Skip to main content

The Impact of Different Angle Paths on Discrete-Continuous Pedestrian Dynamics Model

  • Conference paper
  • First Online:
Cellular Automata (ACRI 2018)

Abstract

In the article the influence of corners on the path on discrete-continuous pedestrian dynamics model have been discussed. Angles from classic 90\(^\circ \) case study to “Z”-shaped geometry were considered. “Z”-shaped geometry is peculiar for modern shopping and entertainment centers, when we consider way from the stadium to outer perimeter.

This study was partially supported by the Russian Foundation for Basic Research, Government of the Krasnoyarsk Territory, Krasnoyarsk Territorial Foundation for Support of Scientific and RD Activities, project no. 17-41-240947 p_a.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We assume that free movement speed is random normal distributed value with some mathematical expectation and dispersion [18, 19].

  2. 2.

    All parameters were unified for all involved particles.

References

  1. Kirik, E., Yurgel’yan, T., Krouglov, D.: On realizing the shortest time strategy in a CA FF pedestrian dynamics model. Cybern. Syst. 42(1), 1–15 (2011)

    Article  Google Scholar 

  2. Kirik, E., Yurgel’yan, T., Malyshev, A.: On discrete-continuous stochastic floor field pedestrian dynamics model SIgMA.DC. In: Proceedings of the International Conference “Emergency Evacuation of People from Buildings”, pp. 155–161. Belstudio, Warsaw (2011)

    Google Scholar 

  3. Kirik, E., Malyshev, A., Popel, E.: Fundamental diagram as a model input - direct movement equation of pedestrian dynamics. In: Weidmann, U., Kirsch, U., Schreckenberg, M. (eds.) Pedestrian and Evacuation Dynamics 2012, pp. 691–703. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-02447-9_58

    Chapter  Google Scholar 

  4. Kirik, E., Vitova, T.: On formal presentation of update rules, density estimate and using floor fields in CA FF pedestrian dynamics model SIgMA.CA. In: El Yacoubi, S., Wąs, J., Bandini, S. (eds.) ACRI 2016. LNCS, vol. 9863, pp. 435–445. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44365-2_43

    Chapter  Google Scholar 

  5. Zhang, J., Klingsch, W., Rupprecht, T., Schadschneider, A., Seyfried, A.: Empirical study of turning and merging of pedestrian streams in T-junction. https://arxiv.org/abs/1112.5299 (2011)

  6. Boltes, M., Seyfried, A.: Collecting pedestrian trajectories. Neurocomputing 100, 127–133 (2013)

    Article  Google Scholar 

  7. Boltes, M., et al.: Experimentation, data collection, modeling and simulation of pedestrian dynamics. In: Statistics, Probability and Numerical Analysis, pp. 49–60. Tirana, Albania (2014)

    Google Scholar 

  8. Gorrini, A., Bandini, S., Sarvi, M., Dias, C., Shiwakoti, N.: An empirical study of crowd and pedestrian dynamics: the impact of different angle paths and grouping. In: Transportation Research Board, 92 Annual Meeting, p. 42. Washington, D.C. (2013)

    Google Scholar 

  9. Dias, C., Ejtemai, O., Sarvi, M., Burd, M.: Exploring pedestrian walking through angled corridors. Transp. Res. Procedia 2, 19–25 (2014)

    Article  Google Scholar 

  10. Dias, C., Sarvi, M., Ejtemai, O., Burd, M.: Elevated desired speed and change in desired direction effects on collective pedestrian flow characteristics. Transp. Res. Rec. 2490, 65–75 (2015)

    Article  Google Scholar 

  11. Dias, C., Sarvi, M.: Exploring the effect of turning manoeuvres on macroscopic properties of pedestrian flow. In: 38th Australasian Transport Research Forum, Melbourne, Australia (2016)

    Google Scholar 

  12. Kretz, T., Grosse, A., Hengst, S., Kautzsch, L., Pohlmann, A., Vortisch, P.: Quickest paths in simulations of pedestrians

    Google Scholar 

  13. Li, S., Li, X., Qu, Y., Jia, B.: Block-based floor field model for pedestrian’s walking through corner. Phys. A 432, 337–353 (2015)

    Article  Google Scholar 

  14. Dias, C., Lovreglio, R.: Calibrating cellular automaton models for pedestrians walking through corners. Phys. Lett. A 382, 1255–1261 (2018)

    Article  Google Scholar 

  15. Steffen, B., Seyfried, A.: Modeling of pedestrian movement around 90 and 180 degree bends. https://arxiv.org/abs/0912.0610 (2009)

  16. Hall, E.T.: The Hidden Dimension. Garden City, New York (1966)

    Google Scholar 

  17. Schadschneider, A., Seyfried, A.: Validation of CA models of pedestrian dynamics with fundamental diagrams. Cybern. Syst. 40(5), 367–389 (2009)

    Article  Google Scholar 

  18. Kholshevnikov, V., Samoshin, D.: Evacuation and human behavior in fire. Academy of State Fire Service, EMERCOM of Russia, Moscow (2009)

    Google Scholar 

  19. Kholshevnikov, V.: Forecast of human behavior during fire evacuation. In: Proceedings of the International Conference on Emergency Evacuation of People from Buildings - EMEVAC, pp. 139–153. Belstudio, Warsaw (2011)

    Google Scholar 

  20. Predtechenskii, V.M., Milinskii, A.I.: Planing for Foot Traffic Flow in Buildings. American Publishing, New Dehli (1978)

    Google Scholar 

  21. Schadschneider, A., Klingsch, W., Kluepfel, H., Kretz, T., Rogsch, C., Seyfried, A.: Evacuation dynamics: empirical results, modeling and applications. In: Meyers, R. (ed.) Encyclopedia of Complexity and System Science, vol. 3, pp. 3142–3192. Springer, New York (2009). https://doi.org/10.1007/978-1-4419-7695-6

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Kirik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kirik, E., Vitova, T., Malyshev, A., Popel, E. (2018). The Impact of Different Angle Paths on Discrete-Continuous Pedestrian Dynamics Model. In: Mauri, G., El Yacoubi, S., Dennunzio, A., Nishinari, K., Manzoni, L. (eds) Cellular Automata. ACRI 2018. Lecture Notes in Computer Science(), vol 11115. Springer, Cham. https://doi.org/10.1007/978-3-319-99813-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99813-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99812-1

  • Online ISBN: 978-3-319-99813-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics