Skip to main content
Log in

Hybrid disturbance rejection control of dynamic bipedal robots

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a disturbance rejection control strategy for hybrid dynamic systems exposed to model uncertainties and external disturbances. The focus of this work is the gait control of dynamic bipedal robots. The proposed control strategy integrates continuous and discrete control actions. The continuous control action uses a novel model-based active disturbance rejection control (ADRC) approach to track gait trajectory references. The discrete control action resets the gait trajectory references after the impact produced by the robot’s support-leg exchange to maintain a zero tracking error. A Poincaré return map is used to search asymptotic stable periodic orbits in an extended hybrid zero dynamics (EHZD). The EHZD reflects a lower-dimensional representation of the full hybrid dynamics with uncertainties and disturbances. A physical bipedal robot testbed, referred to as Saurian, is fabricated for validation purposes. Numerical simulation and physical experiments show the robustness of the proposed control strategy against external disturbances and model uncertainties that affect both the swing motion phase and the support-leg exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Arcos-Legarda, J., Cortes-Romero, J., Tovar, A.: Active disturbance rejection control based on generalized proportional integral observer to control a bipedal robot with five degrees of freedom. In: American Control Conference (ACC), 2016. IEEE Press, New York (2016)

    Google Scholar 

  2. Baquero-Suárez, M., Cortés-Romero, J., Arcos-Legarda, J., Coral-Enriquez, H.: A robust two-stage active disturbance rejection control for the stabilization of a riderless bicycle. Multibody Syst. Dyn. 45(1), 7–35 (2019)

    Article  MathSciNet  Google Scholar 

  3. Brown, T.L., Schmiedeler, J.P.: Gait transitions and disturbance response for planar bipeds with reaction wheel actuation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016, pp. 3393–3398. IEEE Press, New York (2016)

    Chapter  Google Scholar 

  4. Brown, T.L., Schmiedeler, J.P.: Reaction wheel actuation for improving planar biped walking efficiency. IEEE Trans. Robot. Autom. 32(5), 1290–1297 (2016)

    Article  Google Scholar 

  5. Castañeda, L.A., Luviano-Juárez, A., Chairez, I.: Robust trajectory tracking of a delta robot through adaptive active disturbance rejection control. IEEE Trans. Control Syst. Technol. 23(4), 1387–1398 (2015)

    Article  Google Scholar 

  6. Chevallereau, C., Abba, G., Aoustin, Y., Plestan, F., Westervelt, E., de Wit, C.C., Grizzle, J.: Rabbit: a testbed for advanced control theory. IEEE Control Syst. Mag. 23(5), 57–79 (2003)

    Article  Google Scholar 

  7. Dai, H., Tedrake, R.: Optimizing robust limit cycles for legged locomotion on unknown terrain. In: 2012 IEEE 51st Annual Conference on Decision and Control (CDC), pp. 1207–1213. IEEE Press, New York (2012)

    Chapter  Google Scholar 

  8. Dai, H., Tedrake, R.: L 2-gain optimization for robust bipedal walking on unknown terrain. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 3116–3123. IEEE Press, New York (2013)

    Chapter  Google Scholar 

  9. Gao, Z.: Active disturbance rejection control: a paradigm shift in feedback control system design. In: American Control Conference, 2016, pp. 7–pp. IEEE Press, New York (2006)

    Google Scholar 

  10. Gao, Z.: On the centrality of disturbance rejection in automatic control. ISA Trans. 53(4), 850–857 (2014)

    Article  Google Scholar 

  11. Ghiasi, A., Alizadeh, G., Mirzaei, M.: Simultaneous design of optimal gait pattern and controller for a bipedal robot. Multibody Syst. Dyn. 23(4), 401–429 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Griffin, B., Grizzle, J.: Walking gait optimization for accommodation of unknown terrain height variations. In: American Control Conference (ACC), 2015, pp. 4810–4817. IEEE Press, New York (2015)

    Chapter  Google Scholar 

  13. Griffin, B., Grizzle, J.: Nonholonomic virtual constraints and gait optimization for robust walking control. Int. J. Robot. Res. 36(8), 895–922 (2017)

    Article  Google Scholar 

  14. Grizzle, J., Westervelt, E., Canudas-de Wit, C.: Event-based pi control of an underactuated biped walker. In: 42nd IEEE Conference on Decision and Control. Proceedings, 2003, vol. 3, pp. 3091–3096. IEEE Press, New York (2003)

    Google Scholar 

  15. Grizzle, J., Choi, J.H., Hammouri, H., Morris, B.: On observer-based feedback stabilization of periodic orbits in bipedal locomotion. In: Proceedings Methods and Models in Automation and Robotics (2007)

    Google Scholar 

  16. Guo, B.Z., Zhao, Z.L.: On convergence of the nonlinear active disturbance rejection control for mimo systems. SIAM J. Control Optim. 51(2), 1727–1757 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guo, B.Z., Zhao, Z.L.: Active Disturbance Rejection Control for Nonlinear Systems: An Introduction. Wiley, New York (2016)

    Book  MATH  Google Scholar 

  18. Hamed, K.A., Grizzle, J.W.: Robust event-based stabilization of periodic orbits for hybrid systems: application to an underactuated 3d bipedal robot. In: American Control Conference (ACC), 2013, pp. 6206–6212. IEEE Press, New York (2013)

    Google Scholar 

  19. Hamed, K.A., Grizzle, J.W.: Robust event-based stabilization of periodic orbits for hybrid systems: application to an underactuated 3d bipedal robot. In: American Control Conference (ACC), 2013, pp. 6206–6212. IEEE Press, New York (2013)

    Google Scholar 

  20. Hamed, K.A., Grizzle, J.W.: Reduced-order framework for exponential stabilization of periodic orbits on parameterized hybrid zero dynamics manifolds: application to bipedal locomotion. Nonlinear Anal. Hybrid Syst. 25, 227–245 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hamed, K.A., Buss, B.G., Grizzle, J.W.: Exponentially stabilizing continuous-time controllers for periodic orbits of hybrid systems: application to bipedal locomotion with ground height variations. Int. J. Robot. Res. 35(8), 977–999 (2016)

    Article  Google Scholar 

  22. Hodgins, J.K., Raibert, M.: Adjusting step length for rough terrain locomotion. IEEE Trans. Robot. Autom. 7(3), 289–298 (1991)

    Article  Google Scholar 

  23. Huang, Y., Xue, W.: Active disturbance rejection control: methodology and theoretical analysis. ISA Trans. 53(4), 963–976 (2014)

    Article  MathSciNet  Google Scholar 

  24. Hurmuzlu, Y., Marghitu, D.B.: Rigid body collisions of planar kinematic chains with multiple contact points. Int. J. Robot. Res. 13(1), 82–92 (1994)

    Article  Google Scholar 

  25. Hurst, J.W., Rizzi, A.A.: Series compliance for an efficient running gait. IEEE Robot. Autom. Mag. 15(3), 42–51 (2008)

    Article  Google Scholar 

  26. Isidori, A.: Nonlinear Control Systems, Third edn. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  27. Johnson, M., Shrewsbury, B., Bertrand, S., Wu, T., Duran, D., Floyd, M., Abeles, P., Stephen, D., Mertins, N., Lesman, A., Carff, J., Rifenburgh, W., Kaveti, P., Straatman, W., Smith, J., Griffioen, M., Layton, B., de Boer, T., Koolen, T., Neuhaus, P., Pratt, J.: Team ihmc’s lessons learned from the darpa robotics challenge trials. J. Field Robot. 32(2), 192–208 (2015). https://doi.org/10.1002/rob.21571. http://dx.doi.org/10.1002/rob.21571

    Article  Google Scholar 

  28. Kolathaya, S., Ames, A.D.: Parameter sensitivity and boundedness of robotic hybrid periodic orbits** this work is supported by the national science foundation through grants cns-0953823 and cns-1136104. IFAC-PapersOnLine 48(27), 377–382 (2015)

