Skip to main content
Log in

A nonlinear two-node superelement for use in flexible multibody systems

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

A nonlinear two-node superelement is proposed for the modeling of flexible complex-shaped links for use in multibody simulations. Assuming that the elastic deformations with respect to a corotational reference frame remain small, substructuring methods may be used to obtain reduced mass and stiffness matrices from a linear finite element model. These matrices are used in the derivation of potential and kinetic energy expressions of the nonlinear two-node superelement. By evaluating Lagrange’s equations, expressions for the internal and external forces acting on the superelement can be obtained. The inertia forces of the superelement are derived in terms of absolute nodal velocities and accelerations, which greatly simplifies the dynamic formulation. Three examples are included. The first two examples are used to validate the method by comparing the results with those obtained from nonlinear beam element solutions. We consider a benchmark simulation of the spin-up motion of a flexible beam with uniform cross-section and a similar simulation in which the beam is simultaneously excited in the out-of-plane direction. Results from both examples show good agreement with simulation results obtained using nonlinear finite beam elements. In a third example, the method is applied to an unbalanced rotating shaft, illustrating the potential of the proposed methodology for a more complex geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  2. Géradin, M., Cardona, A.: Flexible Multibody Dynamics: A Finite Element Approach. Wiley, Chichester (2001)

    Google Scholar 

  3. Jonker, J.B.: A finite element dynamic analysis of spatial mechanisms with flexible links. Comput. Methods Appl. Mech. Eng. 76(1), 17–40 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Hurty, W.C.: Vibrations of structural systems by component mode synthesis. J. Eng. Mech. 86(4), 51–69 (1960)

    Google Scholar 

  5. Hurty, W.C.: Dynamic analysis of structural systems using component modes. AIAA J. 3(4), 678–685 (1965)

    Article  Google Scholar 

  6. Craig, R.R. Jr., Bampton, M.C.C.: Coupling of substructures for dynamic analyses. AIAA J. 6(7), 1313–1319 (1968)

    Article  MATH  Google Scholar 

  7. Guyan, R.J.: Reduction of stiffness and mass matrices. AIAA J. 3(2), 380 (1965)

    Article  Google Scholar 

  8. Craig, R.R. Jr.: Substructure methods in vibration. J. Vib. Acoust. 117, 207–213 (1995)

    Article  Google Scholar 

  9. Seshu, P.: Substructuring and component mode synthesis. Shock Vib. 4(3), 199–210 (1997)

    Article  Google Scholar 

  10. De Klerk, D., Rixen, D.J., Voormeeren, S.N.: General framework for dynamic substructuring: history, review, and classification of techniques. AIAA J. 46(5), 1169–1181 (2008)

    Article  Google Scholar 

  11. Lehner, M., Eberhard, P.: On the use of moment-matching to build reduced order models in flexible multibody dynamics. Multibody Syst. Dyn. 16(2), 191–211 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lehner, M., Eberhard, P.: A two-step approach for model reduction in flexible multibody dynamics. Multibody Syst. Dyn. 17(2–3), 157–176 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Shabana, A.A., Wehage, R.A.: A coordinate reduction technique for dynamic analysis of spatial substructures with large angular rotations. J. Struct. Mech. 11(3), 401–431 (1983)

    Article  Google Scholar 

  14. Shabana, A.A.: Substructure synthesis methods for dynamic analysis of multi-body systems. Comput. Struct. 20(4), 737–744 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  15. Agrawal, O.P., Shabana, A.A.: Dynamic analysis of multibody systems using component modes. Comput. Struct. 21(6), 1303–1312 (1985)

    Article  Google Scholar 

  16. Yoo, W.S., Haug, E.J.: Dynamics of articulated structures. Part I. Theory. J. Struct. Mech. 14(1), 105–126 (1986)

    Article  Google Scholar 

  17. Yoo, W.S., Haug, E.J.: Dynamics of articulated structures. Part II. Computer implementation and applications. J. Struct. Mech. 14(2), 177–189 (1986)

