Skip to main content
Log in

A conserving formulation of a simple shear- and torsion-free beam for multibody applications

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Many engineering fields such as aerospace, robotics, and computer graphics, have applications that contain elements amenable to be modeled as slender beams with negligible shear and torsion effects. The literature contains several energy-momentum (EM) formulations for beams based on a nonlinear finite element approach but, to the best of the author’s knowledge, there are not such developments for the finite segment or lumped approach. This work proposes an energy-conserving and symmetry-preserving extension of one of these models recently proposed in the literature; this extension constitutes the main contribution of the paper. The configuration is described by a rotation-free parameterization consisting in inertial Cartesian coordinates of a collection of nodes that defines a chain of articulated truss members. The axial response is derived by from a nonlinear hyperelastic potential and the bending stiffness is represented by another potential defined on overlapped sets composed of two consecutive trusses. The fact that both effects are defined by discrete potentials has an important impact on the simplicity of the EM formulation. The resulting time-integration scheme produces an approximated solution where total mechanical discrete energy and symmetries are exactly preserved, and the numerical stability is enhanced compared to implicit standard methods. Some numerical experiments illustrate the performance of the presented formulation, including some results of well-established beam models from popular commercial software with standard integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Bauchau, O.A., Han, S., Mikkola, A., Matikainen, M.: Comparison of the absolute nodal coordinate and geometrically exact formulations for beams. Multibody Syst. Dyn. 32(1), 67–85 (2014)

    Article  MathSciNet  Google Scholar 

  2. Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. SIAM, Philadelphia (1989)

    MATH  Google Scholar 

  3. Chorin, A.J., Hughes, T.J.R., McCracken, M.F., Marsden, J.E.: Product formulas and numerical algorithms. Commun. Pure Appl. Math. 31, 205–256 (1978)

    Article  MathSciNet  Google Scholar 

  4. Crisfield, M.A., Jelenic, G.: An invariant energy-momentum conserving procedure for dynamics of 3d beams. In: Computational Mechanics, New Trends and Applications (1998)

    Google Scholar 

  5. Crisfield, M.A., Moita, G.F.: A unified co-rotational framework for solids, shells and beams. Int. J. Numer. Methods Biomed. Eng. 33(20–22), 2969–2992 (1996)

    MATH  Google Scholar 

  6. Escalona, J.L., Hussien, H.A., Shabana, A.A.: Application of the absolute nodal coordinate formulation to multibody system dynamics. J. Sound Vib. 214(5), 833–851 (1998)

    Article  Google Scholar 

  7. ABAQUS UNIFIED FEA: Dassault systèmes (2019). https://www.3ds.com/products-services/simulia/products/abaqus/

  8. Orden, J.C.G.: Dinámica no lineal de sistemas multicuerpo flexibles mediante algoritmos conservativos. PhD thesis, ETSI Caminos, Canales y Puertos, Madrid, Spain (1999)

  9. Orden, J.C.G., Cuenca Queipo, J.: A simple shear- and torsion-free beam model for multibody dynamics. J. Comput. Nonlinear Dyn. 12(5), 1–8 (2017). 03

    Google Scholar 

  10. González, O.: Design and analysis of conserving integrators for nonlinear Hamiltonian systems with symmetry. PhD thesis, Stanford University Department of Mechanical Engineering (1996)

  11. González, O.: Time integration and discrete Hamiltonian systems. J. Nonlinear Sci. 6, 449–467 (1996)

    Article  MathSciNet  Google Scholar 

  12. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Springer Series in Computational Mathematics. Springer, Berlin (2002)

    Book  Google Scholar 

  13. Han, S., Bauchau, O.A.: Nonlinear three-dimensional beam theory for flexible multibody dynamics. Multibody Syst. Dyn. 34(3), 211–242 (2015)

    Article  MathSciNet  Google Scholar 

  14. Hilber, H.M., Hughes, T.J.R., Taylor, R.L.T.: Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq. Eng. Struct. Dyn. 5, 283–292 (1977)

    Article  Google Scholar 

  15. Ibrahimbegovic, A., Mamouri, S., Taylor, R.L., Chen, A.J.: Finite element method in dynamics of flexible multibody systems: modeling of holonomic constraints and energy conserving integration schemes. Multibody Syst. Dyn. 4(2–3), 195–223 (2000)

    Article  MathSciNet  Google Scholar 

  16. Leyendecker, S., Betsch, P., Steinmann, P.: Objective energy-momentum conserving integration for the constrained dynamics of geometrically exact beams. Comput. Methods Appl. Mech. Eng. 195(19–22), 2313–2333 (2006)

