Skip to main content

Advertisement

Log in

Simultaneous design of optimal gait pattern and controller for a bipedal robot

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Nowadays, biped robotics becomes an interesting topic for many control researchers. The biped robot is more adaptable than the other mobile robots in a varied environment and can have more diverse possibilities in planning the motion. However, it falls down easily and its control for stable walking is difficult. Therefore, generation of a desired walking pattern for the biped robot in the presence of some model uncertainties is an important problem. The proposed walking pattern should be also achievable by the designed controller. To achieve this aim and to reach the best control performance, the walking pattern and controller should be designed simultaneously rather than separately. In the present study, an optimal walking pattern is proposed to be tracked by a designed sliding mode controller. In this respect, a genetic algorithm (GA) is utilized to determine the walking pattern parameters and controller coefficients simultaneously. Here, high stability, minimum energy consumption, good mobility properties, and actuator limitations are considered as the important indexes in optimization. Simulation results indicate the efficiency of the proposed scheme in walking the understudy biped robot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, Q., Yokoi, K., Kajita, S., Kaneko, K., Arai, H., Koyachi, N., Tanie, K.: Planning walking patterns for a biped robot. IEEE Trans. Robot. Autom. 17(3), 280–289 (2001)

    Article  Google Scholar 

  2. Capi, G., Kaneko, S., Mitobe, K., BirolIi, L., Nasu, Y.: Optimal trajectory generation for a prismatic joint biped robot using genetic algorithms. Robot. Auton. Syst. 38(2), 119–128 (2002)

    Article  MATH  Google Scholar 

  3. Zhou, C., Meng, Q.: Dynamic balance of a biped robot using fuzzy reinforcement learning agents. Fuzzy Sets Syst. 134(1), 169–187 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Park, J.H.: Fuzzy-logic zero-moment-point trajectory generation for reduced trunk motions of biped robots. Fuzzy Sets Syst. 134(1), 189–203 (2003)

    Article  MATH  Google Scholar 

  5. Kun, A.L., Miller, W.T.: Adaptive static balance of a biped robot using neural networks. Robot. Manuf. 245–248 (1997)

  6. Arakawa, T., Fukuda, T.: Natural motion generation of biped locomotion robot using hierarchical trajectory generation method consisting of GA, EP Layers. Proc. IEEE Int. Conf. Robot. Autom. 1, 211–216 (1997)

    Google Scholar 

  7. Capi, G., Nasu, Y., Barolli, L., Mitobe, K., Takeda, K.: Application of genetic algorithms for biped robot gait synthesis optimization during walking and going up-stairs. Int. J. Robot. Soc. Jpn. 15, 675–694 (2001)

    Google Scholar 

  8. Zheng, Y.F., Shen, J.: Gait synthesis for the SD-2 biped robot to climb sloping surface. In: IEEE Trans. Robot. Autom. 86–96 (1990)

  9. Miura, H., Shimoyama, I.: Dynamic walking of a biped locomotion. Int. J. Robot. Res. 60–74 (1984)

  10. Shih, C.L., Churng, S., Lee, T.T., Gruver, W.A.: Trajectory synthesis and physical admissibility for a biped robot during the Single-Support Phase. In: IEEE Int. Conf. Robotics and Automation, pp. 1646–1652 (1990)

  11. Hirai, K., Hirose, M., Haikawa, Y., Takenaka, T.: The development of Honda humanoid robot. In: IEEE Int. Conf. Robotics and Automation, pp. 1321–1326 (1998)

  12. Huang, Q., Sugano, S., Tanie, K.: Stability compensation of a mobile manipulator by manipulator motion: Feasibility and planning. Adv. Robot. 13(1), 25–40 (1999)

    Article  Google Scholar 

  13. Wu, Q., Chan, C.Y.A.: Design of energy efficient joint profiles for a planar five-link biped robot. In: Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp. 35–40 (2001)

  14. Furusho, J., Masubuchi, M.: Control of a dynamical biped locomotion system for steady walking. J. Dyn. Syst. Meas. Control 111–118 (1986)

