Skip to main content
Log in

Evaluating three direct-reading instruments based on diffusion charging to measure surface area concentrations in polydisperse nanoaerosols in molecular and transition regimes

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Many toxicology studies on insoluble and poorly soluble nanoparticles point out surface area as an indicator of inhalation exposure. Measuring this criterion thus constitutes an important challenge. Instruments exist which can measure particle surface area concentration in real-time, but it is not known how well they perform when faced with polydisperse nanostructured aerosols. In this study, the response functions of three commercially available instruments based on diffusion charging (LQ1-DC, Matter Engineering; NSAM, TSI model 3550; AeroTrak™ 9000, TSI) were measured for monodisperse aerosols of four different chemical natures with particles ranging in size from 15 to 520 nm. Our results show good agreement between the experimental and theoretical response functions for the three instruments studied. In addition, no significant effect of the chemical nature, density or particle morphology was revealed. Instrument response was also tested with polydisperse aerosols. For these aerosols, discrepancies were observed between measurements and calculated concentrations based on response function and particle number size distribution. Relative differences varied between −60 and +55 % with an average value of −20 %. These differences may be explained by different factors; among them, the existence of a distribution of electrical charges on particles can lead to identical signals measured, and differential diffusion charging performance might lead to concentration-dependent response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Asbach C, Kaminsli H, Fissan H, Monz C, Dahmann D, Kuhlbusch TAJ (2007) Comparison of ultrafine particle surface area measurement with NSAM and SMPS. In: European Aerosol Conference 2007, Salzburg, Abstract T09A007

  • Asbach C, Fissan H, Stahlmecke B, Kuhlbusch TAJ, Pui DYH (2009) Conceptual limitations and extensions of lung-deposited Nanoparticle Surface Area Monitor (NSAM). J Nanopart Res 11(1):101–109

    Article  Google Scholar 

  • Bau S, Witschger O, Gensdarmes F, Thomas D (2009) Experimental study of the response functions of direct-reading instruments measuring surface-area concentration of airborne nanostructured particles. J Phys Conf Ser 170:012006. doi:10.1088/1742-6596/170/1/012006

    Article  Google Scholar 

  • Bau S, Witschger O, Gensdarmes F, Rastoix O, Thomas D (2010a) A TEM-based method as an alternative tot he BET method for measuring off-line the specific surface-area of nanoaerosols. Powder Technol 200:190–201

    Article  CAS  Google Scholar 

  • Bau S, Witschger O, Gensdarmes F, Thomas D, Borra JP (2010b) Electrical properties of airborne nanoparticles produced by a commercial spark-discharge generator. J Nanopart Res 12:1989–1995

    Article  CAS  Google Scholar 

  • Bau S, Witschger O, Gensdarmes F, Thomas D (2011) Response of three instruments devoted to surface-area for monodisperse and polydisperse aerosols in molecular and transition regimes. J Phys Conf Ser 304:012015. doi:10.1088/1742-6596/304/1/012015

    Article  Google Scholar 

  • Biskos G, Reavell K, Collings N (2005) Unipolar diffusion charging of aerosol particles in the transition regime. J Aerosol Sci 36:247–265

    Article  CAS  Google Scholar 

  • Brockmann JE (2011) Aerosol transport in sampling lines and inlets. In: Kulkarni P, Baron P, Willeke K (eds) Aerosol measurement: principles, techniques and applications, 3rd edn. Wiley, New York, pp 69–106

    Google Scholar 

  • Brunauer S, Emmet PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem 60:309–319

    Article  CAS  Google Scholar 

  • Bukowiecki N, Dommen J, Prévôt ASH, Richter R, Weingartner E, Baltensperger U (2002a) A mobile pollutant measurement laboratory—measuring gas phase and aerosol ambient concentrations with high spatial and temporal resolution. Atmospheric Environ 36:5569–5579

