Skip to main content
Log in

The role of oxidative stress in the pathogenesis of ocular diseases: an overview

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Dysregulation of oxidative stress serves as a pivotal predisposing or exacerbating factor in the intricate development of numerous pathological processes and diseases. In recent years, substantial evidence has illuminated the crucial role of reactive oxygen species (ROS) in many fundamental cellular functions, including proliferation, inflammation, apoptosis, and gene expression. Notably, producing free radicals within ROS profoundly impacts a wide range of biomolecules, such as proteins and DNA, instigating cellular damage and impairing vital cellular functions. Consequently, oxidative stress emerges as a closely intertwined factor across diverse disease spectra. Remarkably, the pathogenesis of several eye diseases, including age-related macular degeneration, glaucoma, and diabetic retinopathy, manifests an intrinsic association with oxidative stress. In this comprehensive review, we briefly summarize the recent progress in elucidating the intricate role of oxidative stress in the development of ophthalmic diseases, shedding light on potential therapeutic avenues and future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Inquiries about data availability should be directed to the authors.

References

  1. Aruoma OI (1998) Free radicals, oxidative stress, and antioxidants in human health and disease. J Am Oil Chem Soc 75(2):199–212. https://doi.org/10.1007/s11746-998-0032-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Geng Y, Wang Z, Zhou J, Zhu M, Liu J, James TD (2023) Recent progress in the development of fluorescent probes for imaging pathological oxidative stress. Chem Soc Rev 52(11):3873–3926. https://doi.org/10.1039/d2cs00172a

    Article  CAS  PubMed  Google Scholar 

  3. Simic MG, Bergtold DS, Karam LR (1989) Generation of oxy radicals in biosystems. Mutat Res 214(1):3–12. https://doi.org/10.1016/0027-5107(89)90192-9

    Article  CAS  PubMed  Google Scholar 

  4. Lee JB, Shin YM, Kim WS, Kim SY, Sung HJ (2018) ROS-Responsive Biomaterial Design for Medical Applications. Adv Exp Med Biol 1064:237–251. https://doi.org/10.1007/978-981-13-0445-3_15

    Article  CAS  PubMed  Google Scholar 

  5. Agostini F, Bisaglia M, Plotegher N (2023) Linking ROS levels to Autophagy: the Key Role of AMPK. Antioxid (Basel Switzerland) 12(7):1406. https://doi.org/10.3390/antiox120714068

  6. Fasipe B, Li S, Laher I (2023) Exercise and vascular function in sedentary lifestyles in humans. Pflug Arch: Eur J Physiol 475(7):845–856. https://doi.org/10.1007/s00424-023-02828-6

    Article  CAS  Google Scholar 

  7. Guan LL, Lim HW, Mohammad TF (2021) Sunscreens and photoaging: a review of current literature. Am J Clin Dermatol 22(6):819–828. https://doi.org/10.1007/s40257-021-00632-5

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ni Y, Zhang H, Chu L, Zhao Y (2023) m6A modification-association with oxidative stress and implications on Eye diseases. Antioxid (Basel Switzerland) 12(2):510. https://doi.org/10.3390/antiox12020510

    Article  CAS  Google Scholar 

  9. Fleckenstein M, Schmitz-Valckenberg S, Chakravarthy U (2024) Rev JAMA 331(2):147–157. https://doi.org/10.1001/jama.2023.26074. Age-Related Macular Degeneration

  10. Fabre M, Mateo L, Lamaa D, Baillif S, Pagès G, Demange L, Ronco C, Benhida R (2022) Recent advances in age-related Macular Degeneration therapies. Molecules 27(16):5089. https://doi.org/10.3390/molecules27165089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tong Y, Wu Y, Ma J, Ikeda M, Ide T, Griffin CT, Ding XQ, Wang S (2023) Comparative mechanistic study of RPE cell death induced by different oxidative stresses. Redox Biol 65:102840. https://doi.org/10.1016/j.redox.2023.102840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lazzara F, Conti F, Platania CBM, Eandi CM, Drago F, Bucolo C (2021) Effects of vitamin D3 and meso-zeaxanthin on human retinal pigmented epithelial cells in three Integrated in vitro paradigms of Age-Related Macular Degeneration. 12:778165. Frontiers in pharmacologyhttps://doi.org/10.3389/fphar.2021.778165

  13. Tan W, Zou J, Yoshida S, Jiang B, Zhou Y (2020) The role of inflammation in Age-Related Macular Degeneration. Int J Biol Sci 16(15):2989–3001. https://doi.org/10.7150/ijbs.49890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Beatty S, Koh H, Phil M, Henson D, Boulton M (2000) The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 45(2):115–134. https://doi.org/10.1016/s0039-6257(00)00140-5

    Article  CAS  PubMed  Google Scholar 

  15. Zhao M, Wang Y, Li L, Liu S, Wang C, Yuan Y, Yang G, Chen Y, Cheng J, Lu Y, Liu J (2021) Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance. Theranostics 11(4):1845–1863. https://doi.org/10.7150/thno.50905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tong Y, Wang S (2020) Not all stressors are equal: mechanism of stressors on RPE Cell Degeneration. Front cell Dev Biology 8:591067. https://doi.org/10.3389/fcell.2020.591067

    Article  Google Scholar 

  17. Kaarniranta K, Blasiak J, Liton P, Boulton M, Klionsky DJ, Sinha D (2023) Autophagy in age-related macular degeneration. Autophagy 19(2):388–400. https://doi.org/10.1080/15548627.2022.2069437

