Skip to main content
Log in

Preparation of triethylamine stabilized silver nanoparticles for low-temperature sintering

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this article, silver nanoparticles were synthesized by chemical reduction from silver nitrate using triethylamine as the protecting and reducing agents simultaneously. The average size of the silver nanoparticles was about 2.10–4.65 nm, which allowed low-temperature sintering of the metal. X-ray diffraction (XRD), thermogravimetric analysis (TGA), and energy dispersive spectrometric (EDS) analysis results indicate that silver nitrate has been converted to silver nanoparticles completely. Using a 20 wt% silver nanoparticles suspension with thermal treatment at 150 °C, silver films with a resistivity of 8.09 × 10−5 Ω cm have been produced, which is close to the resistivity of bulk silver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahn BY et al (2009) Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323:1590–1593

    Article  CAS  Google Scholar 

  • Chen C, Wang L, Jiang G, Yang Q, Wang J, Yu H, Chen T, Wang C, Chen X (2006a) The influence of seeding conditions and shielding gas atmosphere on the synthesis of silver nanowires through the polyol process. Nanotechnology 17:466–474

    Article  CAS  Google Scholar 

  • Chen M, Wang LY, Han JT, Zhang JY, Li ZY, Qian DJ (2006b) Preparation and study of polyacryamide-stabilized silver nanoparticles through a one-pot process. J Phys Chem B 110:11224–11231

    Article  CAS  Google Scholar 

  • Dong X, Ji X, Wu H, Zhao L, Li J, Yang W (2009) Shape control of silver nanoparticles by stepwise citrate reduction. J Phys Chem C 113:6573–6576

    Article  CAS  Google Scholar 

  • Frattini A, Pellegri N, Nicastro D, de Sanctis O (2005) Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes. Mater Chem Phys 94:148–152

    Article  CAS  Google Scholar 

  • Gao Y, Jiang P, Song L, Liu L, Yan X, Zhou Z, Liu D, Wang J, Yuan H, Zhang Z, Zhao X, Dou X, Zhou W, Wang G, Xie S (2005) Growth mechanism of silver nanowires synthesized by polyvinylpyrrolidone-assisted polyol reduction. J Phys D Appl Phys 38:1061–1067

    Article  CAS  Google Scholar 

  • Grijalva AS, Urbina RH, Silva JFR, Borja MA, Barraza FFC, Amarillas AP (2008) Synthesis of silver nanoparticles in a polyvinylpyrrolidone (PVP) paste, and their optical properties in a film and in ethylene glycol. Mater Res Bull 43:90–96

    Article  Google Scholar 

  • Ho CH, Tobis J, Sprich P, Thomann R, Tiller JC (2004) Nanoseparated polymeric networks with multiple antimicrobial properties. Adv Mater 16:957–961

    Article  CAS  Google Scholar 

  • Hsu SLC, Wu RT (2007) Synthesis of contamination-free silver nanoparticle suspensions for micro-interconnects. Mater Lett 61:3719–3722

    Article  CAS  Google Scholar 

  • Jiang C, Cardin DJ, Tsang SC (2008) Conductive three-dimensional material assembled from silver nanoparticles using a conjugated dithiol linker. Chem Mater 20:14–16

    Article  CAS  Google Scholar 

  • Kim D, Jeong S, Moon J (2006) Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection. Nanotechnology 17:4019–4024

    Article  CAS  Google Scholar 

  • Kohlera JM, Abahmanea L, Wagnera J, Albertb J, Mayerb G (2008) Preparation of metal nanoparticles with varied composition for catalytical applications in microreactors. Chem Eng Sci 63:5048–5055

    Article  Google Scholar 

  • Kuo PL, Chen WF (2003) Formation of silver nanoparticles under structured amino groups in pseudo-dendritic poly(allylamine) derivatives. J Phys Chem B 107:11267–11272

    Article  CAS  Google Scholar 

  • Lee KJ, Lee YI, Shim IK, Joung J, Oh YS (2006) Direct synthesis and bonding origins of monolayer-protected silver nanocrystals from silver nitrate through in situ ligand exchange. J Colloid Interf Sci 304:92–97

    Article  CAS  Google Scholar 

  • Li L, Zhu YJ (2006) High chemical reactivity of silver nanoparticles toward hydrochloric acid. J Colloid Interf Sci 303:415–418

    Article  CAS  Google Scholar 

  • Perelaer J, de Laat AWM, Hendriks CE, Schubert US (2008) Inkjet-printed silver tracks: low temperature curing and thermal stability investigation. J Mater Chem 18:3209–3215