    Article  Google Scholar 

  18. Wu, S.C., Haug, E.J.: Geometric non-linear substructuring for dynamics of flexible mechanical systems. Int. J. Numer. Methods Eng. 26(10), 2211–2226 (1988)

    Article  MATH  Google Scholar 

  19. Kim, S.S., Haug, E.J.: A recursive formulation for flexible multibody dynamics. part I. Open-loop systems. Comput. Methods Appl. Mech. Eng. 71(3), 293–314 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  20. Cardona, A., Géradin, M.: Modelling of superelements in mechanism analysis. Int. J. Numer. Methods Eng. 32(8), 1565–1593 (1991)

    Article  MATH  Google Scholar 

  21. Cardona, A., Géradin, M.: A superelement formulation for mechanism analysis. Comput. Methods Appl. Mech. Eng. 100(1), 1–29 (1992)

    Article  MATH  Google Scholar 

  22. Cardona, A.: Superelements modelling in flexible multibody dynamics. Multibody Syst. Dyn. 4(2–3), 245–266 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Bauchau, O.A., Rodriguez, J.: Formulation of modal-based elements in nonlinear, flexible multibody dynamics. Int. J. Multiscale Comput. Eng. 1(2&3), 161–180 (2003)

    Article  Google Scholar 

  24. Folkersma, K.G.P., Boer, S.E., Brouwer, D.M., Herder, J.L., Soemers, H.M.J.R.: A 2-DOF large stroke flexure based positioning mechanism. In: Proceedings of the ASME 2012 International Design Engineering Technical Conferences & Computers and Information in Engineering Conferences (IDETC/CIE 2012), Chicago, IL, USA (2012)

    Google Scholar 

  25. Jonker, J.B., Meijaard, J.P.: A geometrically non-linear formulation of a three-dimensional beam element for solving large deflection multibody system problems. Int. J. Non-linear Mech. 53, 63–74 (2013).

    Article  Google Scholar 

  26. Jonker, J.B., Meijaard, J.P.: SPACAR—computer program for dynamic analysis of flexible spatial mechanisms and manipulators. In: Schiehlen, W. (ed.) Multibody Systems Handbook, pp. 123–143. Springer, Berlin (1990)

    Chapter  Google Scholar 

Download references

Acknowledgements

This research is financially supported by the Dutch association Point-One, project MOV-ET PNE08006, by the Dutch Department of Economic Affairs, Agriculture and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Boer.

Appendices

Appendix A

For infinitesimal elastic deformations, the absolute velocities of the ith node of the FE model, \(\dot {\bar {\boldsymbol {u}}}^{(i)}\), expressed in the reference frame attached to superelement node p, can be written as

(44)

where \(\boldsymbol {V}_{n}^{(i)}\) is the vector with the x, y and z contributions of the nth constraint mode for the ith node of the FE model.

Rigid body translations and infinitesimal rigid body rotations can be expressed as linear combinations of the constraint modes,

(45a)
(45b)
(45c)
(45d)

where \(\bar {\boldsymbol {r}}_{0}\) is the position vector of the nodes in the FE model in undeformed configuration. Substituting in (44) for V 1 through V 6 the expressions of (45a)–(45d) gives

$$ \dot {\bar {\boldsymbol {u}}}^{(i)} = \boldsymbol {R}^{e \mathrm {T}} \boldsymbol {R}^{p \mathrm {T}} \boldsymbol {v}^{p} + \bigl( \boldsymbol {R}^{e \mathrm {T}} \boldsymbol {R}^{p \mathrm {T}} \boldsymbol {\omega }^{p} \bigr) \times \bar {\boldsymbol {r}}_{0}^{(i)} + \dot {\bar {\boldsymbol {e}}}^{(i)}, $$
(46a)