    Article  CAS  PubMed  Google Scholar 

  18. Celkova L, Doyle SL, Campbell M (2015) NLRP3 inflammasome and pathobiology in AMD. J Clin Med 4(1):172–192. https://doi.org/10.3390/jcm4010172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pan C, Banerjee K, Lehmann GL, Almeida D, Hajjar KA, Benedicto I, Jiang Z, Radu RA, Thompson DH, Rodriguez-Boulan E, Nociari MM (2021) Lipofuscin causes atypical necroptosis through lysosomal membrane permeabilization. Proc Natl Acad Sci USA 118(47):e2100122118. https://doi.org/10.1073/pnas.2100122118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Różanowska MB (2023) Lipofuscin, its Origin, Properties, and contribution to retinal fluorescence as a potential biomarker of oxidative damage to the Retina. Antioxid (Basel Switzerland) 12(12):2111. https://doi.org/10.3390/antiox12122111

    Article  CAS  Google Scholar 

  21. Qin S, Rodrigues GA (2008) Progress and perspectives on the role of RPE cell inflammatory responses in the development of age-related macular degeneration. J Inflamm Res 1:49–65. https://doi.org/10.2147/jir.s4354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Golestaneh N, Chu Y, Cheng SK, Cao H, Poliakov E, Berinstein DM (2016) Repressed SIRT1/PGC-1α pathway and mitochondrial disintegration in iPSC-derived RPE disease model of age-related macular degeneration. J Translational Med 14(1):344. https://doi.org/10.1186/s12967-016-1101-8

    Article  CAS  Google Scholar 

  23. Feher J, Kovacs I, Artico M, Cavallotti C, Papale A, Gabrieli B, C (2006) Mitochondrial alterations of retinal pigment epithelium in age-related macular degeneration. Neurobiol Aging 27(7):983–993. https://doi.org/10.1016/j.neurobiolaging.2005.05.012

    Article  CAS  PubMed  Google Scholar 

  24. Terluk MR, Kapphahn RJ, Soukup LM, Gong H, Gallardo C, Montezuma SR, Ferrington DA (2015) Investigating mitochondria as a target for treating age-related macular degeneration. J Neuroscience: Official J Soc Neurosci 35(18):7304–7311. https://doi.org/10.1523/JNEUROSCI.0190-15.2015

    Article  CAS  Google Scholar 

  25. Brown EE, DeWeerd AJ, Ildefonso CJ, Lewin AS, Ash JD (2019) Mitochondrial oxidative stress in the retinal pigment epithelium (RPE) led to metabolic dysfunction in both the RPE and retinal photoreceptors. Redox Biol 24:101201. https://doi.org/10.1016/j.redox.2019.101201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Datta S, Cano M, Ebrahimi K, Wang L, Handa JT (2017) The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD. Prog Retin Eye Res 60:201–218. https://doi.org/10.1016/j.preteyeres.2017.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fox AR, Fingert JH (2023) Familial normal tension glaucoma genetics. Prog Retin Eye Res 96:101191. https://doi.org/10.1016/j.preteyeres.2023.101191

    Article  CAS  PubMed  Google Scholar 

  28. Hurley DJ, Normile C, Irnaten M, O’Brien C (2022) The intertwined roles of oxidative stress and endoplasmic reticulum stress in Glaucoma. Antioxid (Basel Switzerland) 11(5):886. https://doi.org/10.3390/antiox11050886

    Article  CAS  Google Scholar 

  29. Yao F, Peng J, Zhang E, Ji D, Gao Z, Tang Y, Yao X, Xia X (2023) Pathologically, high intraocular pressure disturbs normal iron homeostasis and leads to retinal ganglion cell ferroptosis in glaucoma. Cell Death Differ 30(1):69–81. https://doi.org/10.1038/s41418-022-01046-4

    Article  CAS  PubMed  Google Scholar 

  30. Shestopalov VI, Spurlock M, Gramlich OW, Kuehn MH (2021) Immune responses in the glaucomatous retina: Regulation and Dynamics. Cells 10(8):1973. https://doi.org/10.3390/cells10081973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Russo R, Varano GP, Adornetto A, Nucci C, Corasaniti MT, Bagetta G, Morrone LA (2016) Retinal ganglion cell death in glaucoma: exploring the role of neuroinflammation. Eur J Pharmacol 787:134–142. https://doi.org/10.1016/j.ejphar.2016.03.064

    Article  CAS  PubMed  Google Scholar 

  32. Lazzara F, Amato R, Platania CBM, Conti F, Chou TH, Porciatti V, Drago F, Bucolo C (2021) 1α,25-dihydroxyvitamin D3 protects retinal ganglion cells in glaucomatous mice. J Neuroinflamm 18(1):206. https://doi.org/10.1186/s12974-021-02263-3

    Article  CAS  Google Scholar 

  33. Ying Y, Xue R, Yang Y, Zhang SX, Xiao H, Zhu H, Li J, Chen G, Ye Y, Yu M, Liu X, Zhong Y (2021) Activation of ATF4 triggers trabecular meshwork cell dysfunction and apoptosis in POAG. Aging 13(6):8628–8642. https://doi.org/10.18632/aging.202677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Izzotti A, Saccà SC, Longobardi M, Cartiglia C (2009) Sensitivity of ocular anterior chamber tissues to oxidative damage and its relevance to the pathogenesis of glaucoma. Investig Ophthalmol Vis Sci 50(11):5251–5258. https://doi.org/10.1167/iovs.09-3871

