Skip to main content
Log in

ALE beam using reference dynamics

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

We present a small strain beam model based on the Arbitrary Lagrangian Eulerian setting for use in multibody dynamics. The key contribution of the present paper is to provide a formulation with large flexible reference motion and small overlaid deflections. We point out that the reference motion is described by actual degrees of freedom of the model. Therefore, we use a vector of generalized positions and an Eulerian coordinate, which itself is a degree of freedom and in which the flow of the beam material through an arbitrary volume is represented. The additional displacements describe small fluctuations around the reference motion. With this idea it is easy to separate the motion of belt drives, cable and rope ways or strings. In particular, the overlaid deflections are described for efficient numeric computation and may be analyzed in an easy way for vibrational behavior. The guiding reference motion is arbitrary, i.e., the transmission ratios are degrees of freedom and may change dynamically affecting also the fluctuations. Contacts with dry friction are foreseen and represented in the present model. It is validated and proven to be efficient in comparison with classic co-rotational and absolute nodal coordinate formulations in our application. The simulation of pushbelt continuously variable transmissions is taken as a high-dimensional industrial example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The absolute change in the position of a mass particle is derived based on \(r(\bar {x})\) with \(\bar {x}\) being constant (cf. (2)).

  2. The derivative of a matrix \(\mathbb {G} \) w.r.t. to a vector \(d\) applied to a vector \(e\) is defined as

    $$\begin{aligned} \frac{\mathrm {d} \mathbb {G} }{ \mathrm {d}d} e = \sum_{i=1}^{k} \frac{\mathrm {d} \mathbb {G} }{ \mathrm {d}d _{i}} e_{i} \end{aligned}$$

    where \(d\) and \(e\) have the dimension \(k\).

  3. \([t\ n\ b]\) refers to the local deformations and does not coincide with \([t _{\mathit {Ref}}\ n _{\mathit {Ref}}\ b _{\mathit {Ref}}]\).

  4. The parameter \(\varTheta \) is defined in such a way that symmetric properties can be used in the numerical evaluation.

  5. Interpolated by \(N_{1}\) and \(N_{3}\).

  6. Interpolated by \(N_{2}\) and \(N_{4}\).

  7. Here on the left side of the ring.

  8. Cases 1, 4 and 7.

  9. Cases 2, 5 and 8.

  10. Cases 3, 6 and 9.

  11. The pulley sheaves deform due to the clamping forces. Thus, elements change the running radius within a pulley arc, which is called spiral running.

  12. For instance ALE0.

References

  1. Acary, V., Brogliato, B.: Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics, 1st edn. Lecture Notes in Applied and Computational Mechanics, vol. 35. Springer, Berlin (2008)

    MATH  Google Scholar 

  2. Antman, S.: Nonlinear Problems of Elasticity. Springer, Berlin (2005)

    MATH  Google Scholar 

  3. Bathe, K.J., Bolourchi, S.: Large displacement analysis of three-dimensional beam structures. Int. J. Numer. Methods Eng. 14, 961–986 (1979)

    Article  MATH  Google Scholar 

  4. Bauchau, O.: Flexible Multibody Dynamics. Springer, Berlin (2010)

    MATH  Google Scholar 

  5. Behdinan, K., Tabarrok, B.: Dynamics of flexible sliding beams – non-linear analysis part II: transient response. J. Sound Vib. 208(4), 541–565 (1997). https://doi.org/10.1006/jsvi.1997.1168. http://www.sciencedirect.com/science/article/pii/S0022460X97911688

    Article  Google Scholar 

  6. Belytschko, T., Schwer, L.: Large displacement, transient analysis of space frames. Int. J. Numer. Methods Eng. 11, 65–84 (1977)

    Article  MATH  Google Scholar 

  7. Cebulla, T.: Spatial dynamics of pushbelt cvts: model enhancements to a non-smooth flexible multibody system. Ph.D. thesis, Technische Universität München (2014)

  8. Cebulla, T., Grundl, K., Schindler, T., Ulbrich, H., van der Velde, A., Pijpers, H.: Spatial dynamics of pushbelt CVTs: model enhancements. In: SAE Technical Paper of SAE World Congress, Detroit, 24th–26th April 2012 (2012)

    Google Scholar 

  9. Crisfield, M.A.: A consistent co-rotational formulation for non-linear, three-dimensional, beam elements. Comput. Methods Appl. Mech. Eng. 81, 131–150 (1990)

    Article  MATH  Google Scholar 

  10. von Dombrowski, S., Schwertassek, R.: Analysis of large flexible body deformation in multibody systems using absolute coordinates. In: Advances in Computational Multibody Dynamics, Lisbon, 20th–23rd September 1999, pp. 359–378. Instituto Superior Tecnico, Lisbon (1999).

