Skip to main content

ROS-Responsive Biomaterial Design for Medical Applications

  • Chapter
  • First Online:
Biomimetic Medical Materials

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1064))

Abstract

Stimuli-responsive biomaterials undergo significant alterations in material structure and property in response to changes of local environmental factors (e.g. pH, temperature, enzyme activation, and water absorption). In particular, reactive oxygen species (ROS) is considered as a major stimulus because over-production of ROS involves most types of major pathogenesis. The application of ROS-responsive biomaterials requires suitable material designs to program user-defined changes of their structure and property in response to a sudden change in the local ROS level. This chapter summarizes the progress in designing and applying major types of ROS-responsive biomaterials within the past 10 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Annabi N, Tamayol A, Uquillas JA, Akbari M, Bertassoni LE, Cha C, Camci-Unal G, Dokmeci MR, Peppas NA, Khademhosseini A (2014) 25th anniversary article: rational design and applications of hydrogels in regenerative medicine. Adv Mater (Deerfield Beach, Fla) 26(1):85–124

    Article  CAS  Google Scholar 

  • Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB, Rhee SG (1997) Epidermal growth factor (EGF)-induced generation of hydrogen peroxide: role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem 272(1):217–221

    Article  CAS  Google Scholar 

  • Brand MD (2010) The sites and topology of mitochondrial superoxide production. Exp Gerontol 45(7):466–472

    Article  CAS  Google Scholar 

  • Broaders KE, Grandhe S, Fréchet JMJ (2011) A biocompatible oxidation-triggered carrier polymer with potential in therapeutics. J Am Chem Soc 133(4):756–758

    Article  CAS  Google Scholar 

  • Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85

    Article  CAS  Google Scholar 

  • Chandel NS, Trzyna WC, McClintock DS, Schumacker PT (2000) Role of oxidants in NF-κB activation and TNF-α gene transcription induced by hypoxia and endotoxin. J Immunol 165(2):1013–1021

    Article  CAS  Google Scholar 

  • Chaudhri G, Clark IA, Hunt NH, Cowden WB, Ceredig R (1986) Effect of antioxidants on primary alloantigen-induced T cell activation and proliferation. J Immunol 137(8):2646–2652

    CAS  PubMed  Google Scholar 

  • Chen Y, Azad MB, Gibson SB (2009) Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ 16:1040

    Article  CAS  Google Scholar 

  • Chung M-F, Chia W-T, Wan W-L, Lin Y-J, Sung H-W (2015) Controlled release of an anti-inflammatory drug using an ultrasensitive ROS-responsive gas-generating carrier for localized inflammation inhibition. J Am Chem Soc 137(39):12462–12465

    Article  CAS  Google Scholar 

  • Corti A, Paolicchi A, Franzini M, Dominici S, Casini AF, Pompella A (2005) The S-thiolating activity of membrane gamma-glutamyltransferase: formation of cysteinyl-glycine mixed disulfides with cellular proteins and in the cell microenvironment. Antioxid Redox Signal 7(7–8):911–918

    Article  CAS  Google Scholar 

  • Dou Y, Chen Y, Zhang X, Xu X, Chen Y, Guo J, Zhang D, Wang R, Li X, Zhang J (2017) Non-proinflammatory and responsive nanoplatforms for targeted treatment of atherosclerosis. Biomaterials 143(Supplement C):93–108

    Article  CAS  Google Scholar 

  • Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351

    Article  CAS  Google Scholar 

  • Dunnill C, Patton T, Brennan J, Barrett J, Dryden M, Cooke J, Leaper D, Georgopoulos NT (2017) Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int Wound J 14(1):89–96

    Article  Google Scholar 

  • Dwyer DJ, Kohanski MA, Collins JJ (2009) Role of reactive oxygen species in antibiotic action and resistance. Curr Opin Microbiol 12(5):482–489

    Article  CAS  Google Scholar 

  • Fakhruddin S, Alanazi W, Jackson KE (2017) Diabetes-induced reactive oxygen species: mechanism of their generation and role in renal injury. J Diabetes Res 2017:30

    Article  Google Scholar 

  • Finkel T (2012) From sulfenylation to sulfhydration: what a thiolate needs to tolerate. Sci Signal 5(215):pe10–pe10

    Article  Google Scholar 

  • Franz S, Rammelt S, Scharnweber D, Simon JC (2011) Immune responses to implants – a review of the implications for the design of immunomodulatory biomaterials. Biomaterials 32(28):6692–6709