    Article  Google Scholar 

  29. Kolathaya, S., Ames, A.D.: Parameter to state stability of control Lyapunov functions for hybrid system models of robots. Nonlinear Anal. Hybrid Syst. 25, 174–191 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Koolen, T., De Boer, T., Rebula, J., Goswami, A., Pratt, J.: Capturability-based analysis and control of legged locomotion, part 1: theory and application to three simple gait models. Int. J. Robot. Res. 31(9), 1094–1113 (2012)

    Article  Google Scholar 

  31. Long, Y., Du, Z., Cong, L., Wang, W., Zhang, Z., Dong, W.: Active disturbance rejection control based human gait tracking for lower extremity rehabilitation exoskeleton. ISA Trans. 67, 389–397 (2017)

    Article  Google Scholar 

  32. McGeer, T.: Passive walking with knees. In: 1990 IEEE International Conference on Robotics and Automation, 1990. Proceedings, pp. 1640–1645. IEEE Press, New York (1990)

    Chapter  Google Scholar 

  33. Montano, O., Orlov, Y., Aoustin, Y., Chevallereau, C.: Orbital stabilization of an underactuated bipedal gait via nonlinear \(\mathcal{H} _{\infty }\)-control using measurement feedback. Auton. Robots 41(6), 1277–1295 (2017). https://doi.org/10.1007/s10514-015-9543-z

    Article  Google Scholar 

  34. Nguyen, Q., Sreenath, K.: L 1 adaptive control for bipedal robots with control Lyapunov function based quadratic programs. In: American Control Conference (ACC), 2015, pp. 862–867. IEEE Press, New York (2015)

    Chapter  Google Scholar 

  35. Oza, H.B., Orlov, Y.V., Spurgeon, S.K., Aoustin, Y., Chevallereau, C.: Finite time tracking of a fully actuated biped robot with pre-specified settling time: a second order sliding mode synthesis. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 2570–2575. IEEE Press, New York (2014)

    Chapter  Google Scholar 

  36. Pratt, J., Koolen, T., De Boer, T., Rebula, J., Cotton, S., Carff, J., Johnson, M., Neuhaus, P.: Capturability-based analysis and control of legged locomotion, part 2: application to m2v2, a lower body humanoid. Int. J. Robot. Res. 31(9), 1117–1133 (2012)

    Article  Google Scholar 

  37. Sira-Ramírez, H., Gao, Z., Canuto, E.: An active disturbance rejection control approach for decentralized tracking in interconnected systems. In: 2014 European Control Conference (ECC), pp. 588–593. IEEE Press, New York (2014)

    Chapter  Google Scholar 

  38. Slotine, J.J.E., Li, W., et al.: Applied Nonlinear Control, 1. Prentice Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  39. Sreenath, K., Park, H.W., Poulakakis, I., Grizzle, J.W.: A compliant hybrid zero dynamics controller for stable, efficient and fast bipedal walking on mabel. Int. J. Robot. Res. 30(9), 1170–1193 (2011)

    Article  Google Scholar 

  40. Veer, S., Motahar, M.S., Poulakakis, I.: On the adaptation of dynamic walking to persistent external forcing using hybrid zero dynamics control. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 997–1003. IEEE Press, New York (2015)

    Chapter  Google Scholar 

  41. Westervelt, E.R., Grizzle, J.W., Chevallereau, C., Choi, J.H., Morris, B.: Feedback Control of Dynamic Bipedal Robot Locomotion, vol. 28. CRC Press, Boca Raton (2007)

    Google Scholar 

  42. Zheng, Q., Gao, L.Q., Gao, Z.: On validation of extended state observer through analysis and experimentation. J. Dyn. Syst. Meas. Control 134(2), 024505 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Office at the National University of Colombia, Bogota campus through the projects 28340 and 37662, and the National Science Foundation through the NRT-IGE grant 1633426. The first author was supported by the Fulbright Commission in Colombia and Colombian Administrative Department of Science, Technology and Innovation—Colciencias.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Arcos-Legarda.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arcos-Legarda, J., Cortes-Romero, J., Beltran-Pulido, A. et al. Hybrid disturbance rejection control of dynamic bipedal robots. Multibody Syst Dyn 46, 281–306 (2019). https://doi.org/10.1007/s11044-019-09667-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-019-09667-3

Keywords

Navigation