Skip to main content
Log in

Electrical properties of airborne nanoparticles produced by a commercial spark-discharge generator

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A nanoparticle generator based on the principle of electrical discharge (PALAS GFG-1000) was used to produce nanoparticles of different chemical natures. The fractions of electrically neutral particles were then measured by means of a Spectromètre de Mobilité Electrique Circulaire (SMEC, i.e. radial-flow mobility analyzer) for different operating conditions. The experimental results were compared with the theoretical values calculated from the Fuchs extended charge equilibrium model for spherical particles and agglomerates. For the smallest particles (below 20 nm), the deviations observed remain below 10%, and tend towards 20% for larger particles (over 35 nm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Bau S, Witschger O, Gensdarmes F, Thomas D (2009) Experimental study of the response functions of direct-reading instruments measuring surface-area concentration of airborne nanostructured particles. J Phys Conf Ser 170:012006

    Article  ADS  Google Scholar 

  • Borra J-P (2006) Topical review: Nucleation and aerosol processing in atmospheric pressure electrical discharges: powders production, coatings and filtration. J Phys D 39–2:R19–R54

    Article  ADS  Google Scholar 

  • Borra J-P (2008) Charging of aerosol and nucleation in atmospheric pressure electrical discharges. Plasma Phys 50:124036

    Google Scholar 

  • Borra J-P, Goldman A, Goldman M, Boulaud D (1998) Electrical discharge regimes and aerosol production in point-to-plane dc high-pressure cold plasmas: aerosol production by electrical discharges. J Aerosol Sci 29:661–674

    Article  CAS  Google Scholar 

  • Bourgeois E, Jidenko N, Borra J-P (2009) Characterisation of post-DBD ion currents, densities and mobilities. J Phys D

  • Brown JS, Kim CS, Reist PC, Zeman KL, Bennett WD (2000) Generation of radiolabeled “Soot-like” ultrafine aerosols suitable for use in human inhalation studies. Aerosol Sci Technol 32:325–337

    Article  CAS  Google Scholar 

  • Evans DE, Harrison RM, Ayres JG (2003a) The generation and characterisation of elemental aerosols for human challenge studies. J Aerosol Sci 34:1023–1041

    Article  CAS  Google Scholar 

  • Evans DE, Harrison RM, Ayres JG (2003b) The generation and characterization of metallic and mixed element aerosols for human challenge studies. Aerosol Sci Technol 37:975–987

    Article  CAS  Google Scholar 

  • Fissan H, Pöcher A, Neumann S, Boulaud D, Pourprix M (1998) Analytical and empirical transfer functions of a simplified Spectromètre de Mobilité Electrique Circulaire (SMEC) for nanoparticules. J Aerosol Sci 29(3):289–293

    Article  CAS  Google Scholar 

  • Flagan RC (2001) Electrical techniques. In: Baron PA, Willeke K (eds) Aerosol measurement: principles, techniques and applications, 2nd edn. Wiley Interscience, New York, pp 537–568

    Google Scholar 

  • Gensdarmes F, Boulaud D, Renoux A (2001) Electrical charging of radioactive aerosols: comparison of the Clement-Harrison models with new experiments. J Aerosol Sci 32:1437–1458

    Article  CAS  Google Scholar 

  • Helsper C, Molter W, Loffler F, Wadenpohl C, Kaufmann S, Wenninger G (1993) Investigations of a new aerosol generator for the production of carbon aggregate particles. Atmos Environ 27:1271–1275

    Google Scholar 

  • Horwath H, Gangl M (2003) A low-voltage spark generator for production of carbon particles. J Aerosol Sci 34:1581–1588

    Article  Google Scholar 

  • Lall AA, Friedlander SK (2006) On-line measurement of ultrafine aggregate surface-area and volume distributions by electrical mobility analysis: I. Theoretical analysis. J Aerosol Sci 37(3):260–271

    Article  CAS  Google Scholar 

  • Le Bronec E, Renoux A, Boulaud D, Pourprix M (1999) Effect of gravity in differential mobility analysers. A new method to determine the density and mass of aerosol particles. J Aerosol Sci 30(1):89–103

    Article  CAS  Google Scholar 

  • Liu BYH, Pui DYH (1974) Electrical neutralization of aerosols. J Aerosol Sci 5:465–472

    Article  Google Scholar 

  • Roth C, Karg E, Heyder J (1998) Do inhaled ultrafine particles cause acute health effects in rats? I: particle production. J Aerosol Sci 29(Suppl 1):S679–S680

    Article  CAS  Google Scholar 

  • Roth C, Ferron GA, Karg E, Lentner B, Schumann G, Takenaka S, Heyder J (2004) Generation of ultrafine particles by spark discharging. Aerosol Sci Technol 38:228–235

    Article  CAS  Google Scholar 

  • Schwyn S, Garwin E, Schmidt-Ott A (1988) Aerosol generation by spark discharge. J Aerosol Sci 19(5):639–642

    Article  CAS  Google Scholar 

  • Tabrizi NS, Ullmann M, Vons VA, Lafont U, Schmidt-Ott A (2009) Generation of nanoparticles by spark discharge. J Nanopart Res 11(2):315–332

    Article  CAS  Google Scholar 

  • Takenaka S, Karg E, Roth C, Schulz H, Ziesenis A, Heinzmann U, Schramel P, Heyder J (2001) Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect 109:547–551

    Article  CAS  PubMed  Google Scholar 

  • Wen YH, Reischl GP, Kasper G (1984a) Bipolar diffusion charging of fibrous aerosol particles. I. Charging theory. J Aerosol Sci 15(2):89–101

    Article  Google Scholar 

  • Wen YH, Reischl GP, Kasper G (1984b) Bipolar diffusion charging of fibrous aerosol particles. II. Charge and electrical mobility measurements on linear chain aggregates. J Aerosol Sci 15(2):103–122

    Article  Google Scholar 

  • Wiedensohler A (1988) An approximation of the bipolar charge distribution for particles in the submicron size range. J Aerosol Sci 19:387–389

    Article  CAS  Google Scholar 

  • Wiedensohler A, Fissan HJ (1991) Bipolar charge distributions of aerosol particles in high purity argon and nitrogen. Aerosol Sci Technol 14:358–364

    Article  CAS  Google Scholar 

  • Wiedensohler A, Lütkemeier E, Feldpausch M, Helsper C (1986) Investigation of the bipolar charge distribution at various gas conditions. J Aerosol Sci 17(3):413–416

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bau, S., Witschger, O., Gensdarmes, F. et al. Electrical properties of airborne nanoparticles produced by a commercial spark-discharge generator. J Nanopart Res 12, 1989–1995 (2010). https://doi.org/10.1007/s11051-010-9856-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-9856-y

Keywords

Navigation