    Article  CAS  Google Scholar 

  • Fridovich I (1997) Superoxide anion radical (O·2), superoxide dismutases, and related matters. J Biol Chem 272(30):18515–18517

    Article  CAS  Google Scholar 

  • Gorrini C, Harris IS, Mak TW (2013) Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 12:931

    Article  CAS  Google Scholar 

  • Gupta MK, Martin JR, Werfel TA, Shen T, Page JM, Duvall CL (2014) Cell protective, ABC triblock polymer-based thermoresponsive hydrogels with ROS-triggered degradation and drug release. J Am Chem Soc 136(42):14896–14902

    Article  CAS  Google Scholar 

  • Hertog Jd, Östman A, Böhmer F-D (2008) Protein tyrosine phosphatases: regulatory mechanisms. FEBS J 275(5):831–847

    Article  Google Scholar 

  • Ikeda M, Tanida T, Yoshii T, Kurotani K, Onogi S, Urayama K, Hamachi I (2014) Installing logic-gate responses to a variety of biological substances in supramolecular hydrogel–enzyme hybrids. Nat Chem 6:511

    Article  CAS  Google Scholar 

  • Jang K-J, Mano H, Aoki K, Hayashi T, Muto A, Nambu Y, Takahashi K, Itoh K, Taketani S, Nutt SL, Igarashi K, Shimizu A, Sugai M (2015) Mitochondrial function provides instructive signals for activation-induced B-cell fates. Nat Commun 6:6750

    Article  CAS  Google Scholar 

  • Kamiński MM, Sauer SW, Klemke C-D, Süss D, Okun JG, Krammer PH, Gülow K (2010) Mitochondrial reactive oxygen species control T cell activation by regulating IL-2 and IL-4 expression: mechanism of ciprofloxacin-mediated immunosuppression. J Immunol 184(9):4827–4841

    Article  Google Scholar 

  • Kim GH, Kim JE, Rhie SJ, Yoon S (2015a) The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol 24(4):325–340

    Article  Google Scholar 

  • Kim JS, Jo SD, Seah GL, Kim I, Nam YS (2015b) ROS-induced biodegradable polythioketal nanoparticles for intracellular delivery of anti-cancer therapeutics. J Ind Eng Chem 21(Supplement C):1137–1142

    Article  CAS  Google Scholar 

  • Kopeček J (2007) Hydrogel biomaterials: a smart future? Biomaterials 28(34):5185–5192

    Article  Google Scholar 

  • Lee J-C, Litt MH, Rogers CE (1998) Synthesis and properties of poly(oxyethylene)s containing thioether, sulfoxide, or sulfone groups. J Polym Sci A Polym Chem 36(5):793–801

    Article  CAS  Google Scholar 

  • Liu J, Pang Y, Chen J, Huang P, Huang W, Zhu X, Yan D (2012) Hyperbranched polydiselenide as a self assembling broad spectrum anticancer agent. Biomaterials 33(31):7765–7774

    Article  CAS  Google Scholar 

  • Ma N, Li Y, Xu H, Wang Z, Zhang X (2010) Dual redox responsive assemblies formed from diselenide block copolymers. J Am Chem Soc 132(2):442–443

    Article  CAS  Google Scholar 

  • Ma N, Xu H, An L, Li J, Sun Z, Zhang X (2011) Radiation-sensitive diselenide block co-polymer micellar aggregates: toward the combination of radiotherapy and chemotherapy. Langmuir 27(10):5874–5878

    Article  CAS  Google Scholar 

  • Martin JR, Gupta MK, Page JM, Yu F, Davidson JM, Guelcher SA, Duvall CL (2014) A porous tissue engineering scaffold selectively degraded by cell-generated reactive oxygen species. Biomaterials 35(12):3766–3776

    Article  CAS  Google Scholar 

  • Mertz W (1981) The essential trace elements. Science 213(4514):1332–1338

    Article  CAS  Google Scholar 

  • Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB (2013) Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 20(7):1126–1167

    Article  Google Scholar 

  • Napoli A, Valentini M, Tirelli N, Muller M, Hubbell JA (2004a) Oxidation-responsive polymeric vesicles. Nat Mater 3(3):183–189

    Article  CAS  Google Scholar 

  • Napoli A, Boerakker MJ, Tirelli N, Nolte RJM, Sommerdijk NAJM, Hubbell JA (2004b) Glucose-oxidase based self-destructing polymeric vesicles. Langmuir 20(9):3487–3491