    Article  Google Scholar 

  35. Zeng Z, You M, Fan C, Rong R, Li H, Xia X (2023) Pathologically, high intraocular pressure induces mitochondrial dysfunction through Drp1 and leads to retinal ganglion cell apoptosis in glaucoma. Redox Biol 62:102687. https://doi.org/10.1016/j.redox.2023.102687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. de Souza JM, Goncalves BDC, Gomez MV, Vieira LB, Ribeiro FM (2018) Animal toxins as therapeutic tools to treat neurodegenerative diseases. Front Pharmacol 9:145. https://doi.org/10.3389/fphar.2018.00145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Binjawhar DN, Alhazmi AT, Jawhar B, MohammedSaeed WN, W., Safi SZ (2023) Hyperglycemia-induced oxidative stress and epigenetic regulation of ET-1 gene in endothelial cells. Front Genet 14:1167773. https://doi.org/10.3389/fgene.2023.1167773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dismuke WM, Liang J, Overby DR, Stamer WD (2014) Concentration-related effects of nitric oxide and endothelin-1 on human trabecular meshwork cell contractility. Exp Eye Res 120:28–35. https://doi.org/10.1016/j.exer.2013.12.012

    Article  CAS  PubMed  Google Scholar 

  39. Chaphalkar RM, Stankowska DL, He S, Kodati B, Phillips N, Prah J, Yang S, Krishnamoorthy RR (2020) Endothelin-1 mediated decrease in mitochondrial gene expression and Bioenergetics Contribute to Neurodegeneration of Retinal Ganglion cells. Sci Rep 10(1):3571. https://doi.org/10.1038/s41598-020-60558-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang Dan C, Yunzhen et al (2023) Correlation study of EPO, Sema3A, TGF⁃β1 in aqueous humor of primary open⁃angle glaucoma with thickness of retinal fiber layer and visual field defect [J]. Journal of Clinical Ophthalmology,2023,31(02):112–116 https://doi.org10.3969/j.issn.1006-8422.02.004

  41. Jassim AH, Fan Y, Pappenhagen N, Nsiah NY, Inman DM (2021) Oxidative stress and Hypoxia modify mitochondrial homeostasis during Glaucoma. Antioxid Redox Signal 35(16):1341–1357. https://doi.org/10.1089/ars.2020.8180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang Y, Huang S, Xie B, Zhong Y (2023) Aging, Cellular Senescence, and Glaucoma. Aging Disease. https://doi.org/10.14336/AD.2023.0630-1. 10.14336/AD.2023.0630-1. Advanced online publication

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ju WK, Perkins GA, Kim KY, Bastola T, Choi WY, Choi SH (2023) Glaucomatous optic neuropathy: mitochondrial dynamics, dysfunction and protection in retinal ganglion cells. Prog Retin Eye Res 95:101136. https://doi.org/10.1016/j.preteyeres.2022.101136

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Y, Han R, Xu S, Chen J, Zhong Y (2023) Matrix metalloproteinases in Glaucoma: an updated overview. Semin Ophthalmol 38(8):703–712. https://doi.org/10.1080/08820538.2023.2211149

    Article  PubMed  Google Scholar 

  45. Caban M, Owczarek K, Lewandowska U (2022) The role of metalloproteinases and their tissue inhibitors on ocular diseases: focusing on potential mechanisms. Int J Mol Sci 23(8):4256. https://doi.org/10.3390/ijms23084256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dammak A, Sanchez Naves J, Huete-Toral F, Carracedo G (2023) New Biomarker Combination related to oxidative stress and inflammation in primary Open-Angle Glaucoma. Life (Basel Switzerland) 13(7):1455. https://doi.org/10.3390/life13071455

    Article  CAS  PubMed  Google Scholar 

  47. Gu L, Kwong JM, Caprioli J, Piri N (2022) DNA and RNA oxidative damage in the retina is associated with ganglion cell mitochondria. Sci Rep 12(1):8705. https://doi.org/10.1038/s41598-022-12770-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stapleton F, Alves M, Bunya VY, Jalbert I, Lekhanont K, Malet F, Na KS, Schaumberg D, Uchino M, Vehof J, Viso E, Vitale S, Jones L (2017) TFOS DEWS II Epidemiology Report. Ocul Surf 15(3):334–365. https://doi.org/10.1016/j.jtos.2017.05.003

    Article  PubMed  Google Scholar 

  49. Lu CW, Fu J, Liu XF, Cui ZH, Chen WW, Guo L, Li XL, Ren Y, Shao F, Chen LN, Hao JL (2023) Impacts of air pollution and meteorological conditions on dry eye disease among residents in a northeastern Chinese metropolis: a six-year crossover study in a cold region. Light Sci Appl 12(1):186. https://doi.org/10.1038/s41377-023-01207-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Barabino S (2022) Is dry eye disease the same in young and old patients? A narrative review of the literature. BMC Ophthalmol 22(1):85. https://doi.org/10.1186/s12886-022-02269-2

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yu L, Yu C, Dong H, Mu Y, Zhang R, Zhang Q, Liang W, Li W, Wang X, Zhang L (2021) Recent developments about the pathogenesis of Dry Eye Disease: based on Immune Inflammatory mechanisms. Front Pharmacol 12:732887. https://doi.org/10.3389/fphar.2021.732887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chu L, Wang C, Zhou H (2024) Inflammation mechanism and anti-inflammatory therapy of dry eye. Front Med 11:1307682. https://doi.org/10.3389/fmed.2024.13076

    Article  Google Scholar 

  53. Koutsaliaris IK, Moschonas IC, Pechlivani LM, Tsouka AN, Tselepis AD (2022) Inflammation, oxidative stress, vascular aging, and atherosclerotic ischemic stroke. Curr Med Chem 29(34):5496–5509. https://doi.org/10.2174/0929867328666210921161711

