Skip to main content
Log in

Constants of Motion of the Harmonic Oscillator

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

We prove that Weyl quantization preserves constant of motion of the Harmonic Oscillator. We also prove that if f is a classical constant of motion and \(\mathfrak {Op}(f)\) is the corresponding operator, then \(\mathfrak {Op}(f)\) maps the Schwartz class into itself and it defines an essentially self-adjoint operator on \(L^{2}(\mathbb {R}^{n})\). As a consequence, we obtain detailed spectral information of \(\mathfrak {Op}(f)\). A complete characterization of the classical constants of motion of the Harmonic Oscillator is given and we also show that they form an algebra with the integral Moyal star product. We give some interesting examples of constants of motion and we analyze Weinstein-Guillemin average method within our framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, R., Marsden, E.: Foundations of Mechanics, 2nd edn. Benjamin/Cummings Publishing Co, Redwood (1978)

    MATH  Google Scholar 

  2. Ali, S. T., Engliš, M.: Quantization methods: a guide for physicists and analysts. Rev. Math. Phys. 17(4), 391–490 (2005)

    Article  MathSciNet  Google Scholar 

  3. Belmonte, F.: Canonical quantization of constants of motion. Rev. Math. Phys. 32(2050030) (2020)

  4. Birman, M., Solomyak, M.: Spectral Theory of Selfadjoint Operators in Hilbert Spaces. Translated from the 1980 Rusian Original by S. Khrushchëv and V. Peller. Mathematics and Its Applications (Soviet Series). Reidel Publishing Co., Dordrecht (1987)

    Google Scholar 

  5. Dixmier, J.: Von Neumann Algebras. Translated by F. Jellett from Les algèbres d’operators dans l’espace hilbertien(algèbres de Von Neumann, vol. 27. North-Holland mathematical library (1969)

  6. Doll, M., Zelditch, S.: Schrödinger trace invariants for homogeneous perturbations of the harmonic oscillator. J. Spectr. Theory to appear (2018)

  7. Agorram, F., Benkhadra, A., El Hamyani, A., Ghanmi, A.: Complex hermite functions as Fourier Wigner transform. Integral Transforms and Special Functions 27(2) (2016)

  8. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation theory and quantization. I. Deformations of symplectic structures. Ann. Phys. 111(1), 61–110 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  9. Federer, H.: Curvature measures. Trans. Amer. Math. Soc. 93, 418–491 (1959)

    Article  MathSciNet  Google Scholar 

  10. Federer, H.: Geometric Measure Theory Die Grundlehren Der Mathematischen Wissenschaften Band, vol. 153. Springer, Berlin (1969)

    Google Scholar 

  11. Folland, G. B.: Harmonic Analysis in Phase Space, Annals of Mathematics Studies, vol. 122. Princeton University Press, Princeton, NJ (1989)

    Google Scholar 

  12. Groenewold, H.: On the principles of elementary quantum mechanics. Physica 12, 405–460 (1946)

    Article  ADS  MathSciNet  Google Scholar 

  13. Guillemin, V.: Band asymptotics in two dimensions. Adv. Math 42(3), 248–282 (1981)

    Article  MathSciNet  Google Scholar 

  14. Hörmander, L.: Seudo-differential operators and hypoelliptic equations. Singular integrals (proc. Sympos. Pure math. Vol. X, Chicago, Ill., 1966), pp. 138–183 (1967)

  15. Igusa, J.: Theta functions. Springer (1972)

  16. Kontsévich, M.: Deformation quantization of Poisson manifolds. Let. Math. Phys. 66(3), 157–216 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  17. Berger, M., Gauduchon, P., Mazet, E.: Le Spectre D’une Variété Riemanniene. Notes in Math, vol. 194. Springer, Berlin (1971)

    Book  Google Scholar 

  18. Doll, M., Gannot, O., Wunsch, J.: Refined Weyl law for homogeneous perturbations of the harmonic oscillator. Comm. Math. Phys. 362(1), 269–294 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  19. Marsden, J.: Lectures on Mechanics, LMS Lecture Notes, vol. 174. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  20. Marsden, J., Weinstein, A.: Reduction of symplectic manifolds with symmetry. Rep. Math. Phys. 5, 121–130 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  21. Maurin, K.: General Eigenfunction Expansions and Unitary Representations of Topological Groups. Monografie Matematyczne, vol. 48. PWN-Polish Scientific Publishers, Warsaw (1968)