    Article  CAS  Google Scholar 

  • Bukowiecki N, Kittelson DB, Watts WF, Burtscher H, Weingartner E, Baltensperger U (2002b) Real-time characterization of ultrafine and accumulation mode particles in ambient combustion aerosols. J Aerosol Sci 33:1139–1154

    Article  CAS  Google Scholar 

  • Buonanno G, Morawska L, Stabile L, Viola A (2010) Exposure to particle number, surface area and PM concentrations in pizzerias. Atmospheric Environ 44:3963–3969

    Article  CAS  Google Scholar 

  • Buonanno G, Morawska L, Stabile L (2011) Exposure to welding particles in automotive plants. J Aerosol Sci 42:295–304

    Article  CAS  Google Scholar 

  • Cheng YH, Chao YC, Wu CH, Tsai CJ, Uang SN, Shih TS (2008) Measurements of ultrafine particle concentrations and size distributions in an iron foundry. J Hazard Mater 158:124–130

    Article  CAS  Google Scholar 

  • Comité Européen de Normalisation (CEN) (1993) Workplace atmospheres: size fraction definitions for measurement of airborne particles in the workplace. CEN standard EN 481

  • European Commission (2011) Commission recommendation of 18 October 2011 on the definition of nanomaterial (2011/696/EU), 3 p

  • Fissan H, Neumann S, Trampe A, Pui DYH, Shin WG (2007) Rationale and principle of an instrument measuring lung deposited nanoparticle surface area. J Nanopart Res 9:53–59

    Article  Google Scholar 

  • Foroutan-Pour K, Dutilleul P, Smith DL (1999) Advances in the implementation of the box counting method of fractal dimension estimation. Appl Math Comput 105:195–210

    Article  Google Scholar 

  • Frank BP, Saltiel S, Hogrefe O, Grygas J, Lala GG (2008) Determination of mean particle size using the electrical aerosol detector and the condensation particle counter: comparison with the scanning mobility particle sizer. J Aerosol Sci 39:19–29

    Article  CAS  Google Scholar 

  • Fuchs NA (1964) The mechanics of aerosols, 1st edn. Dover Publications Inc., New York

    Google Scholar 

  • Gäggeler HW, Baltensperger U, Emmenegger M, Jost DT, Schmidt-Ott A, Haller P, Hofmann M (1989) The epiphaniometer, a new device for continuous aerosol monitoring. J Aerosol Sci 20(5):557–564

    Article  Google Scholar 

  • Heim M, Kasper G, Reischl GP, Gerhart C (2004) Performance of a new commercial electrical mobility spectrometer. Aerosol Sci Technol 38(Suppl 2):3–14

    CAS  Google Scholar 

  • Heitbrink WA, Evans DE, Ku BK, Maynard AD, Slavin T, Peters T (2009) Relationship among particle number, surface area, and respirable mass concentration in an automotive engine manufacturing. J Occup Environ Hyg 6:19–31

    Article  CAS  Google Scholar 

  • Heyder J, Gebhart J, Rudolf G, Schillerd CF, Stahlhofen W (1986) Deposition of particles in the human respiratory tract in the size range 0.005–15 μm. J Aerosol Sci 17:811–825

    Article  Google Scholar 

  • Hoppel WA, Frick GM (1989) Comment on the comparison of measured and calculated values of ion attachment coefficients. Aerosol Sci Technol 11:254–258

    Article  Google Scholar 

  • Hoppel WA, Frick GM (1990) The nonequilibrium character of the aerosol charge distributions produced by neutralizers. Aerosol Sci Technol 12:471–496

    Article  CAS  Google Scholar 

  • Hussain S, Boland S, Baeza-Squiban A, Hamel R, Thomassen LCJ, Martens JA, Billon-Galland MA, Fleury-Feith J, Moisan F, Pairon JC, Marano F (2009) Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: role of surface-area and internalized amount. Toxicology 260:142–149