    Article  CAS  PubMed  Google Scholar 

  54. érez-Figueroa E, Álvarez-Carrasco P, Ortega E, Maldonado-Bernal C (2021) Neutrophils: many ways to die. Front Immunol 12:631821. https://doi.org/10.3389/fimmu.2021.631821

    Article  CAS  Google Scholar 

  55. Navel V, Sapin V, Henrioux F, Blanchon L, Labbé A, Chiambaretta F, Baudouin C, Dutheil F (2022) Oxidative and antioxidative stress markers in dry eye disease: a systematic review and meta-analysis. Acta Ophthalmol 100(1):45–57. https://doi.org/10.1111/aos.14892

    Article  CAS  PubMed  Google Scholar 

  56. Choi JH, Li Y, Kim SH, Jin R, Kim YH, Choi W, You IC, Yoon KC (2018) The influences of smartphone use on the status of the tear film and ocular surface. PLoS ONE 13(10):e0206541. https://doi.org/10.1371/journal.pone.0206541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cecerska-Heryć E, Surowska O, Heryć R, Serwin N, Napiontek-Balińska S, Dołęgowska B (2021) Are antioxidant enzymes essential markers in the diagnosis and monitoring of cancer patients - a review? Clinical biochemistry. 93:1–8. https://doi.org/10.1016/j.clinbiochem.2021.03.008

  58. Yoon HJ, Jin R, Yoon HS, Choi JS, Kim Y, Pan SH, Chang I, Li L, Li Y, Kim J, Yoon KC (2023) Bacillus-derived Manganese Superoxide Dismutase relieves ocular-surface inflammation and damage by reducing oxidative stress and apoptosis in Dry Eye. Investig Ophthalmol Vis Sci 64(12):30. https://doi.org/10.1167/iovs.64.12.30

    Article  CAS  Google Scholar 

  59. Zhao H, Zhang R, Yan X, Fan K (2021) Superoxide dismutase enzymes: an emerging star for anti-oxidation. J Mater Chem B 9(35):6939–6957. https://doi.org/10.1039/d1tb00720c

    Article  CAS  PubMed  Google Scholar 

  60. Kojima T, Simsek C, Igarashi A, Aoki K, Higa K, Shimizu T, Dogru M, Tsubota K, Shimazaki J (2018) The role of 2% Rebamipide Eye drops related to Conjunctival differentiation in Superoxide Dismutase-1 (Sod1) knockout mice. 59(3):1675–1681. Investigative ophthalmology & visual sciencehttps://doi.org/10.1167/iovs.17-23213

  61. Ohguchi T, Kojima T, Ibrahim OM, Nagata T, Shimizu T, Shirasawa T, Kawakita T, Satake Y, Tsubota K, Shimazaki J, Ishida S (2013) The effects of 2% rebamipide ophthalmic solution on the tear functions and ocular surface of the superoxide dismutase-1 (sod1) knockout mice. Investig Ophthalmol Vis Sci 54(12):7793–7802. https://doi.org/10.1167/iovs.13-13128

    Article  CAS  Google Scholar 

  62. Pei J, Pan X, Wei G, Hua Y (2023) Research progress of glutathione peroxidase family (GPX) in redoxidation. Front Pharmacol 14:1147414. https://doi.org/10.3389/fphar.2023.1147414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lesiewska H, Woźniak A, Reisner P, Czosnyka K, Stachura J, Malukiewicz G (2023) Is cataract in patients under 60 years Associated with oxidative stress? Biomedicines 11(5):1286. https://doi.org/10.3390/biomedicines11051286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jiang B, Geng Q, Li T, Firdous M, S., Zhou X (2020) Morin attenuates STZ-induced diabetic retinopathy in experimental animals. Saudi J Biol Sci 27(8):2139–2142. https://doi.org/10.1016/j.sjbs.2020.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Clearfield E, Muthappan V, Wang X, Kuo IC (2016) Conjunctival autograft for pterygium. Cochrane Database Syst Rev 2(2):CD011349. https://doi.org/10.1002/14651858.CD011349.pub2

    Article  PubMed  Google Scholar 

  66. Abdani SR, Zulkifley MA, Shahrimin MI, Zulkifley NH (2022) Computer-assisted Pterygium Screening System: a review. Diagnostics (Basel Switzerland) 12(3):639. https://doi.org/10.3390/diagnostics12030639

    Article  PubMed  Google Scholar 

  67. Maxia C, Isola M, Grecu E, Cuccu A, Scano A, Orrù G, Di Girolamo N, Diana A, Murtas D (2023) Synergic action of insulin-like growth Factor-2 and miRNA-483 in Pterygium Pathogenesis. Int J Mol Sci 24(5):4329. https://doi.org/10.3390/ijms24054329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Van Acker SI, Van den Bogerd B, Haagdorens M, Siozopoulou V, Ní Dhubhghaill S, Pintelon I, Koppen C (2021) Pterygium- the Good, the bad, and the Ugly. Cells 10(7):1567. https://doi.org/10.3390/cells10071567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Abdallah HM, Koshak AE, Farag MA, Sayed E, Badr-Eldin NS, Ahmed SM, Algandaby OAA, Abdel-Naim MM, Ibrahim AB, Mohamed SRM, Proksch GA, P., Abbas H (2023) Taif Rose Oil ameliorates UVB-Induced oxidative damage and skin photoaging in rats via modulation of MAPK and MMP Signaling pathways. ACS Omega 8(37):33943–33954. https://doi.org/10.1021/acsomega.3c04756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Peng Z, Pang H, Wu H, Peng X, Tan Q, Lin S, Wei B (2022) CCL2 promotes proliferation, migration, and angiogenesis through the MAPK/ERK1/2/MMP9, PI3K/AKT, and Wnt/βcatenin signaling pathways in HUVECs. Experimental Therapeutic Med 25(2):77. https://doi.org/10.3892/etm.2022.11776

