Skip to main content
Log in

A two-step approach for model reduction in flexible multibody dynamics

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

In this work, a two-step approach for model reduction in flexible multibody dynamics is proposed. This technique is a combination of the Krylov-subspace method and a Gramian matrix based reduction approach that is particularly suited if a small reduced-order model of a system charged with many force-inputs has to be generated. The proposed methodology can be implemented efficiently using sparse matrix techniques and is therefore applicable to large-scale systems too. By a numerical example, it is demonstrated that the suggested two-step approach has very good approximation capabilities in the time as well as in the frequency domain and can help to reduce the computation time of a numerical simulation significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antoulas, A.C.: Approximation of large-scale dynamical systems. SIAM, Philadelphia (2005)

    MATH  Google Scholar 

  2. Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H.: Templates for the solution of algebraic eigenvalue problems: A practical guide. SIAM, Philadelphia (2000)

    MATH  Google Scholar 

  3. Bai, Z.: Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems. Appl. Numer. Math. 43, 9–44 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bai, Z., Su, Y.: Dimension reduction of second-order dynamical systems via a second-order Arnoldi method. SIAM J. Sci. Comput. 26, 1692–1709 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bathe, K.J.: Finite element procedures. Prentice-Hall, Upper Saddle River (1996)

    Google Scholar 

  6. Davis, T.A.: UMFPACK version 4.6 user guide. Technical report. University of Florida, Gainesville, FL (2005), http://www.cise.ufl.edu/research/sparse/umfpack/v4.6/UMFPACK/Doc/UserGuide.pdf

    Google Scholar 

  7. de Villemagne, C., Skelton, R.E.: Model reduction using a projection formulation. Int. J. Control 46, 2141–2169 (1987)

    Article  Google Scholar 

  8. Dietz, S.: Vibration and fatigue analysis of vehicle systems using component modes. VDI-Fortschritt-Berichte, Reihe 12, Nr. 401. VDI-Verlag, Düsseldorf (1999)

    Google Scholar 

  9. Elfadel, I.M., Ling, D.D.: A block rational Arnoldi algorithm for multipoint passive model-order reduction of multipoint RLC networks. In: Proceedings of the 1997 International Conference on Computer-Aided Design (ICCAD '97), pp. 66–71 (1997)

  10. Freund, R.W.: Krylov-subspace methods for reduced-order modeling in circuit simulation. J. Comput. Appl. Math. 123, 395–421 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Freund, R.W.: Model reduction methods based on Krylov subspaces. Acta Numer. 12, 267–319 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Friberg, O.: A method for selecting deformation modes in flexible multibody dynamics. Int. J. Numerical Methods Eng. 32, 1637–1655 (1991)

    Article  Google Scholar 

  13. Gallivan, K., Vandendorpe, A., van Dooren, P.: Sylvester equations and projection-based model reduction. J. Comput. Appl. Math. 162, 213–229 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gawronski, W., Juang, J.-N.: Model reduction in limited time and frequency intervals. Int. J. Syst. Sci. 21, 349–376 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Glover, K.: All optimal Hankel-norm approximations of linear multivariable systems and their L∞-error bounds. Int. J. Control 39, 1115–1193 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. Golub, G.H., van Loan, C.F.: Matrix computations. John Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  17. Grimme, E.J.: Krylov projection methods for model reduction. Ph.D. thesis. University of Illinois, Urbana (1997)

  18. Häggblad, B., Eriksson, L.: Model reduction methods for dynamic analysis of large structures. Comput. Struct. 47, 735–749 (1993)

    Article  MATH  Google Scholar 

  19. Hairer, E., Wanner, G.: Solving ordinary differential equations II: Stiff and differential-algebraic problems. Springer, Berlin (1996)

    MATH  Google Scholar 

  20. Han, J.S., Rudnyi, E.B., Korvink, J.G.: Efficient optimization and transient dynamic problems in MEMS devices using model order reduction. J. Micromech. Microeng. 15, 822–832 (2005)

    Article  Google Scholar 

  21. Kamon, M., Wang, F., White, J.: Generating nearly optimally compact models from Krylov-subspace based reduced-order models. IEEE Trans. Circuits Syst.-II: Analog Digit. Signal Proc. 47, 239–248 (2000)