    Article  CAS  Google Scholar 

  • ICRP (1994) Publication 66: human respiratory tract model for radiological protection. Pergamon, Oxford

    Google Scholar 

  • Jacoby J, Bau S, Witschger O (2011) CAIMAN: a versatile facility to produce aerosols of nanoparticles. J Phys Conf Ser 304:012014. doi:10.1088/1742-6596/304/1/012014

    Article  Google Scholar 

  • Jung H, Kittelson DB (2005) Characterization of aerosol surface instruments in transition regime. Aerosol Sci Technol 39:902–911

    Article  CAS  Google Scholar 

  • Kasper M, Matter U, Burtscher H, Bukowiecki N, Mayer A (2001) NanoMet, a new instrument for on-line size- and substance-specific particle emission analysis. SAE technical paper 2001-01-0216, pp 79–88

  • Keller A, Fierz M, Siegmann K, Siegmann HC, Filippov A (2001) Surface science with nanosized particles in a carrier gas. J Vac Sci Technol A 19:1–8

    Article  CAS  Google Scholar 

  • Kim JH, Mulholland GW, Kukuck SR, Pui DYH (2005) Slip correction measurements of certified PSL nanoparticles using a nanometer differential mobility analyzer (nano-DMA) for Knudsen number from 0.5 to 83. J Res Natl Inst Stand Technol 110(1):31–54

    Article  CAS  Google Scholar 

  • Kittelson DB, Watts WF, Savstrom JC, Johnsol JP (2005) Influence of a catalytic stripper on the response of real time aerosol instruments to diesel exhaust aerosol. J Aerosol Sci 36:1089–1107

    Article  CAS  Google Scholar 

  • Kreyling WG, Semmler-Behnkea M, Chaudhryb Q (2010) A complementary definition of nanomaterials. Nano Today 5:165–168

    Article  Google Scholar 

  • Ku BK (2010) Determination of the ratio of diffusion charging-based surface area to geometric surface area for spherical particles in the range of 100–900 nm. J Aerosol Sci 41:835–847

    Article  CAS  Google Scholar 

  • Ku BK, Evans DE (2012) Investigation of aerosol surface area estimation from number and mass concentration measurements: particle density effect. Aerosol Sci Technol 46:473–484

    Article  CAS  Google Scholar 

  • Ku BK, Kulkarni P (2012) Comparison of diffusion charging and mobility-based methods for measurement of aerosol agglomerate surface area. J Aerosol Sci 47:100–110

    Article  CAS  Google Scholar 

  • Ku BK, Maynard AD (2005) Comparing aerosol surface-area measurements of monodisperse ultrafine silver agglomerates by mobility analysis, transmission electron microscopy and diffusion charging. J Aerosol Sci 36(9):1108–1124

    Article  CAS  Google Scholar 

  • Ku BK, Maynard AD (2006) Generation and investigation of airborne silver nanoparticles with specific size and morphology by homogeneous nucleation, coagulation and sintering. J Aerosol Sci 37:452–470

    Article  CAS  Google Scholar 

  • Lall AA, Friedlander SK (2006) On-line measurement of ultrafine aggregate surface area and volume distributions by electrical mobility analysis. I. Theoretical analysis. J Aerosol Sci 37(3):260–271

    Article  CAS  Google Scholar 

  • Lebouf RF, Stefaniak AB, Chen BT, Frazer DG, Virji MA (2011a) Measurement of airborne nanoparticle surface area using a filter-based gas adsorption method for inhalation toxicology experiments. Nanotoxicology 5(4):687–699

    Article  CAS  Google Scholar 

  • Lebouf RF, Ku BK, Chen BT, Frazer DG, Cumpston JL, Stefaniak AB (2011b) Measuring surface-area of airborne titanium dioxide powder agglomerates: relationships between gas adsorption, diffusion and mobility-based methods. J Nanopart Res 13(12):7029–7039