with

$$ \dot {\bar {\boldsymbol {e}}}^{(i)} = \bigl[\boldsymbol {V}_{7}^{(i)}, \boldsymbol {V}_{8}^{(i)}, \boldsymbol {V}_{9}^{(i)}, \boldsymbol {V}_{10}^{(i)}, \boldsymbol {V}_{11}^{(i)}, \boldsymbol {V}_{12}^{(i)} \bigr] \left \{ \begin{array}{c} \bar {\boldsymbol {v}}^{q}_{x} - \bar {\boldsymbol {v}}^{p}_{x} \\ \bar {\boldsymbol {v}}^{q}_{y} - \bar {\boldsymbol {v}}^{p}_{y} - l_{\rm{0}} \bar{\omega }^{p}_{z} \\ \bar {\boldsymbol {v}}^{q}_{z} - \bar {\boldsymbol {v}}^{p}_{z} + l_{\rm{0}} \bar{\omega }^{p}_{y} \\ \bar{\omega}^{q}_{x} - \bar{\omega}^{p}_{x} \\ \bar{\omega}^{q}_{y} - \bar{\omega}^{p}_{y} \\ \bar{\omega}^{q}_{z} - \bar{\omega}^{p}_{z} \end{array} \right \}, $$
(46b)

and

$$ \begin{array}{l@{\qquad}l} \left \{ \begin{array}{c} \bar {\boldsymbol {v}}^{p}_{x} \\ \bar {\boldsymbol {v}}^{p}_{y} \\ \bar {\boldsymbol {v}}^{p}_{z} \\ \end{array} \right \} = \boldsymbol {R}^{e \mathrm {T}} \boldsymbol {R}^{p \mathrm {T}} \boldsymbol {v}^{p} , & \left \{ \begin{array}{c} \bar {\boldsymbol {v}}^{q}_{x} \\ \bar {\boldsymbol {v}}^{q}_{y} \\ \bar {\boldsymbol {v}}^{q}_{z} \\ \end{array} \right \} = \boldsymbol {R}^{e \mathrm {T}} \boldsymbol {R}^{p \mathrm {T}} \boldsymbol {v}^{q} , \\ \left \{ \begin{array}{c} \bar{\omega}^{p}_{x} \\ \bar{\omega}^{p}_{y} \\ \bar{\omega}^{p}_{z} \\ \end{array} \right \} = \boldsymbol {R}^{e \mathrm {T}} \boldsymbol {R}^{p \mathrm {T}} \boldsymbol {\omega }^{p} , & \left \{ \begin{array}{c} \bar{\omega}^{q}_{x} \\ \bar{\omega}^{q}_{y} \\ \bar{\omega}^{q}_{z} \\ \end{array} \right \} = \boldsymbol {R}^{e \mathrm {T}} \boldsymbol {R}^{p \mathrm {T}} \boldsymbol {\omega }^{q}. \end{array} $$
(46c)

Appendix B

In this appendix the time derivatives of the velocity transformation matrices B 1, B 2 and B 3 are given (see (38)).

2.1 B.1 Time derivative of B 1

Taking the time derivative of matrix B 1 in (24) gives

$$ \dot{\boldsymbol {B}}_{1} = \left [ \begin{array}{c@{\quad}c@{\quad}c@{\quad}c} \boldsymbol {R}^{e\mathrm {T}} \dot{\boldsymbol {R}}^{p\mathrm {T}} & & & \\& 2 \boldsymbol {R}^{e\mathrm {T}} \dot {\bar {\boldsymbol {\varLambda }}}^{p} & & \\& & \boldsymbol {R}^{e\mathrm {T}} \dot{\boldsymbol {R}}^{p\mathrm {T}} & \\& & & 2 \boldsymbol {R}^{e\mathrm {T}} (\dot{\boldsymbol {R}}^{p\mathrm {T}} \boldsymbol {\varLambda }^{q} + \boldsymbol {R}^{p\mathrm {T}} \dot {\boldsymbol {\varLambda }}^{q}) \\\end{array} \right ], $$
(47)

where the time derivative of R p can be computed by

$$ \dot{\boldsymbol {R}}^{p} = 2 \dot {\boldsymbol {\varLambda }}^{p} \bar {\boldsymbol {\varLambda }}^{p\mathrm {T}}, $$
(48)

where \(\bar {\boldsymbol {\varLambda }}^{p}\) is defined in (33).