    Article  Google Scholar 

  22. Laub, A.J., Arnold, W.F.: Controllability and observability criteria for multivariable linear second-order models. IEEE Trans. Autom. Control. 29, 163–168 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lehner, M., Eberhard, P.: Modellreduktion in elastischen Mehrkörpersystemen (in German). Automatisierungstechnik 54, 170–177 (2006)

    Article  Google Scholar 

  24. Lehner, M., Eberhard, P.: On the use of moment-matching to build reduced order models in flexible multibody dynamics. Multibody Syst. Dyn. (in press)

  25. Maplesoft: Maple User Manual (2005)

  26. Meirovitch, L., Kwak, M.: Convergence of the classical Rayleigh—Ritz method and the finite element method. AIAA J. 28, 1509–1516 (1990)

    Article  Google Scholar 

  27. Meyer, D.G., Srinivasan, S.: Balancing and model reduction for second-order form linear systems. IEEE Trans. Autom. Control 41, 1632–1644 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Moore, B.C.: Principal component analysis in linear systems. IEEE Trans. Autom. Control 26, 17–32 (1981)

    Article  MATH  Google Scholar 

  29. Noor, A.K.: Recent advances and applications of reduction methods. Appl. Mech. Rev. 47, 125–146 (1994)

    Article  Google Scholar 

  30. Nour-Omid, B., Clough, R.W.: Dynamic analysis of structures using Lanczos co-ordinates. Earthquake Eng. Struct. Dyn. 12, 565–577 (1984)

    Article  Google Scholar 

  31. Rudnyi, E.B., Korvink, J.G.: Review: Automatic model reduction for transient simulation of MEMS-based devices. Sensors Update 11, 3–33 (2002)

    Article  Google Scholar 

  32. Salimbahrami, B., Lohmann, B.: Stopping criterion in order reduction of large scale systems using Krylov subspace methods. PAMM 4, 682–683 (2004)

    Article  Google Scholar 

  33. Salimbahrami, B.: Structure preserving order reduction of large scale second order models. Ph.D. thesis, Technical University of Munich, Munich (2005)

  34. Schwertassek, R., Wallrapp, O.: Dynamik flexibler Mehrkörpersysteme (in German). Vieweg, Braunschweig (1999)

    Google Scholar 

  35. Shabana, A.A.: Dynamics of multibody systems. University Press, Cambridge (1998)

    MATH  Google Scholar 

  36. Sontag, E.D.: Mathematical control theory. Springer, Berlin (1998)

    MATH  Google Scholar 

  37. Sorensen, D.C., Antoulas, A.C.: Gramians of structured systems and an error bound for structure-preserving model reduction. Technical Report, Rice University Houston (2004), http://www.caam.rice. edu/caam/trs/2004/TR04-17.pdf

  38. Tisseur, F., Meerbergen, K.: The quadratic eigenvalue problem. SIAM Rev. 43, 235–286 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. Stykel, T.: Balanced truncation model reduction of second-order systems. In: Proceedings of the 5th Vienna Symposium on Mathematical Modelling, Vienna (2006)

  40. Vandendorpe, A.: Model reduction of linear systems, an interpolation point of view. Ph.D thesis, Université Catholique de Louvain, Leuven (2004)

  41. Wilson, E.L., Yuan, M.-W., Dickens, J.M.: Dynamic analysis of direct superposition of Ritz vectors. Earthquake Eng. Struct. Dyn. 10, 813–821 (1982)

    Article  Google Scholar 

  42. Yoo, W.S., Haug, E.J.: Dynamics of articulated structures. Part I. Theory. J. Struct. Mech. 14, 105–126 (1986)

    Google Scholar 

  43. Zhou, K., Doyle, J.C., Glover, K.: Robust optimal control. Prentice-Hall, Upper Saddle River (1996)

    MATH  Google Scholar 

  44. Zurmühl, R., Falk, S.: Matrizen und ihre Anwendungen. Teil 1: Grundlagen (in German). Springer, Berlin (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Eberhard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehner, M., Eberhard, P. A two-step approach for model reduction in flexible multibody dynamics. Multibody Syst Dyn 17, 157–176 (2007). https://doi.org/10.1007/s11044-007-9039-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-007-9039-5

Keywords

Navigation