    Article  MathSciNet  Google Scholar 

  17. Liu, J.Y., Hong, J.Z.: Geometric stiffening effect on rigid-flexible coupling dynamics of an elastic beam. J. Sound Vib. 278(4–5), 1147–1162 (2004)

    Article  Google Scholar 

  18. Marsden, J.E., West, M.: Discrete mechanics and variational integrators. Acta Numer. 10, 357–514 (2001)

    Article  MathSciNet  Google Scholar 

  19. Mata, P.L., Barbat, A.H., Oller, S., Boroschek, R.: Inelastic Analysis of Geometrically Exact Rods. Monograph Series in Earthquake Engineering. CIMNE, Barcelona (2008)

    MATH  Google Scholar 

  20. Mayo, J., Domínguez, J.: Geometrically non-linear formulation of flexible multibody systems in terms of beam elements: geometric stiffness. Comput. Struct. 59(6), 1039–1050 (1996)

    Article  Google Scholar 

  21. Omar, M.A., Shabana, A.A.: A two dimensional shear deformable beam for large rotation and deformation problems. J. Sound Vib. 243(3), 565–576 (2001)

    Article  Google Scholar 

  22. Orden, J.C.G.: Energy and symmetry-preserving formulation of nonlinear constraints and potential forces in multibody dynamics. Nonlinear Dyn. 95, 823–837 (2019)

    Article  Google Scholar 

  23. Romero, I.: A comparison of finite elements for nonlinear beams: the absolute nodal coordinate and geometrically exact formulations. Multibody Syst. Dyn. 20(1), 51–68 (2008)

    Article  MathSciNet  Google Scholar 

  24. Romero, I., Armero, F.: An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energy-momentum scheme in dynamics. Int. J. Numer. Methods Biomed. Eng. 54(12), 1683–1716 (2002)

    Article  MathSciNet  Google Scholar 

  25. Sadler, J.P.: On the analytical lumped-mass model of an elastic four bar mechanism. J. Eng. Ind. 97, 561–565 (1975)

    Article  Google Scholar 

  26. Sadler, J.P., Sandor, G.N.: A lumped parameter approach to vibration and stress analysis of elastic linkages. J. Eng. Ind. 95, 549–557 (1973)

    Article  Google Scholar 

  27. Sansour, C., Nguyen, T.L., Hjiaj, M.: An energy-momentum method for in-plane geometrically exact euler–bernoulli beam dynamics. Int. J. Numer. Methods Eng. 102, 99–134 (2015)

    Article  MathSciNet  Google Scholar 

  28. Shabana, A.A.: Finite element incremental approach and exact rigid body inertia. J. Mech. Des. 118(2), 06 (1996)

    Article  Google Scholar 

  29. Shabana, A.A.: Computational Dynamics. Wiley, New York (2010)

    Book  Google Scholar 

  30. Simo, J.C.: A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Comput. Methods Appl. Mech. Eng. 49(1), 55–70 (1985)

    Article  Google Scholar 

  31. Simó, J.C., Tarnow, N., Doblaré, M.: Non-linear dynamics of three-dimensional rods: exact energy and momentum conserving algorithms. Int. J. Numer. Methods Biomed. Eng. 38, 1431–1473 (1995)

    Article  MathSciNet  Google Scholar 

  32. Simó, J.C., Vu-Quoc, L.: On the dynamics of flexible beams under large overall motions-the planar case. J. Appl. Mech. 53, 849–863 (1986)

    Article  Google Scholar 

  33. Simó, J.C., Vu-Quoc, L.: A three-dimensional finite-strain rod model. Part II: computational aspects. Comput. Methods Appl. Mech. Eng. 58, 79–116 (1986)

    Article  Google Scholar 

  34. Simó, J.C., Vu-Quoc, L.: On the dynamics in space of rods undergoing large motions - a geometrically exact approach. Comput. Methods Appl. Mech. Eng. 66, 125–161 (1988)

    Article  MathSciNet  Google Scholar 

  35. Tian, Q., Zhang, Y., Chen, L., Flores, P.: Dynamics of spatial flexible multibody systems with clearance and lubricated spherical joints. Comput. Struct. 87(13–14), 913–929 (2009)

    Article  Google Scholar 

  36. Wang, Y., Huston, R.L.: A lumped parameter method in the nonlinear analysis of flexible multibody systems. Comput. Struct. 50(3), 421–432 (1994)