    Article  CAS  Google Scholar 

  • Perelaer J, Hendriks CE, de Laat AWM, Schubert US (2009) One-step inkjet printing of conductive silver tracks on polymer substrates. Nanotechnology 20:1653031–1653035

    Article  Google Scholar 

  • Pradhan N, Pal A, Pal T (2002) Silver nanoparticle catalyzed reduction of aromatic nitro compounds. Colloids Surf A Physicochem Eng Aspects 196:247–257

    Article  CAS  Google Scholar 

  • Rao CRK, Trivedi DC (2006) Biphasic synthesis of fatty acids stabilized silver nanoparticles: role of experimental conditions on particle size. Mater Chem Phys 99:354–360

    Article  CAS  Google Scholar 

  • Shim IK, Lee YI, Lee KJ, Joung J (2008) An organometallic route to highly monodispersed silver nanoparticles and their application to ink-jet printing. Mater Chem Phys 110:316–321

    Article  CAS  Google Scholar 

  • Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179

    Article  CAS  Google Scholar 

  • Sun Y, Gates B, Mayers B, Xia Y (2002) Crystalline silver nanowires by soft solution processing. Nano Lett 2:165–168

    Article  CAS  Google Scholar 

  • Takenobu T, Miura N, Lu SY, Okimoto H, Asano T, Shiraishi M, Iwasa Y (2009) Ink-jet printing of carbon nanotube thin-film transistors on flexible plastic substrates. Appl Phys Express 2:0250051–0250053

    Article  Google Scholar 

  • Thompson DG, Stokes RJ, Martin RW, Lundahl PJ, Faulds K, Graham D (2008) Synthesis of unique nanostructures with novel optical properties using oligonucleotide mixed–metal nanoparticle conjugates. Small 4:1054–1057

    Article  CAS  Google Scholar 

  • Tsuji M, Jiang P, Hikino S, Lima S, Yano R, Jang SM, Yoon SH, Ishigami N, Tang X, Nor Kamarudin KS (2008) Toward to branched platinum nanoparticles by polyol reduction: a role of poly(vinylpyrrolidone) molecules. Colloids Surf A Physicochem Eng Aspects 317:23–31

    Article  CAS  Google Scholar 

  • Van Osch THJ, Perelaer J, de Laat AWM, Schubert US (2008) Inkjet printing of narrow conductive tracks on untreated polymeric substrates. Adv Mater 20:343–345

    Article  Google Scholar 

  • Wang A, Yin H, Ren M, Liu Y, Jiang T (2008a) Synergistic effect of silver seeds and organic modifiers on the morphology evolution mechanism of silver nanoparticles. Appl Surf Sci 254:6527–6536

    Article  CAS  Google Scholar 

  • Wang X, Zhang S, Zhang Z (2008b) Synthesis of hexagonal nanosized silver sulfide at room temperature. Mater Chem Phys 107:9–12

    Article  CAS  Google Scholar 

  • Wu RT, Hsu SLC (2008) Preparation of highly concentrated and stable suspensions of silver nanoparticles by an organic base catalyzed reduction reaction. Mater Res Bull 43:1276–1281

    Article  CAS  Google Scholar 

  • Xiong Y, Siekkinen AR, Wang J, Yin Y, Kimb MJ, Xia Y (2007) Synthesis of silver nanoplates at high yields by slowing down the polyol reduction of silver nitrate with polyacrylamide. J Mater Chem 17:2600–2602

    Article  CAS  Google Scholar 

  • Yamamoto M, Kashiwagi Y, Nakamoto M (2006) Size-controlled synthesis of monodispersed silver nanoparticles capped by long-chain alkyl carboxylates from silver carboxylate and tertiary amine. Langmuir 22:8581–8586

    Article  CAS  Google Scholar 

  • Yu D, Yam VWW (2005) Hydrothermal-induced assembly of colloidal silver spheres into various nanoparticles on the basis of HTAB-modified silver mirror reaction. J Phys Chem B 109:5497–5503

    Article  CAS  Google Scholar 

  • Zhang R, Moon KS, Lin W, Wong CP (2010) Preparation of highly conductive polymer nanocomposites by low temperature sintering of silver nanoparticles. J Mater Chem 20:2018–2023

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support provided by the National Science Council (Taiwan, ROC) through project NSC-99-2120-M-006-009 is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Lien-Chung Hsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, JT., Hsu, S.LC. Preparation of triethylamine stabilized silver nanoparticles for low-temperature sintering. J Nanopart Res 13, 3877–3883 (2011). https://doi.org/10.1007/s11051-011-0341-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0341-z

Keywords

Navigation