Skip to main content
Log in

Turns of different angles and discrete-continuous pedestrian dynamics model

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

In the paper we discuss a problem of correct simulation of movement of the people on the pathes with angles. The shortest path strategy does not work in this cases and gives unrealistic trajectories and increased evacuation time. The discrete-continuous pedestrian dynamics model have been discussed. Angles from \(90^\circ\) to \(180^\circ\) were considered: “L”-, “Z”- and “U”-shaped geometries. A way to identify such geometrical artifacts is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. We assume that free movement speed is random normal distributed value with some mathematical expectation and dispersion (Kholshevnikov 2011; Kholshevnikov and Samoshin 2009).

  2. All parameters were unified for all involved particles: \(k_S^i=k_S\), \(k_W^i=k_W\), \(k_P^i=k_P\).

  3. The modelling space is covered by 2D grid and for each cell number of people passed a cell are summed

References

  • Blue VJ, Adler JL (2001) Cellular automata microsimulation for modeling bi-directional pedestrian walkways. Transp Res Part B 35:293–312

    Article  Google Scholar 

  • Boltes M, Seyfried A (2013) Collecting pedestrian trajectories. Neurocomputing 100:127–133

    Article  Google Scholar 

  • Boltes M, Chraibi M, Holl S, Kemloh Wagoum AU, Lammel G, Liao W, Mehner W, Tordeux A, Zhang J (2014) Experimentation, data collection, modeling and simulation of pedestrian dynamics. In: Procceding’s Book Statistics, probability and numerical analysis 2014, SPNA2014. Tirana, Albania, pp 49–60

  • Chraibi M, Steffen B (2018) The automatic generation of an efficient floor field for CA simulations in crowd management. In: Mauri G, El Yacoubi S, Dennunzio A, Nishinari K, Manzoni L (eds) Cellular Automata. ACRI 2018. Lecture Notes in Computer Science, 11115:185–195

  • Chraibi M, Seyfried A, Schadschneider A (2010) Generalized centrifugal force model for pedestrian dynamics. Phys Rev E 82:046111

    Article  Google Scholar 

  • Crociani L, Shimura K, Vizzari G, Bandini S (2018) Simulating pedestrian dynamics in corners and bends: a floor field approach. In: Mauri G, El Yacoubi S, Dennunzio A, Nishinari K, Manzoni L (eds) Cellular Automata. ACRI 2018. Lecture Notes in Computer Science, 11115:460–469

    Chapter  Google Scholar 

  • Data archive of experimental data from studies about pedestrian dynamics. http://ped.fz-juelich.de/da/. Accessed 5 Aug 2019

  • Dias C, Lovreglio R (2018) Calibrating Cellular Automaton Models for Pedestrians Walking Through Corners. Phys Lett A 382(19):1255–1261

    Article  Google Scholar 

  • Dias C, Sarvi M (2016) Exploring the effect of turning manoeuvres on macroscopic properties of pedestrian flow. In: 38th Australasian transport research forum. Melbourne, Australia

  • Dias C, Ejtemai O, Sarvi M, Burd M (2014) Exploring pedestrian walking through angled corridors. Transp Res Procedia 2:19–25

    Article  Google Scholar 

  • Dias C, Sarvi M, Ejtemai O, Burd M (2015) Elevated desired speed and change in desired direction effects on collective pedestrian flow characteristics. Transp Res Rec 490:65–75

    Article  Google Scholar 

  • Duives DC, Daamen W, Hoogendoorn SP (2018) Continuum modelling of pedestrian flows—part 2: sensitivity analysis featuring crowd movement phenomena. Physica A 447:36–48

    Article  Google Scholar 

  • Gorrini A, Bandini S, Sarvi M, Dias C, Shiwakoti N (2013) An empirical study of crowd and pedestrian dynamics: the impact of different angle paths and grouping. In: Transportation Research Board, 92nd Annual Meeting, Washington, D.C., 42

  • Helbing D, Farkas I, Vicsek T (2000) Simulation dynamics features of escape panic. Nature 407:487–490

    Article  Google Scholar 

  • Kholshevnikov V (2011) Forecast of human behavior during fire evacuation. In: Proceedings of the international conference on emergency evacuation of people from buildings—EMEVAC, pp 139–153. Belstudio, Warsaw

  • Kholshevnikov V, Samoshin D (2009) Evacuation and human behavior in fire. Academy of State Fire Service, EMERCOM of Russia, Moscow

  • Kholshevnikov VV, Shields TJ, Boyce KE, Samoshin DA (2008) Recent developments in pedestrian flow theory and research in Russia. Fire Saf J 43(2):108–118

    Article  Google Scholar 

  • Kirchner A, Klupfel H, Nishinari K, Schadschneider A, Schreckenberg M (2004) Discretization effects and the influence of walking speed in cellular automata models for pedestrian dynamics. J Stat Mech Theory Exp 10:10011

    Article  Google Scholar 

  • Kirik E, Malyshev A (2014) On validation of SigmaEva pedestrian evacuation computer simulation module with bottleneck flow. J Comput Sci 5(5):847–850

    Article  Google Scholar 

  • Kirik E, Vitova T (2014) Cellular automata pedestrian movement model SIgMA.CA: model parameters as an instrument to regulate movement regimes. In: Was J, Sirakoulis GCh, Bandini S (eds.) ACRI 2014. Lecture Notes in Computer Science, 8751:501–507

