Skip to main content
Log in

Dunkl–Schrödinger Operators

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

In this paper, we consider the Schrödinger operators \(L_k=-\Delta _k+V\), where \(\Delta _k\) is the Dunkl–Laplace operator and V is a non-negative potential on \(\mathbb {R}^d\). We establish that \(L_k \) is essentially self-adjoint on \(C_0^\infty (\mathbb {R}^d)\). In particular, we develop a bounded \(H^\infty \)-calculus on \(L^p\) spaces for the Dunkl harmonic oscillator operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albrecht, D., Duong, X.T., McIntosh, A.: Operator theory and harmonic analysis. In: Proceedings of the Centre for Mathematics and Its Applications, vol. 34, pp. 77–136. CMA, ANU, Canberra (1996)

  2. Amri, B.: Riesz transforms for Dunkl Hermite expansions. J. Math. Anal. Appl. 423, 646–659 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amri, B.: The \(L^p\)-continuity of imaginary powers of the Dunkl harmonic oscillator. Indian J. Pure Appl. Math. 46, 239–249 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Badr, N., Ben Ali, B.: \(L^p\)-boundedness of Riesz transform related to Schrödinger operators on a manifold. Ann. Scuola Norm. Sup. di Pisa Cl. Sci. 5, 725–765 (2009)

    MATH  Google Scholar 

  5. de Jeu, M.F.E.: The Dunkl transform. Invent. Math. 113(1), 147–162 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Deleaval, L., Kriegler, C.: Dunkl spectral multipliers with values in UMD lattices. J. Funct. Anal. 272(5), 2132–2175 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dunkl, C.F.: Differential–difference operators associated to reflextion groups. Trans. Am. Math. 311(1), 167–183 (1989)

    Article  MATH  Google Scholar 

  8. Dunkl, C.F.: Hankel transforms associated to finite reflection groups. Contemp. Math. 138, 123–138 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Duong, X.T., Robinson, D.W.: Semigroup kernels, poisson bounds, and holomorphic functional calculus. J. Func. Anal. 142, 89–128 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Duong, X.T., McIntosh, A.: Singular integral operators with non smooth kernels on irregular domains. Rev. Mat. Iberoam. 15, 233–265 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Haase, M.: The Functional Calculus for Sectorial Operators. Operator Theory: Advances and Applications, vol. 169. Birkhäuser Verlag, Basel (2006)

    Book  MATH  Google Scholar 

  12. Li, H.: Estimations \(L^p\) des opérateurs de Schrödinger sur les groupes nilpotents. J. Funct. Anal. 161, 152–218 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lin, C., Liu, H.: \(BMO_L(\mathbb{H}^n)\) spaces and Carleson measures for Schrödinger operators. Adv. Math. 228, 1631–1688 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. McIntosh, A.: Operators which have an \(H ^\infty \) functional calculus. Mini conference on operator theory and partial differential equations. Proc. Centre Math. Anal. ANU 14, 210–231 (1986)

    Google Scholar 

  15. Nowak, A., Stempak, K.: Riesz transforms for the Dunkl harmonic oscillator. Math. Z. 262, 539–556 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Reed, M., Simon, B.: Methods of Modern Mathematical Physics I: Functional Analysis. Academic Press, New York (1980)

    MATH  Google Scholar 

  17. Rösler, M.: Generalized Hermite polynomials and the heat equation for Dunkl operators. Commun. Math. Phys. 192, 519–542 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rösler, M.: Dunkl operators: theory and applications. In: Koelink, E., Van Assche, W. (eds.) Orthogonal Polynomials and Special Functions (Leuven, 2002), Lecture Notes on Mathematics, vol. 1817, pp. 93–135. Springer, Berlin (2003)

    Chapter  Google Scholar 

  19. Schep, A.R.: Kernel operators. Indag. Math. Proc. 82, 39–53 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  20. Simon, B.: Maximal and minimal Schrödinger forms. J. Oper. Theory 1, 37–47 (1979)

    MATH  Google Scholar 

  21. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals. Princeton University Press, Princeton, NJ (1993)

    MATH  Google Scholar 

  22. Thangavelu, S., Xu, Y.: Convolution operator and maximal function for Dunkl transform. J. Anal. Math. 97, 25–55 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Trimèche, K.: Paley–Wiener theorems for Dunkl transform and Dunkl translation operators. Integr. Transforms Spec. Funct. 13, 17–38 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to the referee for his comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Béchir Amri.

Additional information

Communicated by Daniel Aron Alpay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amri, B., Hammi, A. Dunkl–Schrödinger Operators. Complex Anal. Oper. Theory 13, 1033–1058 (2019). https://doi.org/10.1007/s11785-018-0834-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-018-0834-1

Keywords

Mathematics Subject Classification

Navigation