    Article  CAS  Google Scholar 

  71. Tsai YY, Chiang CC, Yeh KT, Lee H, Cheng YW (2010) Effect of TIMP-1 and MMP in pterygium invasion. Investig Ophthalmol Vis Sci 51(7):3462–3467. https://doi.org/10.1167/iovs.09-4921

    Article  Google Scholar 

  72. JIANG, Xia LIU, Yan WANG, Minhui ZHANG, Weidan YIN, Liwei ZHANG (2023) Research Progress on the pathogenesis of Pterygium[J]. J Kunming Med Univ 44(1):144–150. https://doi.org/10.12259/j.issn.2095-610X.S20230125

    Article  Google Scholar 

  73. Thompson C, Matsumoto D, Nebert A, D. W., Vasiliou V (2010) Evolutionary divergence and functions of the human interleukin (IL) gene family. Hum Genomics 5(1):30–55. https://doi.org/10.1186/1479-7364-5-1-30

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wanzeler ACV, Barbosa IAF, Duarte B, Borges D, Barbosa EB, Kamiji D, Huarachi DRG, Melo MB, Alves M (2019) Mechanisms and biomarker candidates in pterygium development. Arquivos brasileiros de oftalmologia 82(6):528–536. https://doi.org/10.5935/0004-2749.20190103

    Article  PubMed  Google Scholar 

  75. Tsai CB, Hsia NY, Wang YC, Wang ZH, Chin YT, Huang TL, Yu CC, Chang WS, Tsai CW, Yin MC, Bau DT (2020) The Significant Association of MMP-1 genotypes with Taiwan Pterygium. Anticancer Res 40(2):703–707. https://doi.org/10.21873/anticanres.14000

    Article  CAS  PubMed  Google Scholar 

  76. Jin, Huaiyun et al (2017) Expression and significance of 8-OHdG in primary pterygium [J]. Int Eye Sci 2017 17(03):565–567 DOI: 10. 3980/j.issn. 1672–5123

  77. Kau HC, Tsai CC, Lee CF, Kao SC, Hsu WM, Liu JH, Wei YH (2006) Increased oxidative DNA damage, 8-hydroxydeoxy- guanosine, in human pterygium. Eye 20(7):826–831. https://doi.org/10.1038/sj.eye.6702064

    Article  CAS  PubMed  Google Scholar 

  78. Xie J, Huang P, Y., Gao H (2022) Complex interplay of Heme-Copper Oxidases with Nitrite and nitric oxide. Int J Mol Sci 23(2):979. https://doi.org/10.3390/ijms23020979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zidi S, Bediar-Boulaneb F, Belguendouz H, Belkhelfa M, Medjeber O, Laouar O, Henchiri C, Touil-Boukoffa C (2017) Local pro-inflammatory cytokine and nitric oxide responses are elevated in patients with pterygium. Int J ImmunoPathol Pharmacol 30(4):395–405. https://doi.org/10.1177/0394632017742505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vaddavalli PL, Schumacher B (2022) The p53 network: cellular and systemic DNA damage responses in cancer and aging. Trends Genet 38(6):598–612. https://doi.org/10.1016/j.tig.2022.02.010

    Article  CAS  PubMed  Google Scholar 

  81. Mahesh M, Mittal SK, Kishore S, Singh A, Gupta N, Rana R (2021) Expression of p53 and Ki-67 proteins in patients with increasing severity and duration of pterygium. Indian J Ophthalmol 69(4):847–850. https://doi.org/10.4103/ijo.IJO_1034_20

    Article  PubMed  PubMed Central  Google Scholar 

  82. Casciano F, Zauli E, Busin M, Caruso L, AlMesfer S, Al-Swailem S, Zauli G, Yu AC (2023) State of the art of pharmacological activators of p53 in ocular malignancies. Cancers 15(14):3593. https://doi.org/10.3390/cancers15143593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sun F, Zhou JL, Liu ZL, Jiang ZW, Peng H (2022) Dexamethasone induces ferroptosis via the P53/SLC7A11/GPX4 pathway in glucocorticoid-induced osteonecrosis of the femoral head. Biochem Biophys Res Commun 602:149–155. https://doi.org/10.1016/j.bbrc.2022.02.112

    Article  CAS  PubMed  Google Scholar 

  84. Liu B, Chen Y, St Clair DK (2008) ROS and p53: a versatile partnership. Free Radic Biol Med 44(8):1529–1535. https://doi.org/10.1016/j.freeradbiomed.2008.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lee JH, Kim DH, Kim M, Jung KH, Lee KH (2022) Mitochondrial ROS-Mediated metabolic and cytotoxic effects of Isoproterenol on cardiomyocytes are p53-Dependent and reversed by Curcumin. Molecules 27(4):1346. https://doi.org/10.3390/molecules27041346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Elgouhary SM, Elmazar HF, Naguib MI, Bayomy NR (2020) Role of oxidative stress and vascular endothelial growth factor expression in pterygium pathogenesis and prevention of pterygium recurrence after surgical excision. Int Ophthalmol 40(10):2593–2606. https://doi.org/10.1007/s10792-020-01440-2

    Article  PubMed  Google Scholar 

  87. Wilkinson CP, Ferris FL 3rd, Klein RE, Lee PP, Agardh CD, Davis M, Dills D, Kampik A, Pararajasegaram R, Verdaguer JT, Global Diabetic Retinopathy Project Group (2003) Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 110(9):1677–1682. https://doi.org/10.1016/S0161-6420(03)00475-5