    Article  CAS  Google Scholar 

  • Nicolaou KC, Mathison CJ, Montagnon T (2003) New reactions of IBX: oxidation of nitrogen- and sulfur-containing substrates to afford useful synthetic intermediates. Angew Chem Int Ed Engl 42(34):4077–4082

    Article  CAS  Google Scholar 

  • Nikolay VG, Pavel VA, Alexander DN, Irina LZ, Richard OJ (2015) Reactive oxygen species in pathogenesis of atherosclerosis. Curr Pharm Des 21(9):1134–1146

    Article  Google Scholar 

  • Paulsen CE, Truong TH, Garcia FJ, Homann A, Gupta V, Leonard SE, Carroll KS (2011) Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity. Nat Chem Biol 8:57

    Article  Google Scholar 

  • Peltier R, Chen G, Lei H, Zhang M, Gao L, Lee SS, Wang Z, Sun H (2015) The rational design of a peptide-based hydrogel responsive to H2S. Chem Commun 51(97):17273–17276

    Article  CAS  Google Scholar 

  • Poole KM, Nelson CE, Joshi RV, Martin JR, Gupta MK, Haws SC, Kavanaugh TE, Skala MC, Duvall CL (2015) ROS-responsive microspheres for on demand antioxidant therapy in a model of diabetic peripheral arterial disease. Biomaterials 41(Supplement C):166–175

    Article  CAS  Google Scholar 

  • Qin L, Li G, Qian X, Liu Y, Wu X, Liu B, Hong J-S, Block ML (2005) Interactive role of the toll-like receptor 4 and reactive oxygen species in LPS-induced microglia activation. Glia 52(1):78–84

    Article  Google Scholar 

  • Reddy ST, Rehor A, Schmoekel HG, Hubbell JA, Swartz MA (2006) In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J Control Release 112(1):26–34

    Article  CAS  Google Scholar 

  • Rehor A, Botterhuis NE, Hubbell JA, Sommerdijk NAJM, Tirelli N (2005) Glucose sensitivity through oxidation responsiveness. An example of cascade-responsive nano-sensors. J Mater Chem 15(37):4006–4009

    Article  CAS  Google Scholar 

  • Rhee SG (2006) H2O2, a necessary evil for cell signaling. Science 312(5782):1882–1883

    Article  Google Scholar 

  • Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179(4073):588–590

    Article  CAS  Google Scholar 

  • Saravanakumar G, Kim J, Kim WJ (2017) Reactive-oxygen-species-responsive drug delivery systems: promises and challenges. Adv Sci (Weinh) 4(1):1600124

    Article  Google Scholar 

  • Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24(10):R453–R462

    Article  CAS  Google Scholar 

  • Schroeder HA, Frost DV, Balassa JJ (1970) Essential trace metals in man: selenium. J Chronic Dis 23(4):227–243

    Article  CAS  Google Scholar 

  • Seliktar D (2012) Designing cell-compatible hydrogels for biomedical applications. Science 336(6085):1124–1128

    Article  CAS  Google Scholar 

  • Serras F (2016) The benefits of oxidative stress for tissue repair and regeneration. Fly 10(3):128–133

    Article  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:26

    Google Scholar 

  • Shiino D, Murata Y, Kataoka K, Koyama Y, Yokoyama M, Okano T, Sakurai Y (1994) Preparation and characterization of a glucose-responsive insulin-releasing polymer device. Biomaterials 15(2):121–128

    Article  CAS  Google Scholar 

  • Shim MS, Xia Y (2013) A reactive oxygen species (ROS)-responsive polymer for safe, efficient, and targeted gene delivery in cancer cells. Angew Chem Int Ed 52(27):6926–6929

    Article  CAS  Google Scholar 

  • Simm A, Brömme H-J (2005) Reactive oxygen species (ROS) and aging: do we need them — can we measure them — should we block them? Signal Transduct 5(3):115–125

    Article  CAS  Google Scholar 

  • Song C-C, Du F-S, Li Z-C (2014) Oxidation-responsive polymers for biomedical applications. J Mater Chem B 2(22):3413–3426

    Article  CAS  Google Scholar 

  • Svegliati S, Cancello R, Sambo P, Luchetti M, Paroncini P, Orlandini G, Discepoli G, Paterno R, Santillo M, Cuozzo C, Cassano S, Avvedimento EV, Gabrielli A (2005) Platelet-derived growth factor and reactive oxygen species (ROS) regulate Ras protein levels in primary human fibroblasts via ERK1/2: amplification of ROS and Ras in systemic sclerosis fibroblasts. J Biol Chem 280(43):36474–36482