2.2 B.2 Time derivative of B 2

Taking the time derivative of matrix B 2 in (31) gives

$$ \dot{\boldsymbol {B}}_{2} = \left [ \begin{array}{c@{\quad}c@{\quad}c@{\quad}c} \boldsymbol {R}^{e\mathrm {T}} \dot{\boldsymbol {R}}^{r\mathrm {T}} & & & \\& 2 \boldsymbol {R}^{e\mathrm {T}} (\dot{\boldsymbol {R}}^{r\mathrm {T}} \boldsymbol {\varLambda }^{p} + \boldsymbol {R}^{r\mathrm {T}} \dot {\boldsymbol {\varLambda }}^{p}) & & \\& & \boldsymbol {R}^{e\mathrm {T}} \dot{\boldsymbol {R}}^{r\mathrm {T}} & \\& & & 2 \boldsymbol {R}^{e\mathrm {T}} (\dot{\boldsymbol {R}}^{r\mathrm {T}} \boldsymbol {\varLambda }^{q} + \boldsymbol {R}^{r\mathrm {T}} \dot {\boldsymbol {\varLambda }}^{q}) \\\end{array} \right ], $$
(49)

where the time derivative of R r is

$$ \dot{\boldsymbol {R}}^{r} = 2 \dot {\boldsymbol {\varLambda }}^{r} \bar {\boldsymbol {\varLambda }}^{r\mathrm {T}}. $$
(50)

Here the evaluation of (50) requires an expression for \(\dot {\boldsymbol {\lambda }}^{r}\). Taking the derivative of λ r in (29) gives

$$ \dot {\boldsymbol {\lambda }}^{r} = \frac{\partial \boldsymbol {\lambda }^{r}}{\partial \boldsymbol {\lambda }^{p}} \dot {\boldsymbol {\lambda }}^{p} + \frac{\partial \boldsymbol {\lambda }^{r}}{\partial \boldsymbol {\lambda }^{q}} \dot {\boldsymbol {\lambda }}^{q}. $$
(51)

It can be shown that

$$ \frac{\partial \boldsymbol {\lambda }^{r}}{\partial \boldsymbol {\lambda }^{p}} = \frac{\partial \boldsymbol {\lambda }^{r}}{\partial \boldsymbol {\lambda }^{q}} = \frac{\boldsymbol{I} - \boldsymbol {\lambda }^{r}\boldsymbol {\lambda }^{r\mathrm {T}}}{\Vert \boldsymbol {\lambda }^{p} + \boldsymbol {\lambda }^{q}\Vert } = \frac{\boldsymbol {\varLambda }^{r\mathrm {T}}\boldsymbol {\varLambda }^{r}}{\Vert \boldsymbol {\lambda }^{p} + \boldsymbol {\lambda }^{q} \Vert }. $$
(52)

Substituting (52) in (51) then gives

$$ \dot {\boldsymbol {\lambda }}^{r} = \frac{\boldsymbol {\varLambda }^{r\mathrm {T}}\boldsymbol {\varLambda }^{r}}{\Vert \boldsymbol {\lambda }^{p} + \boldsymbol {\lambda }^{q} \Vert } \bigl(\dot {\boldsymbol {\lambda }}^{p} + \dot {\boldsymbol {\lambda }}^{q} \bigr). $$
(53)

2.3 B.3 Time derivative of B 3

Taking the time derivative of matrix B 3 in (32) gives

$$ \dot{\boldsymbol {B}}_{3} = \left [ \begin{array}{c@{\quad}c@{\quad}c@{\quad}c} \boldsymbol {R}^{e\mathrm {T}} \dot{\boldsymbol {R}}^{r\mathrm {T}} & & & \\& 2 \boldsymbol {R}^{e\mathrm {T}} \dot {\bar {\boldsymbol {\varLambda }}}^{p} & & \\& & \boldsymbol {R}^{e\mathrm {T}} \dot{\boldsymbol {R}}^{r\mathrm {T}} & \\& & & 2 \boldsymbol {R}^{e\mathrm {T}} \dot {\bar {\boldsymbol {\varLambda }}}^{q} \\\end{array} \right ]. $$
(54)

Appendix C

In this appendix expressions are given for \(\boldsymbol {B}^{*}_{1}\), \(\boldsymbol {B}^{*}_{2}\) and \(\boldsymbol {B}^{*}_{3}\) (see (38)).