  88. Shin YI, Nam KY, Lee SE, Lee MW, Lim HB, Jo YJ, Kim JY (2019) Peripapillary microvasculature in patients with diabetes mellitus: an optical coherence tomography angiography study. Sci Rep 9(1):15814. https://doi.org/10.1038/s41598-019-52354-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Perais J, Agarwal R, Evans JR, Loveman E, Colquitt JL, Owens D, Hogg RE, Lawrenson JG, Takwoingi Y, Lois N (2023) Prognostic factors for the development and progression of proliferative diabetic retinopathy in people with diabetic retinopathy. Cochrane Database Syst Rev 2(2):CD013775. https://doi.org/10.1002/14651858.CD013775.pub2

    Article  PubMed  Google Scholar 

  90. Fung TH, Patel B, Wilmot EG, Amoaku WM (2022) Diabetic retinopathy for the non-ophthalmologist. Clin Med 22(2):112–116. https://doi.org/10.7861/clinmed.2021-0792

    Article  Google Scholar 

  91. Tarasewicz D, Conell C, Gilliam LK, Melles RB (2023) Quantification of risk factors for diabetic retinopathy progression. Acta Diabetol 60(3):363–369. https://doi.org/10.1007/s00592-022-02007-6

    Article  CAS  PubMed  Google Scholar 

  92. Ahmed H, Elshaikh T, Abdullah M (2020) Early Diabetic Nephropathy and Retinopathy in patients with type 1 diabetes Mellitus attending Sudan Childhood Diabetes Centre. J Diabetes Res 2020:7181383. https://doi.org/10.1155/2020/7181383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Su Z, Wu Z, Liang X, Xie M, Xie J, Li H, Wang X, Jiang F (2023) Diabetic retinopathy risk in patients with unhealthy lifestyle: a mendelian randomization study. Front Endocrinol 13:1087965. https://doi.org/10.3389/fendo.2022.1087965

    Article  Google Scholar 

  94. Haydinger CD, Oliver GF, Ashander LM, Smith JR (2023) Oxidative stress and its regulation in Diabetic Retinopathy. Antioxid (Basel Switzerland) 12(8):1649. https://doi.org/10.3390/antiox12081649

    Article  CAS  Google Scholar 

  95. Kowluru RA (2023) Cross talks between oxidative stress, inflammation and Epigenetics in Diabetic Retinopathy. Cells 12(2):300. https://doi.org/10.3390/cells12020300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jian Q, Wu Y, Zhang F (2022) Metabolomics in Diabetic Retinopathy: from potential biomarkers to molecular basis of oxidative stress. Cells 11(19):3005. https://doi.org/10.3390/cells11193005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Singh A, Kukreti R, Saso L, Kukreti S (2022) Mechanistic insight into oxidative stress-triggered signaling pathways and type 2 diabetes. Molecules 27(3):950. https://doi.org/10.3390/molecules27030950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ghosh P, Fontanella RA, Scisciola L, Pesapane A, Taktaz F, Franzese M, Puocci A, Ceriello A, Prattichizzo F, Rizzo MR, Paolisso G, Barbieri M (2023) Targeting redox imbalance in neurodegeneration: characterizing the role of GLP-1 receptor agonists. Theranostics 13(14):4872–4884. https://doi.org/10.7150/thno.86831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cepas V, Collino M, Mayo JC, Sainz RM (2020) Redox Signaling and Advanced Glycation endproducts (AGEs) in Diet-Related diseases. Antioxid (Basel Switzerland) 9(2):142. https://doi.org/10.3390/antiox9020142

    Article  CAS  Google Scholar 

  100. Radhakrishnan R, Kowluru RA (2021) Long noncoding RNA MALAT1 and regulation of the antioxidant Defense System in Diabetic Retinopathy. Diabetes 70(1):227–239. https://doi.org/10.2337/db20-0375

    Article  CAS  PubMed  Google Scholar 

  101. Ouyang H, Du A, Zhou L, Zhang T, Lu B, Wang Z, Ji L (2022) Chlorogenic acid improves diabetic retinopathy by alleviating blood-retinal-barrier dysfunction via inducing Nrf2 activation. Phytother Res 36(3):1386–1401. https://doi.org/10.1002/ptr.7401

    Article  CAS  PubMed  Google Scholar 

  102. Liu, H., Ghosh, S., Vaidya, T., Bammidi, S., Huang, C., Shang, P., Nair, A. P., Chowdhury,O., Stepicheva, N. A., Strizhakova, A., Hose, S., Mitrousis, N., Gadde, S. G., Mb,T., Strassburger, P., Widmer, G., Lad, E. M., Fort, P. E., Sahel, J. A., Zigler, J.S., Jr, … Sinha, D. (2023). Activated cGAS/STING signaling elicits endothelial cell senescence in early diabetic retinopathy. JCI insight, 8(12), e168945. https://doi.org/10.1172/jci.insight.168945

  103. Moos WH, Faller DV, Glavas IP, Harpp DN, Kamperi N, Kanara I, Kodukula K, Mavrakis AN, Pernokas J, Pernokas M, Pinkert CA, Powers WR, Sampani K, Steliou K, Tamvakopoulos C, Vavvas DG, Zamboni RJ, Chen X (2022) Treatment and prevention of pathological mitochondrial dysfunction in retinal degeneration and in photoreceptor injury. Biochem Pharmacol 203:115168. https://doi.org/10.1016/j.bcp.2022.115168