    Google Scholar 

  11. Dufva, K., Kerkkänen, K., Maqueda, L.G., Shabana, A.A.: Nonlinear dynamics of three-dimensional belt drives using the finite-element method. Nonlinear Dyn. 48(4), 449–466 (2007). https://doi.org/10.1007/s11071-006-9098-9. https://link.springer.com/article/10.1007/s11071-006-9098-9

    Article  MATH  Google Scholar 

  12. Funk, K.: Simulation eindimensionaler Kontinua mit Unstetigkeiten. In: Fortschrittberichte VDI: Reihe 18, Mechanik, Bruchmechanik, vol. 294. VDI Verlag, Düsseldorf (2004)

    Google Scholar 

  13. Geier, T.: Dynamics of Push Belt CVTs, Fortschrittberichte VDI: Reihe 12, Verkehrstechnik, Fahrzeugtechnik, vol. 654. VDI Verlag, Düsseldorf (2007)

    Google Scholar 

  14. Geier, T., Förg, M., Zander, R., Ulbrich, H., Pfeiffer, F., Brandsma, A., van der Velde, A.: Simulation of a push belt CVT considering uni- and bilateral constraints. J. Appl. Math. Mech. 86, 795–806 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Geradin, M., Cardona, A.: Flexible Multibody Dynamics: A Finite Element Approach. Wiley, New York (2001)

    Google Scholar 

  16. Gerstmayr, J., Sugiyama, H., Mikkola, A.: An overview on the developments of the absolute nodal coordinate formulation. In: Proceedings of 2nd Joint International Conference on Multibody System Dynamics, Stuttgart, 29th May–1st June 2012 (2012)

    Google Scholar 

  17. Grundl, K.: Validation of a pushbelt variator. Ph.D. thesis, Technische Universität München (2015)

  18. Irschik, H., Holl, H.: The equations of Lagrange written for a non-material volume. Acta Mech. 153, 231–248 (2002)

    Article  MATH  Google Scholar 

  19. Jelenic, G., Saje, M.: A kinematically exact space finite strain beam model – finite element formulation by generalized virtual work principle. Comput. Methods Appl. Mech. Eng. 120(1), 131–161 (1995). http://www.sciencedirect.com/science/article/pii/004578259400056S

    Article  MathSciNet  MATH  Google Scholar 

  20. Lang, H., Linn, J., Arnold, M.: Multi-body dynamics simulation of geometrically exact Cosserat rods. Multibody Syst. Dyn. 25(3), 285–312 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. MBSim – multi-body simulation software. GNU Lesser General Public License. https://github.com/mbsim-env/

  22. Pechstein, A., Gerstmayr, J.: A Lagrange–Eulerian formulation of an axially moving beam based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 30(3), 343–358 (2013). http://link.springer.com/article/10.1007/s11044-013-9350-2

    Article  MathSciNet  MATH  Google Scholar 

  23. Pfeiffer, F.: Mechanical System Dynamics, corr. 2nd printing edn. Lecture Notes in Applied and Computational Mechanics, vol. 40. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  24. Pfeiffer, F., Schindler, T.: Introduction to Dynamics. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  25. Romero, I.: A comparison of finite elements for nonlinear beams: the absolute nodal coordinate and geometrically exact formulations. Multibody Syst. Dyn. 20, 51–68 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schindler, T.: Spatial Dynamics of Pushbelt CVTs. In: Fortschritt-Berichte VDI: Reihe 12, Verkehrstechnik, Fahrzeugtechnik, vol. 730. VDI Verlag, Düsseldorf (2010). http://mediatum.ub.tum.de/node?id=981870

    Google Scholar 

  27. Schindler, T., Förg, M., Friedrich, M., Schneider, M., Esefeld, B., Huber, R., Zander, R., Ulbrich, H.: Analysing dynamical phenomenons: introduction to MBSim. In: Proceedings of 1st Joint International Conference on Multibody System Dynamics, Lappeenranta, 25th–27th May 2010 (2010)

    Google Scholar 

  28. Schindler, T., Friedrich, M., Ulbrich, H.: Computing time reduction possibilities in multibody dynamics. In: Blajer, W., Arczewski, K., Fraczek, J., Wojtyra, M. (eds.) Multibody Dynamics: Computational Methods and Applications, Computational Methods in Applied Sciences, vol. 23, pp. 239–259. Springer, Dordrecht (2011)

    Chapter  Google Scholar 

  29. Schindler, T., Geier, T., Ulbrich, H., Pfeiffer, F., van der Velde, A., Brandsma, A.: Dynamics of pushbelt CVTs. In: Umschlingungsgetriebe: Ketten und Riemen – Konstruktion, Simulation und Anwendung von Komponenten und Systemen, Tagung Berlin, 21. und 22. Juni 2007, VDI-Berichte. VDI Verlag, Düsseldorf (2007).

