Skip to main content
Log in

Construction of exact Ermakov-Pinney solutions and time-dependent quantum oscillators

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The harmonic oscillator with a time-dependent frequency has a family of linear quantum invariants for the time-dependent Schrödinger equation, which are determined by any two independent solutions to the classical equation of motion. Ermakov and Pinney have shown that a general solution to the time-dependent oscillator with an inverse cubic term can be expressed in terms of two independent solutions to the time-dependent oscillator. We explore the connection between linear quantum invariants and the Ermakov-Pinney solution for the time-dependent harmonic oscillator. We advance a novel method to construct Ermakov-Pinney solutions to a class of time-dependent oscillators and the wave functions for the time-dependent Schrödinger equation. We further show that the first and the second Pöschl-Teller potentials belong to a special class of exact time-dependent oscillators. A perturbation method is proposed for any slowly-varying time-dependent frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chandrasekhar, “Adiabatic invariants in the motion of charged particles,” in Plasma in a Magnetic Field, edited by K. M. Landshoff (Stanford University Press, California, 1958).

    Google Scholar 

  2. J. E. Littlewood, Ann. Phys. 21, 233 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  3. A. H. Guth and S-Y. Pi, Phys. Rev. D 32, 1899 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  4. S. P. Kim, Ann. Phys. 351, 54 (2014).

    Article  ADS  Google Scholar 

  5. S. P. Kim, Ann. Phys. 344, 1 (2014).

    Article  ADS  Google Scholar 

  6. X. Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D. Guéry-Odelin and J. G. Muga, Phys. Rev. Lett. 104, 063002 (2010).

    Article  ADS  Google Scholar 

  7. S. Deffner, C. Jarzynski and A. del Campo, Phys. Rev. X 4, 021013 (2014).

    Google Scholar 

  8. V. P. Ermakov, Univ. Izv. Kiev 20, 1 (1880)

    Google Scholar 

  9. V. P. Ermakov, Appl. Anal. Discrete Math. 2, 123 (2008).

    Article  MathSciNet  Google Scholar 

  10. P. G. L. Leach and K. Andriopoulos, Appl. Anal. Discrete Math. 2, 146 (2008).

    Article  MathSciNet  Google Scholar 

  11. E. Pinney, Proc. Am. Math. Soc. 1, 681 (1950).

    MathSciNet  Google Scholar 

  12. H. R. Lewis, and W. B. Riesenfeld, J. Math. Phys. 10, 1458 (1969).

    Article  ADS  MathSciNet  Google Scholar 

  13. I. A. Malkin, V. I. Man’ko and D. A. Trifonov, Phys. Rev. D 2, 1371 (1970).

    Article  ADS  Google Scholar 

  14. I. A. Malkin, V. I. Man’ko and D. A. Trifonov, J. Math. Phys. 14, 576 (1973).

    Article  ADS  Google Scholar 

  15. S. P. Kim, in Thermal field theories and their applications, edited by Y. X. Gui, F. C. Khanna and Z. B. Su (World Scientific, Singapore, 1996), p. 273 [hepth/9511082].

  16. J. K. Kim and S. P. Kim, J. Phys. A 32, 2711 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  17. L. Faccioli, F. Finelli, G. P. Vacca and G. Venturi, Phys. Rev. Lett. 81, 240 (1998).

    Article  ADS  Google Scholar 

  18. S. P. Kim and C. H. Lee, Phys. Rev. D 62, 125020 (2000).

    Article  ADS  Google Scholar 

  19. S. P. Kim and D. N. Page, Phys. Rev. A 64, 012104 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  20. I. M. Gel’fand and L. A. Dikii, Russ. Math. Surv. 30, 5 (1975).

    MathSciNet  Google Scholar 

  21. J. K. Kim and S. P. Kim, J. Korean Phys. Soc. 28, 7 (1995).

    Google Scholar 

  22. R. Dabrowski and G. V. Dunne, Phys. Rev. D 94, 065005 (2016).

    Article  ADS  Google Scholar 

  23. G. Pöschl and E. Teller, Z. Physik 83, 143 (1933).

    Article  ADS  Google Scholar 

  24. A. O. Barut, A. Inomata and R. Wilson, J. Phys. A: Math. Gen. 20, 4083 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  25. C. Quesne, J. Phys. A: Math. Gen. 21, 4487 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  26. C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers I (Springer-Verlag, New York, 1999).

    Book  MATH  Google Scholar 

  27. N. Fröman and P. O. Fröman, Phase-Integral Method (Springer-Verlag, New York, 1996).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Pyo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.P., Kim, W. Construction of exact Ermakov-Pinney solutions and time-dependent quantum oscillators. Journal of the Korean Physical Society 69, 1513–1517 (2016). https://doi.org/10.3938/jkps.69.1513

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.69.1513

Keywords

Navigation