    Article  CAS  PubMed  Google Scholar 

  104. Yang X, Li D (2023) Tricin attenuates diabetic retinopathy by inhibiting oxidative stress and angiogenesis through regulating Sestrin2/Nrf2 signaling. Hum Exp Toxicol 42:9603271231171642. https://doi.org/10.1177/09603271231171642

    Article  CAS  PubMed  Google Scholar 

  105. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313. https://doi.org/10.1152/physrev.00044.2005

    Article  CAS  PubMed  Google Scholar 

  106. Rivera J, Sobey CG, Walduck AK, Drummond GR (2010) Nox isoforms in vascular pathophysiology: insights from transgenic and knockout mouse models. Redox Report: Commun free Radical Res 15(2):50–63. https://doi.org/10.1179/174329210X12650506623401

    Article  CAS  Google Scholar 

  107. Fukai T, Ushio-Fukai M (2020) Cross-talk between NADPH oxidase and Mitochondria: role in ROS Signaling and Angiogenesis. Cells 9(8):1849. https://doi.org/10.3390/cells9081849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. GBD 2019 Blindness and Vision Impairment Collaborators, & Vision Loss Expert Group of the Global Burden of Disease Study (2021) Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the right to Sight: an analysis for the global burden of Disease Study. Lancet Global Health 9(2):e144–e160. https://doi.org/10.1016/S2214-109X(20)30489-7

    Article  Google Scholar 

  109. GBD 2019 Blindness and Vision Impairment Collaborators, & Vision Loss Expert Group of the Global Burden of Disease Study (2021) Trends in prevalence of blindness and distance and near vision impairment over 30 years: an analysis for the global burden of Disease Study. Lancet Global Health 9(2):e130–e143. https://doi.org/10.1016/S2214-109X(20)30425-3

    Article  Google Scholar 

  110. Hashemi H, Pakzad R, Yekta A, Aghamirsalim M, Pakbin M, Ramin S, Khabazkhoob M (2020) Global and regional prevalence of age-related cataract: a comprehensive systematic review and meta-analysis. Eye 34(8):1357–1370. https://doi.org/10.1038/s41433-020-0806-3

    Article  PubMed  PubMed Central  Google Scholar 

  111. Asbell PA, Dualan I, Mindel J, Brocks D, Ahmad M, Epstein S (2005) Age-related cataract. Lancet (London England) 365(9459):599–609. https://doi.org/10.1016/S0140-6736(05)17911-2

    Article  PubMed  Google Scholar 

  112. Shiels A, Hejtmancik JF (2019) Biology of inherited cataracts and opportunities for treatment. Annual Rev Vis Sci 5:123–149. https://doi.org/10.1146/annurev-vision-091517-034346

    Article  Google Scholar 

  113. Varma SD, Kovtun S, Hegde KR (2011) Role of ultraviolet irradiation and oxidative stress in cataract formation-medical prevention by nutritional antioxidants and metabolic agonists. Eye Contact Lens 37(4):233–245. https://doi.org/10.1097/ICL.0b013e31821ec4f2

    Article  PubMed  PubMed Central  Google Scholar 

  114. Hsueh YJ, Chen YN, Tsao YT, Cheng CM, Wu WC, Chen HC (2022) The pathomechanism, antioxidant biomarkers, and treatment of oxidative stress-related Eye diseases. Int J Mol Sci 23(3):1255. https://doi.org/10.3390/ijms23031255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Liu YC, Wilkins M, Kim T, Malyugin B, Mehta JS (2017) Cataracts. Lancet (London England) 390(10094):600–612. https://doi.org/10.1016/S0140-6736(17)30544-5

    Article  PubMed  Google Scholar 

  116. Honisch C, Rodella U, Gatto C, Ruzza P, Tóthová JD (2023) Oxidative stress and antioxidant-based Interventional Medicine in Ophthalmology. Pharmaceuticals (Basel Switzerland) 16(8):1146. https://doi.org/10.3390/ph16081146

    Article  CAS  PubMed  Google Scholar 

  117. Braakhuis AJ, Donaldson CI, Lim JC, Donaldson PJ (2019) Nutritional strategies to prevent Lens Cataract: current status and future strategies. Nutrients 11(5):1186. https://doi.org/10.3390/nu11051186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Astudillo AM, Balboa MA, Balsinde J (2023) Compartmentalized regulation of lipid signaling in oxidative stress and inflammation: Plasmalogens, oxidized lipids and ferroptosis as new paradigms of bioactive lipid research. Prog Lipid Res 89:101207. https://doi.org/10.1016/j.plipres.2022.101207

    Article  CAS  PubMed  Google Scholar 

  119. Yao L, Yan H (2020) MiR-182 inhibits oxidative stress and epithelial cell apoptosis in the lens of cataract rats through the PI3K/Akt signaling pathway. Eur Rev Med Pharmacol Sci 24(23):12001–12008. https://doi.org/10.26355/eurrev_202012_23988

    Article  CAS  PubMed  Google Scholar 

  120. Lou MF (2003) Redox regulation in the lens. Prog Retin Eye Res 22(5):657–682. https://doi.org/10.1016/s1350-9462(03)00050-8