3.1 C.1 Expression for \(\boldsymbol {B}^{*}_{1}\)

For \(\boldsymbol {B}^{*}_{1}\) we can write

$$ \boldsymbol {B}_{1}^{*} = \frac{\partial \bar {\boldsymbol {v}}}{\partial \boldsymbol {x}} = \left [ \begin{array}{c@{\quad}c@{\quad}c@{\quad}c} \boldsymbol{0} \quad& \displaystyle\frac{\partial \bar {\boldsymbol {v}}^{p}}{\partial \boldsymbol {\lambda }^{p}} \quad& \boldsymbol{0} \quad& \boldsymbol{0} \\ \boldsymbol{0} \quad& \displaystyle\frac{\partial \bar {\boldsymbol {\omega }}^{p}}{\partial \boldsymbol {\lambda }^{p}} \quad& \boldsymbol{0} \quad& \boldsymbol{0} \\ \boldsymbol{0} \quad& \displaystyle\frac{\partial \bar {\boldsymbol {v}}^{q}}{\partial \boldsymbol {\lambda }^{p}} \quad& \boldsymbol{0} \quad& \boldsymbol{0} \\ \boldsymbol{0} \quad& \displaystyle\frac{\partial \bar {\boldsymbol {\omega }}^{q}}{\partial \boldsymbol {\lambda }^{p}} \quad& \boldsymbol{0} \quad& \displaystyle\frac{\partial \bar {\boldsymbol {\omega }}^{q}}{\partial \boldsymbol {\lambda }^{q}} \\ \end{array} \right ], $$
(55)

where

(56a)
(56b)
(56c)
(56d)
(56e)

The derivative of a rotation matrix to its Euler parameters is,

(57)

which can be used to evaluate \(\displaystyle\frac{\partial \boldsymbol {R}^{p}}{\partial \boldsymbol {\lambda }^{p}}\) in (56a)–(56e).

3.2 C.2 Expression for \(\boldsymbol {B}^{*}_{2}\)

For \(\boldsymbol {B}^{*}_{2}\) we can write

$$ \boldsymbol {B}_{2}^{*} = \frac{\partial \bar {\boldsymbol {v}}}{\partial \boldsymbol {x}} = \left [ \begin{array}{c@{\quad}c@{\quad}c@{\quad}c} \boldsymbol{0} \quad& \displaystyle\frac{\partial \bar {\boldsymbol {v}}^{p}}{\partial \boldsymbol {\lambda }^{p}} \quad& \boldsymbol{0} \quad& \displaystyle\frac{\partial \bar {\boldsymbol {v}}^{p}}{\partial \boldsymbol {\lambda }^{q}} \\ \boldsymbol{0} \quad& \displaystyle\frac{\partial \bar {\boldsymbol {\omega }}^{p}}{\partial \boldsymbol {\lambda }^{p}} \quad& \boldsymbol{0} \quad& \displaystyle\frac{\partial \bar {\boldsymbol {\omega }}^{p}}{\partial \boldsymbol {\lambda }^{q}} \\ \boldsymbol{0} \quad& \displaystyle\frac{\partial \bar {\boldsymbol {v}}^{q}}{\partial \boldsymbol {\lambda }^{p}} \quad& \boldsymbol{0} \quad& \displaystyle\frac{\partial \bar {\boldsymbol {v}}^{q}}{\partial \boldsymbol {\lambda }^{q}} \\ \boldsymbol{0} \quad& \displaystyle\frac{\partial \bar {\boldsymbol {\omega }}^{q}}{\partial \boldsymbol {\lambda }^{p}} \quad& \boldsymbol{0} \quad& \displaystyle\frac{\partial \bar {\boldsymbol {\omega }}^{q}}{\partial \boldsymbol {\lambda }^{q}} \\ \end{array} \right ], $$
(58)

where

(59a)
(59b)
(59c)
(59d)
(59e)
(59f)
(59g)
(59h)

The tensor \(\displaystyle\frac{\partial R^{r}_{lk}}{\partial\lambda ^{p}_{j}}\) can be expressed as

$$ \frac{\partial R^{r}_{lk}}{\partial\lambda^{p}_{j}} = \frac{\partial R^{r}_{lk}}{\partial\lambda^{r}_{n}} \frac{\partial\lambda ^{r}_{n}}{\partial\lambda^{p}_{j}}, $$
(60)

and can be evaluated using (52) and (57).

