Skip to main content
Log in

Calibration and numerical simulation of Nanoparticle Surface Area Monitor (TSI Model 3550 NSAM)

  • Special focus: Nanoparticles and occupational health
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

TSI Nanoparticle Surface Area Monitor (NSAM) Model 3550 has been developed to measure the nanoparticle surface area deposited in different regions of the human lung. It makes use of an adjustable ion trap voltage to match the total surface area of particles, which are below 100 nm, deposited in tracheobronchial (TB) or alveolar (A) regions of the human lung. In this paper, calibration factors of NSAM were experimentally determined for particles of different materials. Tests were performed using monodisperse (Ag agglomerates and NaCl, 7–100 nm) and polydisperse particles (Ag agglomerates, number count mean diameter below 50 nm). Experimental data show that the currents in NSAM have a linear relation with a function of the total deposited nanoparticle surface area for the different compartments of the lung. No significant dependency of the calibration factors on particle materials and morphology was observed. Monodisperse nanoparticles in the size range where the response function is in the desirable range can be used for calibration. Calibration factors of monodisperse and polydisperse Ag particle agglomerates are in good agreement with each other, which indicates that polydisperse nanoparticles can be used to determine calibration factors. Using a CFD computer code (Fluent) numerical simulations of fluid flow and particle trajectories inside NSAM were performed to estimate response function of NSAM for different ion trap voltages. The numerical simulation results agreed well with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baltensperger U., Gäggeler H.W., Jost D.T. (1988). The epiphaniometer, a new device for continuous aerosol monitoring. J. Aerosol Sci. 19(7):931–934

    Article  CAS  Google Scholar 

  • Brunauer S., Emmett P.H., Teller E. (1938). Adsorption of gases in multimolecular layers. J. Am Chem. Soc. 60:309–319

    Article  CAS  Google Scholar 

  • Donaldson K., Li X.Y., MacNee W. (1998). Ultrafine (nanometer) particle mediated lung injury. J. Aerosol Sci. 29(5–6):553–560

    Article  CAS  Google Scholar 

  • Fissan H. & T. Kuhlbusch, 2005. Strategies and instrumentation for nanoparticle exposure control in air at workplaces. 2nd International symposium on nanotechnology and occupational health, Minneapolis, USA, October 3–6, 2005

  • Fissan H., A. Trampe, S. Neunman, D.Y.H Pui & W.G. Shin, 2006. Rationale and principle of an instrument measuring lung deposition area. J. Nanoparticle Research (this issue)

  • Han H.S., Chen D.R., Anderson B.E., Pui D.Y.H. (2000). A nanometer aerosol size analyzer (nASA) for rapid measurement of high concentration size distributions. J. Nanoparticle Res. 2:43–52

    Article  Google Scholar 

  • Heyder J., Gebhart J., Rudolf G., Schillerd C.F., Stahlhofen W. (1986). Deposition of particles in the human respiratory tract in the size range 0.005–15μm. J. Aerosol Sci. 17:811–825

    Article  Google Scholar 

  • ICRP. (1994). International Commission on Radiological Protection Publication 66 Human Respiratory Tract Model for Radiological Protection. Oxford, Pergamon, Elsevier Science Ltd

    Google Scholar 

  • James A.C., M.R. Bailey & M-D. Dorrian, 2000. LUDEP Software, Version 2.07: Program for implementing ICRP-66 Respiratory tract model. RPB, Chilton, Didcot, OXON. OX11 ORQ UK

  • Jung H.J., Kittelson D.B. (2005). Characterization of aerosol surface instruments in transition regime. Aerosol Sci. Tech. 39(9):902–911

    Article  CAS  Google Scholar 

  • Kaufman S.L., A. Medved, A. Pöcher, N. Hill, R. Caldow & F.R. Quant, 2002. An electrical aerosol detector based on the corona-jet charger. AAAR conference (poster)

  • Ku B.K., Maynard A.D. (2005). Generation and investigation of airborne Ag nanoparticles with specific size and morphology by homogeneous nucleation, coagulation and sintering. J Aerosol Sci. 36(9):1108–1124

    Article  CAS  Google Scholar 

  • Liu B.Y.H., Pui D.Y.H. (1977). On unipolar diffusion charging of aerosols in the continuum regime. J. Colloid Interface Sci. 58:142–149

    Article  CAS  Google Scholar 

  • Maynard A.D., Kuempel E.D. (2005). Airborne nanostructured particles and occupational health. J. Nanoparticle Res. 7(6):587–614

    Article  CAS  Google Scholar 

  • Maynard A.D., 2003. Estimating aerosol surface area from number and mass concentration measurements. Ann. Occup. Hygiene 47, 123–144

    Google Scholar 

  • Medved A., Dorman F., Kaufman S.L., Pöcher A. (2000). A new corona-based charger for aerosol particles. J. Aerosol Sci. 31(S.1):616–617

    Article  Google Scholar 

  • Oberdorster G., Gelein R.M., Ferin J., Weiss B. (1995). Association of particulate air pollution and acute mortality: involvement of ultrafine particles. Inhal. Toxicol. 7:111–124

    CAS  Google Scholar 

  • Oberdorster G. (1996). Significance of particle parameters in the evaluation of exposure-dose-response relationships of inhaled particles. Particulate Sci. Technol. 14(2):135–151

    CAS  Google Scholar 

  • Oberdörster G., Oberdörster E., Oberdörster J. (2005). Invited review: Nanotechnology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113(7):823–839

    Article  CAS  Google Scholar 

  • Shi J.P., Harrison R.M., Evans D. (2001). Comparison of ambient particle surface area measurement by epiphaniometer and SMPS/APS. Atmospheric Environment 35 (35):6193–6200

    Article  CAS  Google Scholar 

  • Tang I.N., Munkelwitz H.R., Davis J.G. (1977). Aerosol growth studies—II. Preparation and growth measurements of monodisperse salt aerosols. J. Aerosol Sci. 8(3):149–159

    Article  CAS  Google Scholar 

  • Wilson W.E., H.-S. Han, J. Stanek, J. Turner & D.Y.H. Pui, 2003. The Fuchs surface area measured by charge acceptance of atmospheric particles may be a useful indicator of the quantity of particle surface area deposited in the lung. Abstracts of the European aerosol conference. S421-S422. Madrid, Spain

  • Wilson W.E., H.-S. Han, J. Stanek, J. Turner, D.-R. Chen & D.Y.H. Pui, 2004. Use of electrical aerosol detector as an indicator for the total particle surface area deposited in the lung. Symp. On air quality measurement methods and technology sponsored by air and waste management association. Research triangle park, NC. Paper #37.

  • Woo K.-S., Chen D.-R., Pui D.Y.H., Wilson W.E. (2001). Use of continuous measurements of integral aerosol parameters to estimate particle surface area. Aerosol Sci. Tech. 34:57–65

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the University of Minnesota Supercomputer Institute for providing the computation time for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Y. H. Pui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, W.G., Pui, D.Y.H., Fissan, H. et al. Calibration and numerical simulation of Nanoparticle Surface Area Monitor (TSI Model 3550 NSAM). J Nanopart Res 9, 61–69 (2007). https://doi.org/10.1007/s11051-006-9153-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-006-9153-y

Keywords

Navigation