    Article  CAS  Google Scholar 

  • Li L, Chen DR, Tsai PJ (2009) Evaluation of an electrical aerosol detector (EAD) for the aerosol integral parameter measurement. J Electrost 67:765–773

    Article  CAS  Google Scholar 

  • Liu PSK, Deshler T (2003) Causes of concentration differences between a scanning mobility particle sizer and a condensation particle counter. Aerosol Sci Technol 37:916–923

    Article  CAS  Google Scholar 

  • Liu BYH, Pui DYH (1977) On unipolar diffusion charging of aerosols in the continuum regime. J Colloid Interface Sci 58:142–149

    Article  CAS  Google Scholar 

  • Maynard AD (2003) Estimating aerosol surface-area from number and mass concentration measurements. Ann Occup Hyg 47(2):123–144

    Article  Google Scholar 

  • Maynard AD, Aitken RJ (2007) Assessing exposure to airborne nanomaterials: current abilities and future requirements. Nanotoxicology 1(1):26–41

    Article  CAS  Google Scholar 

  • Maynard AD, Kuempel ED (2005) Airborne nanostructured particles and occupational health. J Nanopart Res 7:587–614

    Article  CAS  Google Scholar 

  • Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdörster G, Philbert MA, Ryan J, Seaton A, Stone V, Tinkle SS, Tran L, Walker HJ, Warheit D (2006) Safe handling of nanotechnology. Nature 444:267–269

    Article  CAS  Google Scholar 

  • Moshammer H, Neuberger M (2003) The active surface of suspended particles as a predictor of lung function and pulmonary symptoms in Austrian school children. Atmospheric Environ 37:1737–1744

    Article  CAS  Google Scholar 

  • Moshammer H, Schinko H, Neuberger M (2005) Total pollen counts do not influence active surface measurements. Atmospheric Environ 39:1551–1555

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  Google Scholar 

  • Ntziachristos L, Giechaskiel B, Ristimäki J, Keskinen J (2004) Use of a corona charger for the characterization of automotive exhaust aerosol. J Aerosol Sci 35:943–963

    Article  CAS  Google Scholar 

  • Oberdörster G, Maynard AD, Donaldson K, Castranova V, Fritzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:1–35

    Article  Google Scholar 

  • Oberdörster G, Stone V, Donaldson K (2007) Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1:2–25

    Article  Google Scholar 

  • Oh H, Park H, Kim S (2004) Effects of particle shape on the unipolar diffusion charging of nonspherical particles. Aerosol Sci Technol 38:1045–1053

    Article  CAS  Google Scholar 

  • Park D, Kim S, An M, Hwang J (2007) Real-time measurement of submicron aerosol particles having a lognormal size distribution by simultaneously using unipolar diffusion charger and unipolar field charger. J Aerosol Sci 38:1240–1245

    Article  CAS  Google Scholar 

  • Park JY, Raynor PC, Maynard AD, Eberly LE, Ramachandran G (2009) Comparison of two estimation methods for surface area concentration using number concentration and mass concentration of combustion-related ultrafine particles. Atmospheric Environ 43:502–509

    Article  CAS  Google Scholar 

  • Park JY, Ramachandran G, Raynor PC, Kim SW (2011) Estimation of surface area concentration of workplace incidental nanoparticles based on number and mass concentrations. J Nanopart Res 13:4897–4911

    Article  CAS  Google Scholar 

  • Qi C, Asbach C, Shin WG, Fissan H, Pui DYH (2009) The effect of particle pre-existing charge on unipolar charging and its implication on electrical aerosol measurement. Aerosol Sci Technol 43:232–240

    Article  CAS  Google Scholar 

  • Rogak SN, Flagan RC (1992) Bipolar diffusion charging of spheres and agglomerate aerosol particles. J Aerosol Sci 23:693–710