    Article  CAS  Google Scholar 

  • Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8:579

    Article  CAS  Google Scholar 

  • Velluto D, Demurtas D, Hubbell JA (2008) PEG-b-PPS diblock copolymer aggregates for hydrophobic drug solubilization and release: cyclosporin A as an example. Mol Pharm 5(4):632–642

    Article  CAS  Google Scholar 

  • Wang M, Sun S, Neufeld CI, Perez-Ramirez B, Xu Q (2014) Reactive oxygen species-responsive protein modification and its intracellular delivery for targeted cancer therapy. Angew Chem Int Ed 53(49):13444–13448

    Article  CAS  Google Scholar 

  • Webb KS, Levy D (1995) A facile oxidation of boronic acids and boronic esters. Tetrahedron Lett 36(29):5117–5118

    Article  CAS  Google Scholar 

  • Wheeler ML, DeFranco AL (2012) Prolonged production of reactive oxygen species in response to B cell receptor stimulation promotes B cell activation and proliferation. J Immunol 189(9):4405–4416

    Article  CAS  Google Scholar 

  • Wilson DS, Dalmasso G, Wang L, Sitaraman SV, Merlin D, Murthy N (2010) Orally delivered thioketal nanoparticles loaded with TNF-α–siRNA target inflammation and inhibit gene expression in the intestines. Nat Mater 9:923

    Article  CAS  Google Scholar 

  • Winterbourn CC (1995) Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol Lett 82–83(Supplement C):969–974

    Article  Google Scholar 

  • Winterbourn CC (2008) Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 4:278

    Article  CAS  Google Scholar 

  • Xu H, Cao W, Zhang X (2013) Selenium-containing polymers: promising biomaterials for controlled release and enzyme mimics. Acc Chem Res 46(7):1647–1658

    Article  CAS  Google Scholar 

  • Xu Q, He C, Xiao C, Chen X (2016) Reactive oxygen species (ROS) responsive polymers for biomedical applications. Macromol Biosci 16(5):635–646

    Article  CAS  Google Scholar 

  • Xu X, Saw PE, Tao W, Li Y, Ji X, Bhasin S, Liu Y, Ayyash D, Rasmussen J, Huo M, Shi J, Farokhzad OC (2017) ROS-responsive polyprodrug nanoparticles for triggered drug delivery and effective cancer therapy. Adv Mater 29(33). https://doi.org/10.1002/adma.201700141

    Article  Google Scholar 

  • Yang Y, Bazhin AV, Werner J, Karakhanova S (2013) Reactive oxygen species in the immune system. Int Rev Immunol 32(3):249–270

    Article  Google Scholar 

  • Yu L, Ding J (2008) Injectable hydrogels as unique biomedical materials. Chem Soc Rev 37(8):1473–1481

    Article  CAS  Google Scholar 

  • Yu SS, Koblin RL, Zachman AL, Perrien DS, Hofmeister LH, Giorgio TD, Sung H-J (2011) Physiologically relevant oxidative degradation of oligo(proline) cross-linked polymeric scaffolds. Biomacromolecules 12(12):4357–4366

    Article  CAS  Google Scholar 

  • Zhou Y, Li B, Li S, Ardoña HAM, Wilson WL, Tovar JD, Schroeder CM (2017) Concentration-driven assembly and sol–gel transition of π-conjugated oligopeptides. ACS Cent Sci 3(9):986–994

    Article  CAS  Google Scholar 

  • Ziech D, Franco R, Pappa A, Panayiotidis MI (2011) Reactive oxygen species (ROS)––induced genetic and epigenetic alterations in human carcinogenesis. Mutat Res/Fundam Mol Mech Mutagen 711(1):167–173

    Article  CAS  Google Scholar 

  • Ziegler DM (1985) Role of reversible oxidation-reduction of enzyme thiols-disulfides in metabolic regulation. Annu Rev Biochem 54(1):305–329

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hak-Joon Sung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, J.B., Shin, Y.M., Kim, W.S., Kim, S.Y., Sung, HJ. (2018). ROS-Responsive Biomaterial Design for Medical Applications. In: Noh, I. (eds) Biomimetic Medical Materials. Advances in Experimental Medicine and Biology, vol 1064. Springer, Singapore. https://doi.org/10.1007/978-981-13-0445-3_15

Download citation

Publish with us

Policies and ethics