    Google Scholar 

  22. Meyer, K.: Symmetries and integrals in mechanics. Dynamical Systems M. Peixoto, Academic Press, 259–273 (1973)

  23. Estrada, R., Gracia-Bondía, J.M., Várilly, J.: On asymptotic expansions of twisted products. J. Math. Phys. 30(12), 2789–2796 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  24. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. I. Academic Press, Inc., San Diego (1980)

    MATH  Google Scholar 

  25. Shubin, M. A.: Pseudodifferential Operators and Spectral Theory Translated by S. I. Andersson,. Springer Series in Soviet Mathematics. Springer, Berlin (1987)

    Google Scholar 

  26. Simon, L.: Lectures on Geometric Measure Theory, Proceedings of the Centre for Mathematical Analysis, vol. 3. Australian National University (1983)

  27. Taylor, M. E.: Pseudodifferential Operator Princeton Mathematical Series, vol. 34. Princeton University Press, Princeton, N.J (1981)

    Google Scholar 

  28. Weinstein, A.: Asymptotics of eigenvalue clusters for the Laplacian plus a potential. Duke Math. J. 44(4), 883–892 (1977)

    Article  MathSciNet  Google Scholar 

  29. Weyl, H.: Quantenmechanik und Gruppentheorie. Z. Physik 46, 1–46 (1927)

    Article  ADS  Google Scholar 

  30. Zworski, M.: Semiclassical Analysis Graduate Studies in Mathematics, vol. 138. AMS, Providence, RI (2012)

    Google Scholar 

Download references

Acknowledgments

Sebastián Cuéllar was supported by CONICYT (Beca Doctorado Nacional Convocatoria 2017 Folio 21171197)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastián Cuéllar.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Weyl Quantization

Appendix A: Weyl Quantization

In this appendix we recall the definition of Weyl quantization and some of its main features.

Weyl quantization [12, 29] (or Weyl calculus) is a map meant to transform functions in the canonical phase space ℝsp 2n (classical observables) into operators on Lsp 2(ℝsp n) (quantum observables) in a physically meaningful manner, that is, taking into account the analogies between the descriptions of classical and quantum mechanics. There are several approaches to introduce Weyl quantization, for instance [25, 27, 30], but for the purposes of this articles we will mainly follow [11]. We also recommend [2] for a quite complete review of quantization theory.

Formally, for certain function f on phase space, we define the operator 𝔒𝔭(f) acting on Lsp 2(ℝsp n) given by

$$ \mathfrak{O}\mathfrak{p}_{\hbar}(f)u(x)={\int}_{\mathbb{R}^{n}}{\int}_{\mathbb{R}^{n}}f\left( \frac{x+y}{2},\xi\right)e^{\frac{i}{\hbar}(x-y)\cdot \xi}u(y)\mathrm{d}\xi\mathrm{d} y, $$
(19)

where is a positive parameter interpreted as Planck’s constant. In this article, we will not need to consider the roll played by , so we will take = 1 and 𝔒𝔭 := 𝔒𝔭1.

The meaning of the expression (19) changes depending on the class of functions we are considering. More precisely, if \(f\in S^{\prime }(\mathbb{R} ^{2n})\), then \(\mathfrak{O}\mathfrak{p} (f):S(\mathbb{R}^{n})\to S^{\prime }(\mathbb{R}^{n})\), so (19) defines a tempered distribution (in particular, the evaluation on x is not well-defined). The standard way to rigorously define 𝔒𝔭(f) is the following: Notice that, the kernel of 𝔒𝔭(f) should be

$$ \begin{array}{@{}rcl@{}} K_{f}(x,y)&=&(I\otimes \mathcal F) f\left( \frac{x+y}{2},y-x\right) \\ &=&{\int}_{\mathbb{R}^{n}}f\left( \frac{x+y}{2},\xi\right)e^{i(x-y)\cdot \xi}\mathrm{d}\xi, \end{array} $$
(20)