    Google Scholar 

  • Kirik E, Vitova T (2016) On formal presentation of update rules, density estimate and using floor fields in CA FF pedestrian dynamics model SIgMA.CA. In: El Yacoubi S, Was J, Bandini S (eds) Cellular Automata, ACRI 2016. Lecture Notes in Computer Science, 9863:435–445

    Google Scholar 

  • Kirik E, Yurgel’yan T, Krouglov D (2011) On realizing the shortest time strategy in a CA FF pedestrian dynamics model. Cybern Syst 42(1):1–15

    Article  Google Scholar 

  • Kirik E, Yurgel’yan T, Malyshev A (2011) On discrete-continuous stochastic floor field pedestrian dynamics model SIgMA.DC. In: Proceedings of the international conference on emergency evacuation of people from buildings. Warsaw, Belstudio, pp 155–161

  • Kirik E, Malyshev A, Popel E (2014) Fundamental diagram as a model input—direct movement equation of pedestrian dynamics. In: Weidmann U, Kirsch U, Schreckenberg M (eds) Pedestrian and evacuation dynamics 2012. Springer, Cham, pp 691–703

    Chapter  Google Scholar 

  • Kirik E, Vitova T, Malyshev A, Popel E (2018) The impact of different angle paths on discrete-continuous pedestrian dynamics model. In: Mauri G, El Yacoubi S, Dennunzio A, Nishinari K, Manzoni L (eds) Cellular Automata. ACRI 2018. Lecture Notes in Computer Science, 11115:207–217

    Chapter  Google Scholar 

  • Kirik E, Malyshev A, Vitova T, Popel E, Kharlamov E (2018) Pedestrian movement simulation for stadiums design. IOP Conf Ser Mater Sci Eng 456:012074

    Article  Google Scholar 

  • Kirik E, Vitova T, Malyshev A, Popel E (2019) On the validation of pedestrian movement models under transition and steady-state conditions. In: Proceedings of the ninth international seminar on fire and explosion hazards (ISFEH9). St. Peterburg, pp 1270–1280

  • Kretz T, Bonisch C, Vortisch P (2010) Comparison of various methods the calculation of the distance potential field. In: Klingsch WWF, Rogsch C, Schadschneider A, Schreckenberg M (eds) Pedestrian and evacuation dynamics 2008. Springer, Berlin, pp 335–346

    Chapter  Google Scholar 

  • Li S, Li X, Yunchao Q, Jia B (2015) Block-based floor field model for pedestrian’s walking through corner. Physica A 432:337–353

    Article  Google Scholar 

  • Lovreglio R, Ronchi E, Nilsson D (2015) Calibrating floor field cellular automaton models for pedestrian dynamics by using likelihood function optimization. Physica A 438:308–320

    Article  Google Scholar 

  • Nishinari K, Kirchner A, Namazi A, Schadschneider A (2004) Extended floor field CA model for evacuation dynamics. IEICE Trans Inf Syst E87–D:726–732

    Google Scholar 

  • Nishinari K, Suma Y, Yanagisawa D, Tomoeda A, Kimura A, Nishi R (2010) Toward smooth movement of crowds. In: Klingsch WWF, Rogsch C, Schadschneider A, Schreckenberg M (eds) Pedestrian and evacuation dynamics 2008. Springer, Berlin, pp 293–308

    Chapter  Google Scholar 

  • Predtechenskii VM, Milinskii AI (1978) Planing for foot traffic flow in buildings. American Publishing, New Dehli. Translation of “Proektirovanie Zhdanii s Uchetom organizatsii Dvizheniya Lyudskikh potokov, Stroiizdat Publishers, Moscow, 1969”

  • Ren-Yong G, Tie-Qiao T (2012) A simulation model for pedestrian flow through walkways with corners. Simul Model Pract Theory 21(1):103–113

    Article  Google Scholar 

  • Schadschneider A, Seyfried A (2009) Validation of CA models of pedestrian dynamics with fundamental diagrams. Cybern Syst 40(5):367–389

    Article  Google Scholar 

  • Schadschneider A, Klingsch W, Klupfel H, Kretz T, Rogsch C, Seyfried A, Dynamics E (2009) Empirical results, modeling and applications. In: Meyers RA (ed) Encyclopedia of complexity and system science, vol 3. Springer, Berlin, pp 3142–3192

    Chapter  Google Scholar 

  • Seitz MJ, Koster G (2012) Natural discretization of pedestrian movement in continuous space. Phys Rev E 86(4):046108

    Article  Google Scholar 

  • Steffen B, Seyfried A (2009) Modeling of pedestrian movement around 90 and 180 degree bends. arXiv:0912.0610

  • Zeng W, Nakamura H, Chen P (2014) A modified social force model for pedestrian behavior simulation at signalized crosswalks. Soc Behav Sci 138(14):521–530

    Article  Google Scholar 

  • Zeng Y, Song W, Huo F, Vizzari G, Zeng Y, Song W, Huo F, Vizzari G (2018) Modeling evacuation dynamics on stairs by an extended optimal steps model. Simul Model Pract Theory 84:177–189

    Article  Google Scholar 

  • Zhang J, Klingsch W, Rupprecht T, Schadschneider A, Seyfried A (2011) Empirical study of turning and merging of pedestrian streams in T-junction. arXiv:1112.5299

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Kirik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirik, E., Vitova, T. & Malyshev, A. Turns of different angles and discrete-continuous pedestrian dynamics model. Nat Comput 18, 875–884 (2019). https://doi.org/10.1007/s11047-019-09764-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-019-09764-4

Keywords

Navigation