    Article  CAS  Google Scholar 

  • Rogak SN, Baltensperger U, Flagan RC (1991) Measurement of mass transfer to agglomerate aerosols. Aerosol Sci Technol 14:447–459

    Article  CAS  Google Scholar 

  • Ruzer LS (2008) Assessment of nanoparticle surface area by measuring unattached fraction of radon progeny. J Nanopart Res 10:761–766

    Article  CAS  Google Scholar 

  • Savolainen K, Pylkkänen P, Norppa H, Falck G, Lindberg H, Tuomi T, Vippola M, Alenius H, Hämeri K, Koivisto J, Brouwer D, Mark D, Bard D, Berges M, Jankowska E, Posniak M, Farmer P, Singh R, Krombach F, Bihari P, Kasper G, Seipenbusch M (2011) Nanotechnologies, engineered nanomaterials and occupational health and safety—a review. Saf Sci 48:957–963

    Article  Google Scholar 

  • Schulte P, Geraci C, Zumwalde R, Hoover M, Kuempel ED (2008) Occupational risk management of engineered nanoparticles. J Occup Environ Hyg 5:239–249

    Article  CAS  Google Scholar 

  • Shin WG, Pui DYH, Fissan H, Neumann S, Trampe A (2007) Calibration and numerical simulation of nanoparticle surface area monitor (TSI model 3550 NSAM). J Nanopart Res 9(1):61–69

    Article  CAS  Google Scholar 

  • Sillanpää M, Geller MD, Phuleria HC, Sioutas C (2008) High collection efficiency electrostatic precipitator for in vitro cell exposure to concentrated ambient particulate matter (PM). J Aerosol Sci 39:335–347

    Article  Google Scholar 

  • Tabrizi NS, Ullmann M, Vons VA, Lafont U, Schmidt-Ott A (2009) Generation of nanoparticles by spark discharge. J Nanopart Res 11(2):315–332

    Article  CAS  Google Scholar 

  • TSI (2008) Application note: measuring nanoparticle exposure. Application Note NSAM-001. 4/11/2008, 8 p

  • Wang J, Shin WG, Mertler M, Sachweh B, Fissan H, Pui DYH (2010a) Measurement of nanoparticle agglomerates by combined measurement of electrical mobility and unipolar charging properties. Aerosol Sci Technol 44:97–108

    Article  CAS  Google Scholar 

  • Wang YF, Tsai PJ, Chen CW, Chen DR, Hsu DJ (2010b) Using a modified electrical aerosol detector to predict nanoparticle exposures to different regions of the respiratory tract for workers in a carbon black manufacturing industry. Environ Sci Technol 44:6767–6774

    Article  CAS  Google Scholar 

  • Westerdahl D, Wang X, Pan X, Zhang KM (2009) Characterization of on-road vehicle emission factors and microenvironmental air quality in Beijing, China. Atmospheric Environ 43:697–705

    Article  CAS  Google Scholar 

  • Wiedensohler A (1988) An approximation of the bipolar charge distribution for particles in the submicron size range. J Aerosol Sci 19:387–389

    Article  CAS  Google Scholar 

  • Wilson WE, Stanek J, Han HS, Johnson T, Sakurai H, Pui DY, Turner J, Chen DR, Duthie S (2007) Use of the electrical aerosol detector as an indicator of the surface area of fine particles deposited in the lung. J Air Waste Manag Assoc 57:211–220

    Article  Google Scholar 

  • Woo KS, Chen DR, Pui DYH, Wilson WE (2001) Use of continuous measurements of integral aerosol parameters to estimate particle surface area. Aerosol Sci Technol 34:57–65

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bau, S., Witschger, O., Gensdarmes, F. et al. Evaluating three direct-reading instruments based on diffusion charging to measure surface area concentrations in polydisperse nanoaerosols in molecular and transition regimes. J Nanopart Res 14, 1217 (2012). https://doi.org/10.1007/s11051-012-1217-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1217-6

Keywords

Navigation