where \((I\otimes \mathcal F)\) is the Fourier transform in the momentum variable. The change of variables \((x,y)\to \left (\frac {x+y}{2},y-x\right)\) is linear, injective and preserves measure. Thus composing with the latter change of variable maps S(ℝsp 2n) into itself continuously, and it can be extended to \(S^{\prime }(\mathbb{R} ^{2n})\). Since the \((I\otimes \mathcal F)\) is well-defined on \(S^{\prime }(\mathbb{R} ^{2n})\), we can define Kf for \(f\in S^{\prime }(\mathbb{R} ^{2n})\) using the middle expression in (20). In fact, the map fKf is an automorphism of the locally convex space \(S^{\prime }(\mathbb{R} ^{2n})\). Finally, for u,vS(ℝsp n), we define

$$ [\mathfrak{O}\mathfrak{p}(f)u](v)= K_{f}(v\otimes u) $$

The Wigner transform is a fundamental object in the description of Weyl quantization. It is defined by the map W : S(ℝsp n) × S(ℝsp n) → S(ℝsp 2n) given by

$$ W(u,v)={\int}_{\mathbb{R}^{n}}e^{-i\xi\cdot p}u\left( x+\frac{p}{2}\right)\overline{v\left( x-\frac{p}{2}\right)}\mathrm{d} p. $$

The Wigner transform can be regarded as the restriction to functions of two variables of the form \(g(x,y)=u(x)\overline {v(y)}\) of the map \(\tilde W\) defined by

$$ \tilde W g(x,\xi)={\int}_{\mathbb{R}^{n}}e^{-i\xi \cdot p}g\left( x+\frac{p}{2}, x-\frac{p}{2}\right). $$
(21)

Using the arguments in the definition of the kernel Kf, we can define \(\tilde W\) on \(S^{\prime }(\mathbb{R} ^{2n})\). In fact, \(\tilde W\) is the inverse of the map fKf, and it is unitary on Lsp 2(ℝsp 2n). In particular, we have that

$$ \langle\mathfrak{O}\mathfrak{p}(f)u,v\rangle=\langle f,W(v,u)\rangle. $$
(22)

For instance, if f is polynomially bounded, then

$$ \langle Op(f)u,v\rangle ={\int}_{\mathbb{R}^{2n}}f W(u,v). $$

One of the main properties of Weyl quantization is its relation to the so called metaplectic representation. Let Sp(2n) be the real symplectic group, i.e. the group formed by all the linear and symplectic maps S : ℝsp 2n → ℝsp 2n. There is a map \(\mu : Sp(2n)\to \mathcal U(L^{2}(\mathbb{R} ^{n}))\), characterized up to a ± 1 factor by the identity:

$$ \mathbb{R}ho(S(q,p))=\mu(S)\mathbb{R}ho(q,p)\mu(S)^{-1}, $$

where \((q,p)\in \mathbb {H}_{n}\) is an element of Heisenberg group and ρ is the Schrödinger representation. The map μ is called the metaplectic representation (see [11] for details). As consequences, we have the very important (and beautiful) identities

$$ W(\mu(S)\phi,\mu(S)\psi)=W(\phi,\psi)\circ S^{*} $$
(23)
$$ \mathfrak{O}\mathfrak{p}(f\circ S^{*})=\mu(S)\mathfrak{O}\mathfrak{p}(f)\mu(S)^{-1} $$
(24)

The metaplectic representation is not a true representation of Sp(2n), because in general we only have that μ(ST) = ±μ(S)μ(T), so it defines a representation of the double covering group Sp2(n) of Sp(2n). However, restricted to the complex unitary group U(n), μ does define a representation (notice that the Hamiltonian flow of the Harmonic Oscillator belongs to U(n)).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belmonte, F., Cuéllar, S. Constants of Motion of the Harmonic Oscillator. Math Phys Anal Geom 23, 35 (2020). https://doi.org/10.1007/s11040-020-09362-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11040-020-09362-2

Keywords

Mathematics Subject Classification (2010)

Navigation