  15. Cheng, M.Y., Lin, C.S.: Dynamic biped robot locomotion on less structured surfaces. Robotica 18, 163–170 (2000)

    Article  Google Scholar 

  16. Borghese, A., Bianchi, L., Lacquaniti, F.: Kinematic determinants of human locomotion, J. Physiol. 863–879 (1996)

  17. Hurmuzlu, Y.: Dynamics of bipedal gait: Part I-objective functions and the contact event of a planar five-link biped. J. Appl. Mech. 60, 331–336 (1993)

    Article  Google Scholar 

  18. Goldstein, H., Poole, C.P., Safko, J.L.: Classical Mechanics, 2nd edn. Addison-Wesley, Reading (2002)

    Google Scholar 

  19. Mu, X.: A complete dynamic model of five-link biped walking. Proc. Am. Control Conf. 1, 4926–4931 (2003)

    Google Scholar 

  20. Mu, X., Wu, Q.: Dynamic modeling and sliding mode control of a five-link biped during the double support phase. In: Proceeding of the American Control Conference Boston, Massachusetts, pp. 2609–2614 (2004)

  21. Hurmuzlu, Y., Moskowitz, G.D.: The role of impact in the stability of bipedal locomotion. Dyn. Stab. Syst. 1, 217–234 (1986)

    Google Scholar 

  22. Hurmuzlu, Y., Moskowitz, G.D.: Bipedal locomotion stabilized by impact and switching I: two and three dimensional, three element models. Dyn. Stab. Syst. 2, 75–96 (1987)

    Google Scholar 

  23. Hurmuzlu, Y., Moskowitz, G.D.: Bipedal locomotion stabilized by impact and switching II: structural stability analysis of a four element bipedal locomotion model. Dyn. Stab. Syst. 2, 98–112 (1987)

    Google Scholar 

  24. Hurmuzlu, Y., Chang, T.H.: Rigid body collisions of a special class of planer kinematic chains. IEEE Trans. Syst. Man Cybern. 22(5), 964–971 (1992)

    Article  MATH  Google Scholar 

  25. Ivanov, A.P.: On multiple impacts. J. Appl. Math. Mech. 59, 887–902 (1995)

    Article  MATH  Google Scholar 

  26. Lum, H.K., Zribi, M., Soh, Y.C.: Planning and control of a biped robot. In: Proceeding of the International Journal of Engineering Science, pp. 1319–1349 (1999)

  27. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. Wiley, New York (2006)

    Google Scholar 

  28. McGee, T.G., Spong, M.W.: Trajectory planning and control of a novel walking biped. In: IEEE Int. Conf. Control Appl., pp. 1099–1104 (2001)

  29. Cai, L., Song, G.: A smooth robust nonlinear controller for robot manipulator with joint stick-slip friction. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 449–455 (1993)

  30. Wu, Q., Thornton, A., Sepehri, N.: Lyapunov stability control of inverted pendulums with general base point motion. Int. J. Nonlinear Mech. 33, 801–818 (1998)

    Article  MATH  Google Scholar 

  31. Jin, G.G.: Genetic Algorithms and Their Applications. Kyo Woo Sa (2002)

  32. Haupt, R., Haupt, S.: Practical Genetic Algorithms, 2nd edn. Wiley, New York (2004)

    MATH  Google Scholar 

  33. Michalewicy, Z.: Genetic Algorithm + Data Structures, 2nd edn. Springer, New York (1994)

    Google Scholar 

  34. Vukobratovic, M., Frank, A.A., Juricic, D.: On the stability of biped locomotion. IEEE Trans. Biomed. Eng. 17, 25–36 (1970)

    Article  Google Scholar 

  35. Vukobratovic, M., Ekalo, Y.: Mathematical model of general anthropomorphic systems. Math. Biosci. 17, 191–242 (1973)

    Article  MATH  Google Scholar 

  36. Koditschek, D.: Nature motion of robot arms. In: IEEE Proceeding of International Conference on Decision and Control, pp. 733–735 (1984)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Ghiasi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghiasi, A.R., Alizadeh, G. & Mirzaei, M. Simultaneous design of optimal gait pattern and controller for a bipedal robot. Multibody Syst Dyn 23, 401–429 (2010). https://doi.org/10.1007/s11044-009-9185-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-009-9185-z

Navigation