    Article  Google Scholar 

  37. Wittbrodt, E., Adamiec-Wójcik, I., Wojciech, S.: Dynamics of Flexible Multibody Systems. Rigid Finite Element Method. Springer, Berlin (2006)

    MATH  Google Scholar 

  38. Zhou, Y.X., Sze, K.Y.: A rotation-free beam element for beam and cable analyses. Finite Elem. Anal. Des. 64, 79–89 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan C. García Orden.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Orthogonality property I

Given the momentum vector \({\mathbf{p}}\) and the \(3\times 3M\) matrix r defined in (15), the following relation holds:

r ˙ p=0.
(27)

In order to prove it, let us expand (27) using (14) as

r ˙ p= i = 1 N r ˙ i × p i .
(28)

On the other hand, velocity \(\dot{\mathbf{q}}=(\dot{\mathbf{r}}_{1} \ \dot{\mathbf{r}}_{2} \ ... \dot{\mathbf{r}}_{N})^{ \mathrm{T}}\) and momentum \(\dot{\mathbf{p}}\) vectors are related by the mass matrix as \(\dot{\mathbf{q}}={\mathbf{M}}{\mathbf{p}}\). The particular expression of the mass matrix (10) allows us to obtain the relations among nodal velocities and momenta:

$$\begin{aligned} \dot{\mathbf{r}}_{1} &= \frac{1}{3}{\mathbf{p}}_{1} + \frac{1}{6}{\mathbf{p}}_{2} , \end{aligned}$$
(29)
$$\begin{aligned} \dot{\mathbf{r}}_{2} &= \frac{1}{6}{\mathbf{p}}_{1} + \frac{2}{3}{\mathbf{p}}_{2} + \frac{1}{6}{\mathbf{p}}_{3} , \end{aligned}$$
(30)
$$\begin{aligned} ... \\ \dot{\mathbf{r}}_{N-1} &= \frac{1}{6}{\mathbf{p}}_{N-2} + \frac{2}{3}{\mathbf{p}}_{N-1} + \frac{1}{6}{\mathbf{p}}_{N} , \end{aligned}$$
(31)
$$\begin{aligned} \dot{\mathbf{r}}_{N} &= \frac{1}{6}{\mathbf{p}}_{N-1} + \frac{1}{3}{\mathbf{p}}_{N}. \end{aligned}$$
(32)

Finally, observe from (28) and (29)–(32) that the terms involving \({\mathbf{p}}_{i} \times {\mathbf{p}}_{j}\) naturally vanish for \(i=j\) and cancel within the sum for \(i\neq j\), proving Eq. (27). Note that this result stems from the particular structure in diagonal blocks of the mass matrix (10).

Appendix B: Orthogonality property II

Given the approximated momentum vector \({\mathbf{p}}_{n}\) at \(t_{n}\) and the \(3\times 3M\) matrix p defined in Sect. 3, the following relation holds:

p n M 1 p n =0.
(33)

This result can be readily proved observing that the inverse of a matrix with a diagonal block structure such as the mass matrix (10) is another matrix with identical structure, such as

$$ {\mathbf{M}}^{-1} = \left ( \textstyle\begin{array}{c@{\quad }c@{\quad }c@{\quad }c} m_{11}{\mathbf{1}} & m_{12}{\mathbf{1}} & \ldots & m_{1N}{\mathbf{1}} \\ m_{21}{\mathbf{1}} & m_{22}{\mathbf{1}} & \ldots & m_{2N}{\mathbf{1}} \\ ... & \ldots & \ldots & ... \\ m_{N1}{\mathbf{1}} & m_{N2}{\mathbf{1}} & \ldots & m_{NN}{\mathbf{1}} \\ \end{array}\displaystyle \right ) $$
(34)

with coefficients \(m_{ij}=m_{ji}\). Dropping in (33) the subscript \(n\) in order to simplify the notation, the following sum is obtained:

p M 1 p= p 1 × ( m 11 p 1 + + m 1 N p N ) ++ p N × ( m N 1 p 1 + + m N N p N ) ,

which is null, since terms involving \({\mathbf{p}}_{i} \times {\mathbf{p}}_{j}\) naturally vanish for \(i=j\) and cancel within the sum for \(i\neq j\), proving Eq. (33).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García Orden, J.C. A conserving formulation of a simple shear- and torsion-free beam for multibody applications. Multibody Syst Dyn 51, 21–43 (2021). https://doi.org/10.1007/s11044-020-09754-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-020-09754-w

Keywords

Navigation