3.3 C.3 Expression for \(\boldsymbol {B}^{*}_{3}\)

For \(\boldsymbol {B}^{*}_{3}\) we can write

$$ \boldsymbol {B}_{3}^{*} = \frac{\partial \bar {\boldsymbol {v}}}{\partial \boldsymbol {x}} = \left [ \begin{array}{c@{\quad}c@{\quad}c@{\quad}c} \boldsymbol{0} \quad& \displaystyle\frac{\partial \bar {\boldsymbol {v}}^{p}}{\partial \boldsymbol {\lambda }^{p}} \quad& \boldsymbol{0} \quad& \displaystyle\frac{\partial \bar {\boldsymbol {v}}^{p}}{\partial \boldsymbol {\lambda }^{q}} \\ \boldsymbol{0} \quad& \displaystyle\frac{\partial \bar {\boldsymbol {\omega }}^{p}}{\partial \boldsymbol {\lambda }^{p}} \quad& \boldsymbol{0} \quad& \boldsymbol{0} \\ \boldsymbol{0} \quad& \displaystyle\frac{\partial \bar {\boldsymbol {v}}^{q}}{\partial \boldsymbol {\lambda }^{p}} \quad& \boldsymbol{0} \quad& \displaystyle\frac{\partial \bar {\boldsymbol {v}}^{q}}{\partial \boldsymbol {\lambda }^{q}} \\ \boldsymbol{0} \quad& \boldsymbol{0} \quad& \boldsymbol{0} \quad& \displaystyle\frac {\partial \bar {\boldsymbol {\omega }}^{q}}{\partial \boldsymbol {\lambda }^{q}} \\ \end{array} \right ], $$
(61)

where \(\displaystyle\frac{\partial \bar {\boldsymbol {v}}^{p}}{\partial \boldsymbol {\lambda }^{p}}\), \(\displaystyle\frac{\partial \bar {\boldsymbol {v}}^{p}}{\partial \boldsymbol {\lambda }^{q}}\), \(\displaystyle\frac{\partial \bar {\boldsymbol {v}}^{q}}{\partial \boldsymbol {\lambda }^{p}}\) and \(\displaystyle\frac{\partial \bar {\boldsymbol {v}}^{q}}{\partial \boldsymbol {\lambda }^{q}}\) are the same expressions as given by (59a)–(59h). Furthermore, \(\displaystyle\frac{\partial \bar {\boldsymbol {\omega }}^{p}}{\partial \boldsymbol {\lambda }^{p}}\) and \(\displaystyle\frac{\partial \bar {\boldsymbol {\omega }}^{q}}{\partial \boldsymbol {\lambda }^{q}}\) are given by

$$ \frac{\partial \bar {\boldsymbol {\omega }}^{p}}{\partial \boldsymbol {\lambda }^{p}} = -2 \boldsymbol {R}^{e\mathrm {T}} \dot {\bar {\boldsymbol {\varLambda }}}^{p} \quad \text{and} \quad \frac{\partial \bar {\boldsymbol {\omega }}^{q}}{\partial \boldsymbol {\lambda }^{q}} = -2 \boldsymbol {R}^{e\mathrm {T}} \dot {\bar {\boldsymbol {\varLambda }}}^{q}. $$
(62)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boer, S.E., Aarts, R.G.K.M., Meijaard, J.P. et al. A nonlinear two-node superelement for use in flexible multibody systems. Multibody Syst Dyn 31, 405–431 (2014). https://doi.org/10.1007/s11044-013-9373-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-013-9373-8

Keywords

Navigation