    Article  CAS  PubMed  Google Scholar 

  121. Serebryany E, Thorn DC, Quintanar L (2021) Redox chemistry of lens crystallins: a system of cysteines. Exp Eye Res 211:108707. https://doi.org/10.1016/j.exer.2021.108707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Micelli-Ferrari T, Vendemiale G, Grattagliano I, Boscia F, Arnese L, Altomare E, Cardia L (1996) Role of lipid peroxidation in the pathogenesis of myopic and senile cataracts. Br J Ophthalmol 80(9):840–843. https://doi.org/10.1136/bjo.80.9.840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Govindaswamy S, C, U. R., Prabhakar S (2022) Evaluation of antioxidative enzyme levels and lipid peroxidation product levels in diabetic and non-diabetic senile cataract patients. J Diabetes Metab Disord 21(1):697–705. https://doi.org/10.1007/s40200-022-01033-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Nita M, Grzybowski A (2016) The role of the reactive oxygen species and oxidative stress in the pathomechanism of age-related ocular diseases and other pathologies of the anterior and posterior Eye segments in adults. Oxidative Med Cell Longev 2016:3164734. https://doi.org/10.1155/2016/3164734

    Article  CAS  Google Scholar 

  125. Jing Ruihua Q, Xinli X, Fei et al Ferroptosis of lens epithelial cells induced by oxidative stress injury of cata⁃ ract patients [J].Rec Adv Ophthalmol,2023,43(04):274–278, https://doi.org/10.13389/j.cnki.rao.2023.0056

  126. Lee DH, Lee SH, Kwon NS, Kim JC (1997) Light-dependent corneal toxicity in streptozocin-treated rats. Investig Ophthalmol Vis Sci 38(5):995–1002

    Google Scholar 

  127. Han Y, Zhang B, Guo X, Zhang Z (2001) [Zhonghua Yan Ke Za Zhi]. Chin J Ophthalmol 37(4):281–283

    CAS  Google Scholar 

  128. Padmanabha S, Vallikannan B (2018) Fatty acids modulate the efficacy of lutein in cataract prevention: Assessment of oxidative and inflammatory parameters in rats. Biochem Biophys Res Commun 500(2):435–442. https://doi.org/10.1016/j.bbrc.2018.04.098

    Article  CAS  PubMed  Google Scholar 

  129. Chamberlain CG, Mansfield KJ, Cerra A (2008) Nitric oxide is a survival factor for lens epithelial cells. Mol Vis 14:983–991

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Yang J, Ouyang X, Fu H, Hou X, Liu Y, Xie Y, Yu H, Wang G (2022) Advances in biomedical study of the myopia-related signaling pathways and mechanisms, vol 145. Biomedicine & pharmacotherapy = Biomedicine & pharmacotherapy, p 112472. https://doi.org/10.1016/j.biopha.2021.112472

  131. Lim JC, Arredondo C, Braakhuis M, A. J., Donaldson PJ (2020) Vitamin C and the Lens: New insights into delaying the onset of cataract. Nutrients 12(10):3142. https://doi.org/10.3390/nu12103142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wei L, Liang G, Cai C, Lv J (2016) Association of vitamin C with the risk of age-related cataract: a meta-analysis. Acta Ophthalmol 94(3):e170–e176. https://doi.org/10.1111/aos.12688

    Article  CAS  PubMed  Google Scholar 

  133. Effect of Diabetes Mellitus on Oxidative Status and Antioxidant Capacity of Aqueous Humor on Cataract Patients.PAN Yuanwen (2020) Chin Foreign Med Res 18(31):129–131. https://doi.org/10.14033/j.cnki.cfmr.2020.31.052

    Article  Google Scholar 

  134. Khare K, Mendonca T, Rodrigues G, Kamath M, Hegde A, Nayak S, Kamath A, Kamath S (2023) Aldose reductase and glutathione in senile cataract nucleus of diabetics and non-diabetics. Int Ophthalmol 43(10):3673–3680. https://doi.org/10.1007/s10792-023-02776-1

    Article  PubMed  PubMed Central  Google Scholar 

  135. Xinmiao WANG, Yujue WANG et al Effect of miR-34a-5p on epithelial - mesenchymal transition of lens epithelial cells in diabetic cataract by regulating mouse double microbody 4 [J]. Rec Adv Ophthalmol,2023,43(11):858–862. https://doi.org/10.13389/j.cnki.rao.2023.0172

  136. Xu S, Li X, Zhang S, Qi C, Zhang Z, Ma R, Xiang L, Chen L, Zhu Y, Tang C, Bourgonje AR, Li M, He Y, Zeng Z, Hu S, Feng R, Chen M (2023) Oxidative stress gene expression, DNA methylation, and gut microbiota interaction trigger Crohn’s disease: a multi-omics mendelian randomization study. BMC Med 21(1):179. https://doi.org/10.1186/s12916-023-02878-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Periyasamy P, Shinohara T (2017) Age-related cataracts: role of unfolded protein response, Ca2+ mobilization, epigenetic DNA modifications, and loss of Nrf2/Keap1 dependent cytoprotection. Prog Retin Eye Res 60:1–19. https://doi.org/10.1016/j.preteyeres.2017.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hilliard A, Mendonca P, Russell TD, Soliman KFA (2020) The Protective effects of flavonoids in Cataract formation through the activation of Nrf2 and the inhibition of MMP-9. Nutrients 12(12):3651. https://doi.org/10.3390/nu12123651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the National Key R&D Program of China (2021YFC2702103, 2021YFC2702100).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the idea and design of the article. Data collection and analysis were carried out by Zhang Ruixue, Zhao Xiaoyue, Ma Zhongyu, Xin Jizhao and Xu Shuqin respectively. The first draft of the manuscript was written by Miao Zhang, and all the authors have commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dadong Guo.

Ethics declarations

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Zhang, R., Zhao, X. et al. The role of oxidative stress in the pathogenesis of ocular diseases: an overview. Mol Biol Rep 51, 454 (2024). https://doi.org/10.1007/s11033-024-09425-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09425-5

Keywords

Navigation