    Google Scholar 

  30. Schindler, T., Ulbrich, H., Pfeiffer, F., van der Velde, A., Brandsma, A.: Spatial simulation of pushbelt CVTs with timestepping schemes. Appl. Numer. Math. 62(10), 1515–1530 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Schwertassek, R., Wallrapp, O.: Dynamik Flexibler Mehrkörpersysteme. Vieweg, Wiesbaden (1999)

    Book  Google Scholar 

  32. Shabana, A.: Dynamics of Multibody Systems, 3rd edn. Cambridge University Press, New York (2005)

    Book  MATH  Google Scholar 

  33. Shabana, A.A.: Flexible multibody dynamics: Review of past and recent developments. Multibody Syst. Dyn. 1(2), 189–222 (1997). https://doi.org/10.1023/A:1009773505418

    Article  MathSciNet  MATH  Google Scholar 

  34. Simo, J.: A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Comput. Methods Appl. Mech. Eng. 49(1), 55–70 (1985). https://doi.org/10.1016/0045-7825(85)90050-7

    Article  MATH  Google Scholar 

  35. Simo, J., Vu-Quoc, L.: A three-dimensional finite-strain rod model. Part II: computational aspects. Comput. Methods Appl. Mech. Eng. 58(1), 79–116 (1986). https://doi.org/10.1016/0045-7825(86)90079-4

    Article  MATH  Google Scholar 

  36. Sonneville, V., Cardona, A., Brüls, O.: Geometrically exact beam finite element formulated on the special Euclidean group. Comput. Methods Appl. Mech. Eng. 268, 451–474 (2014). https://doi.org/10.1016/j.cma.2013.10.008

    Article  MathSciNet  MATH  Google Scholar 

  37. Vetyukov, Y.: Mechanics of axially moving structures at mixed Eulerian-Lagrangian description. In: Analysis and Modelling of Advanced Structures and Smart Systems, Advanced Structured Materials. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-6895-9_13. https://link.springer.com/chapter/10.1007/978-981-10-6895-9_13

    Google Scholar 

  38. Vetyukov, Y.: Non-material finite element modelling of large vibrations of axially moving strings and beams. J. Sound Vib. 414, 299–317 (2018). https://doi.org/10.1016/j.jsv.2017.11.010. http://linkinghub.elsevier.com/retrieve/pii/S0022460X17307824

    Article  Google Scholar 

  39. Vu-Quoc, L., Li, S.: Dynamics of sliding geometrically-exact beams: large angle maneuver and parametric resonance. Comput. Methods Appl. Mech. Eng. 120(1–2), 65–118 (1995). https://doi.org/10.1016/0045-7825(94)00051-N

    Article  MathSciNet  MATH  Google Scholar 

  40. Wasfy, T., Noor, A.: Computational strategies for flexible multibody systems. Appl. Mech. Rev. 56, 553–613 (2003)

    Article  Google Scholar 

  41. Zander, R.: Flexible multi-body systems with set-valued force laws. Fortschritt-Berichte VDI: Reihe 20, Rechnerunterstützte Verfahren, vol. 420. VDI Verlag, Düsseldorf (2009). http://mediatum2.ub.tum.de/node?id=654788

    Google Scholar 

  42. Zander, R., Rettig, F., Schindler, T.: Concepts for the simulation of belt drives – industrial and academic approaches. In: Proceedings of 1st Joint International Conference on Multibody System Dynamics, Lappeenranta, 25th–27th May 2010 (2010)

    Google Scholar 

  43. Zander, R., Ulbrich, H.: Reference-free mixed FE-MBS approach for beam structures with constraints. Nonlinear Dyn. 46, 349–361 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kilian Grundl.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grundl, K., Schindler, T., Ulbrich, H. et al. ALE beam using reference dynamics. Multibody Syst Dyn 46, 127–146 (2019). https://doi.org/10.1007/s11044-019-09671-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-019-09671-7

Keywords

Navigation