Skip to main content

Pedestrian Movement: An Analysis of Transition Regime the Real-Life Experiment, a Comparison with a Simulation Data at an Example of the “SigmaEva” Software

  • Conference paper
  • First Online:
Cellular Automata (ACRI 2022)

Abstract

The video record with a real-life experiment of the pedestrian movement in a straight corridor is analyzed. Open boundary conditions are realized in the experiment, and it is unusual for known data sets. The aim of the investigation is to determine data from the experiment (initial and in dynamics): initial positions of people, an average movement speed and a density for different moments, a free movement speed. These data are necessary to make a simulation experiment reproducing the real-life experiment and to compare results in order to investigate ability of a software to simulate real process correctly. The data obtained have been applied to test the SigmaEva software which is based on the discrete-continuous pedestrian dynamics model. Some unexpected and discussional findings were derived concerning free movement speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This value was not always equal to 20, due to the location of control sections 1–3 and 2–4, some participants had already left the experimental area.

  2. 2.

    Mainly with value > 0.9.

References

  1. Data archive of experimental data from studies about pedestrian. http://ped.fz-juelich.de/database/. Accessed 23 Mar 2022

  2. International maritime organization/msc.1/circ 1533 – revised guidelines on evacuation analysis for new and existing passenger. https://www.traffgo-ht.com/en/pedestrians/downloads/index.html. Accessed 18 Mar 2022

  3. Guideline for microscopic evacuation analysis, version: 3.0.0 (2016). https://rimea.de/de/rimea-projekt/. Accessed 18 Mar 2022

  4. Baglietto, G., Parisi, D.R.: Continuous-space automaton model for pedestrian dynamics. Phys. Rev. E 83, 056117 (2011). https://doi.org/10.1103/PhysRevE.83.056117

    Article  Google Scholar 

  5. Gwynne, S.M.V., Rosenbaum, E.R.: Employing the hydraulic model in assessing emergency movement. In: Hurley, M.J., et al. (eds.) SFPE Handbook of Fire Protection Engineering, pp. 2115–2151. Springer, New York (2016). https://doi.org/10.1007/978-1-4939-2565-0_59

  6. Kholshevnikov, V., Shields, T., Boyce, K., Samoshin, D.: Recent developments in pedestrian flow theory and research in Russia. Fire Safety J. 43(2), 108–118 (2008). https://doi.org/10.1016/j.firesaf.2007.05.005

    Article  Google Scholar 

  7. Kirik, E., Malyshev, A., Popel, E.: Fundamental diagram as a model input: direct movement equation of pedestrian dynamics. In: Weidmann, U., Kirsch, U., Schreckenberg, M. (eds.) Pedestrian and Evacuation Dynamics 2012, pp. 691–702. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-02447-9_58

  8. Kirik, E., Yurgel’Yan, T., Krouglov, D.: On realizing the shortest time strategy in a CA FF pedestrian dynamics model. Cybern. Syst. 42(1), 1–15 (2011). https://doi.org/10.1080/01969722.2011.532636

    Article  MATH  Google Scholar 

  9. Kirik, E., Malyshev, A., Senashova, M.: On the evacuation module SigmaEva based on a discrete-continuous pedestrian dynamics model. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9574, pp. 539–549. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32152-3_50

  10. Kirik, E., Vitova, T.: On formal presentation of update rules, density estimate and using floor fields in CA FF pedestrian dynamics model SIgMA.CA. In: El Yacoubi, S., et al. (eds.) ACRI 2016. LNCS, vol. 9863, pp. 435–445. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44365-2_43

  11. Kirik, E., Vitova, T., Malyshev, A., Popel, E.: On the validation of pedestrian movement models under transition and steady-state conditions. In: Snegirev, A. (ed.) The Ninth International Seminar on Fire and Explosion Hazards, pp. 1271–1280. SPb Polytechnic University (2019). https://doi.org/10.18720/SPBPU/2/k19-67

  12. Kirik, E., Vitova, T., Malyshev, A.: Turns of different angles and discrete-continuous pedestrian dynamics model. Natural Comput. 18(4), 875–884 (2019). https://doi.org/10.1007/s11047-019-09764-4

    Article  MathSciNet  Google Scholar 

  13. Predtechenskii, V.M., Milinskii, A.I.: Planning for Foot Traffic Flow in Buildings. Amerind Publishing, New Dehli (1978)

    Google Scholar 

  14. Ronchi, E., Kuligowski, E., Reneke, P., Peacock, R., Nilsson, D.: The process of verification and validation of building fire evacuation models. Tech. rep., National Institute of Standards and Technology (2013). https://doi.org/10.6028/NIST.TN.1822

  15. Seitz, M.J., Köster, G.: Natural discretization of pedestrian movement in continuous space. Phys. Rev. E 86, 046108 (2012). https://doi.org/10.1103/PhysRevE.86.046108

    Article  Google Scholar 

  16. Weidmann, U.: Transporttechnik der fussgänger. Transporttechnische eigenschaften des fussgängerverkehrs (literaturauswertung). Tech. rep. Institut für Verkehrsplanung, Zürich (1992–2001). https://doi.org/10.3929/ethz-a-000687810

  17. Zeng, Y., Song, W., Huo, F., Vizzari, G.: Modeling evacuation dynamics on stairs by an extended optimal steps model. Simulat. Model. Pract. Theory 84, 177–189 (2018). https://doi.org/10.1016/j.simpat.2018.02.001

    Article  Google Scholar 

  18. Zhang, J., Klingsch, W., Schadschneider, A., Seyfried, A.: Transitions in pedestrian fundamental diagrams of straight corridors and t-junctions. J. Statist. Mech. Theory Exp. 2011(06), P06004 (2011). https://doi.org/10.1088/1742-5468/2011/06/p06004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Kirik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kirik, E., Vitova, T. (2022). Pedestrian Movement: An Analysis of Transition Regime the Real-Life Experiment, a Comparison with a Simulation Data at an Example of the “SigmaEva” Software. In: Chopard, B., Bandini, S., Dennunzio, A., Arabi Haddad, M. (eds) Cellular Automata. ACRI 2022. Lecture Notes in Computer Science, vol 13402. Springer, Cham. https://doi.org/10.1007/978-3-031-14926-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14926-9_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14925-2

  • Online ISBN: 978-3-031-14926-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics