146 (2016).

    Article  Google Scholar 

  19. S.M. Aghaei, M.M. Monshi, I. Torres, S.M.J. Zeidi, and I. Calizo, Appl. Surf. Sci. 427, 326 (2018).

    Article  Google Scholar 

  20. M.D. Gilan and R. Chegel, J. Electron. Mater. 47, 1009 (2018).

    Article  CAS  Google Scholar 

  21. V. Nagarajan and R. Chandiramouli, Superlattices Microstruct. 101, 160 (2017).

    Article  CAS  Google Scholar 

  22. A.N.A. Anasthasiya, M. Khaneja, and B.G. Jeyaprakash, J. Electron. Mater. 46, 5642 (2017).

    Article  Google Scholar 

  23. Y. Li, M. Hodak, W. Lu, and J. Bernhol, Carbon 101, 177 (2016).

    Article  CAS  Google Scholar 

  24. MdS Khan and A. Srivastava, J. Electrochem. Chem. 775, 243 (2016).

    Article  CAS  Google Scholar 

  25. Y. Cheng, R. Meng, C. Tan, X. Chen, and J. Xiao, Appl. Surf. Sci. 427, 176 (2018).

    Article  CAS  Google Scholar 

  26. J. Kong, N. Franklin, C. Zhou, M. Chapline, S. Peng, K. Cho, and H. Dai, Science 287, 622 (2000).

    Article  CAS  Google Scholar 

  27. K. Azizi and M. Karimpanah, Appl. Surf. Sci. 285P, 102 (2013).

    Article  Google Scholar 

  28. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, and J.A. Pople, GAUSSIAN 09, Revision A.02 (Wallingford: Gaussian Inc, 2009).

    Google Scholar 

  29. A.D. Becke, Phys. Rev. A 38, 3098 (1988).

    Article  CAS  Google Scholar 

  30. A.D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  CAS  Google Scholar 

  31. C. Lee, W. Yang, and R.G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  CAS  Google Scholar 

  32. P.J. Hay and W.R. Wadt, J. Chem. Phys. 82, 270 (1985).

    Article  CAS  Google Scholar 

  33. W.R. Wadt and P.J. Hay, J. Chem. Phys. 82, 284 (1985).

    Article  CAS  Google Scholar 

  34. P.J. Hay and W.R. Wadt, J. Chem. Phys. 82, 299 (1985).

    Article  CAS  Google Scholar 

  35. B. Wanno and C. Tabtimsai, Superlattices Microstruct. 67, 110 (2014).

    Article  CAS  Google Scholar 

  36. J. Arasteh and M. Naseh, Struct. Chem. 30, 97 (2019).

    Article  CAS  Google Scholar 

  37. B.P. Giovanne, L.M. Naiara, S.L.F. Guilherme, and R.S. Julio, Theor. Chem. Acc. 138, 31 (2019).

    Article  Google Scholar 

  38. T. Movlarooy and B. Minaie, J. Comput. Electron. 17, 1441 (2018).

    Article  CAS  Google Scholar 

  39. Z. Zhou, M. Steigerwald, M. Hybertsen, L. Brus, and R.A. Friesner, J. Am. Chem. Soc. 126, 3597 (2004).

    Article  CAS  Google Scholar 

  40. S. Saha, T.C. Dinadayalane, J.S. Murray, D. Leszczynska, and J. Leszczynski, J. Phys. Chem. C 116, 22399 (2012).

    Article  CAS  Google Scholar 

  41. R.G. Parr, R.A. Donelly, M. Levy, and W.E. Palke, J. Chem. Phys. 68, 3801 (1978).

    Article  CAS  Google Scholar 

  42. J.F. Janak, Phys. Rev. B 18, 7165 (1978).

    Article  CAS  Google Scholar 

  43. B. Gómez and J.M. Martínez-Magadán, J. Phys. Chem. B 109, 14868 (2005).

    Article  Google Scholar 

  44. N.M. O’Boyle, A.L. Tenderholt, and K.M. Langner, J. Comput. Chem. 29, 839 (2008).

    Article  Google Scholar 

  45. P. Flükiger, H.P. Lüthi, and S. Portmann, MOLEKEL 4.3 (Manno: Swiss Center for Scientific Computing, 2000).

    Google Scholar 

  46. S. Banerjee, T. Hemraj-Benny, and S.S. Wong, Adv. Mater. 17, 17 (2005).

    Article  CAS  Google Scholar 

  47. M. Malehmir and B. Khoshnevisan, Chem. Phys. 478, 62 (2016).

    Article  CAS  Google Scholar 

  48. C. Tabtimsai, V. Ruangpornvisuti, and B. Wanno, Physica E 49, 61 (2013).

    Article  CAS  Google Scholar 

  49. H.R. Balangi and A.A. Shokri, Physica E 74, 515 (2015).

    Article  CAS  Google Scholar 

  50. A. Kutana, E.S. Penev, and B.I. Yakobson, Nanoscale 6, 5820 (2014).

    Article  CAS  Google Scholar 

  51. A.S. Rad and D. Zareyee, Vacuum 130, 113 (2016).

    Article  Google Scholar 

Download references

Acknowledgments

The financial support (2561A14702104) by Research and Development Institute, Rajabhat Maha Sarakham University is gratefully acknowledged. We also thank the Computational Chemistry Center for Nanotechnology (CCCN), Department of Chemistry, Faculty of Science and Technology, Rajabhat Maha Sarakham University, and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Mahasarakham University for the facilities provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanukorn Tabtimsai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabtimsai, C., Wanno, B., Utairueng, A. et al. First Principles Investigation of NH3 and NO2 Adsorption on Transition Metal-Doped Single-Walled Carbon Nanotubes. J. Electron. Mater. 48, 7226–7238 (2019). https://doi.org/10.1007/s11664-019-07537-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07537-4

Keywords

Navigation